
76

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

The ellipses in the figure are the contours of a quadratic function that
we want to optimize. Coordinate ascent was initialized at (2,�2), and also
plotted in the figure is the path that it took on its way to the global maximum.
Notice that on each step, coordinate ascent takes a step that’s parallel to one
of the axes, since only one variable is being optimized at a time.

6.8.2 SMO

We close o↵ the discussion of SVMs by sketching the derivation of the SMO
algorithm.

Here’s the (dual) optimization problem that we want to solve:

max↵ W (↵) =
nX

i=1

↵i �
1

2

nX

i,j=1

y(i)y(j)↵i↵jhx(i), x(j)i. (6.19)

s.t. 0 ↵i C, i = 1, . . . , n (6.20)
nX

i=1

↵iy
(i) = 0. (6.21)

Let’s say we have set of ↵i’s that satisfy the constraints (6.20-6.21). Now,
suppose we want to hold ↵2, . . . ,↵n fixed, and take a coordinate ascent step
and reoptimize the objective with respect to ↵1. Can we make any progress?
The answer is no, because the constraint (6.21) ensures that

↵1y
(1) = �

nX

i=2

↵iy
(i).

77

Or, by multiplying both sides by y(1), we equivalently have

↵1 = �y(1)
nX

i=2

↵iy
(i).

(This step used the fact that y(1) 2 {�1, 1}, and hence (y(1))2 = 1.) Hence,
↵1 is exactly determined by the other ↵i’s, and if we were to hold ↵2, . . . ,↵n

fixed, then we can’t make any change to ↵1 without violating the con-
straint (6.21) in the optimization problem.

Thus, if we want to update some subject of the ↵i’s, we must update at
least two of them simultaneously in order to keep satisfying the constraints.
This motivates the SMO algorithm, which simply does the following:

Repeat till convergence {

1. Select some pair ↵i and ↵j to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W (↵) with respect to ↵i and ↵j, while holding all the
other ↵k’s (k 6= i, j) fixed.

}

To test for convergence of this algorithm, we can check whether the KKT
conditions (Equations 6.16-6.18) are satisfied to within some tol. Here, tol is
the convergence tolerance parameter, and is typically set to around 0.01 to
0.001. (See the paper and pseudocode for details.)

The key reason that SMO is an e�cient algorithm is that the update to
↵i, ↵j can be computed very e�ciently. Let’s now briefly sketch the main
ideas for deriving the e�cient update.

Let’s say we currently have some setting of the ↵i’s that satisfy the con-
straints (6.20-6.21), and suppose we’ve decided to hold ↵3, . . . ,↵n fixed, and
want to reoptimize W (↵1,↵2, . . . ,↵n) with respect to ↵1 and ↵2 (subject to
the constraints). From (6.21), we require that

↵1y
(1) + ↵2y

(2) = �
nX

i=3

↵iy
(i).

Since the right hand side is fixed (as we’ve fixed ↵3, . . .↵n), we can just let
it be denoted by some constant ⇣:

↵1y
(1) + ↵2y

(2) = ⇣. (6.22)

We can thus picture the constraints on ↵1 and ↵2 as follows:

78

α2

α1

α1 α2

C

C

(1)
+

(2)y y =ζH

L

From the constraints (6.20), we know that ↵1 and ↵2 must lie within the box
[0, C]⇥ [0, C] shown. Also plotted is the line ↵1y(1)+↵2y(2) = ⇣, on which we
know ↵1 and ↵2 must lie. Note also that, from these constraints, we know
L ↵2 H; otherwise, (↵1,↵2) can’t simultaneously satisfy both the box
and the straight line constraint. In this example, L = 0. But depending on
what the line ↵1y(1) + ↵2y(2) = ⇣ looks like, this won’t always necessarily be
the case; but more generally, there will be some lower-bound L and some
upper-bound H on the permissible values for ↵2 that will ensure that ↵1, ↵2

lie within the box [0, C]⇥ [0, C].
Using Equation (6.22), we can also write ↵1 as a function of ↵2:

↵1 = (⇣ � ↵2y
(2))y(1).

(Check this derivation yourself; we again used the fact that y(1) 2 {�1, 1} so
that (y(1))2 = 1.) Hence, the objective W (↵) can be written

W (↵1,↵2, . . . ,↵n) = W ((⇣ � ↵2y
(2))y(1),↵2, . . . ,↵n).

Treating ↵3, . . . ,↵n as constants, you should be able to verify that this is
just some quadratic function in ↵2. I.e., this can also be expressed in the
form a↵2

2 + b↵2 + c for some appropriate a, b, and c. If we ignore the “box”
constraints (6.20) (or, equivalently, that L ↵2 H), then we can easily
maximize this quadratic function by setting its derivative to zero and solving.
We’ll let ↵new,unclipped

2 denote the resulting value of ↵2. You should also be
able to convince yourself that if we had instead wanted to maximize W with
respect to ↵2 but subject to the box constraint, then we can find the resulting
value optimal simply by taking ↵new,unclipped

2 and “clipping” it to lie in the

79

[L,H] interval, to get

↵new
2 =

8
<

:

H if ↵new,unclipped
2 > H

↵new,unclipped
2 if L ↵new,unclipped

2 H
L if ↵new,unclipped

2 < L

Finally, having found the ↵new
2 , we can use Equation (6.22) to go back and

find the optimal value of ↵new
1 .

There’re a couple more details that are quite easy but that we’ll leave you
to read about yourself in Platt’s paper: One is the choice of the heuristics
used to select the next ↵i, ↵j to update; the other is how to update b as the
SMO algorithm is run.

