Review of Pherious Lecture () Graph Leplacian example $\frac{degree}{L=D-W} = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \end{bmatrix}$ U. 1 UZ 1 V3 0.1] -1 -1 02 $\begin{bmatrix} -1 & -1 & 2 & 0 \\ -1 & -1 & 2 & 0 \\ 0 & -6 \cdot 1 & 0 & 0 \cdot 1 \end{bmatrix}$ 2) Spectral (lustering: - Model date using a similarity graph - E-neighborhood - E-neighborhood - K-nearest neighbor graph { } (u,v) | u e N(v) or v e N(v) f - K-nearest neighbor graph { } (u,v) | u e N(v) or v e N(v) f mutual necrest neighbor - Find partitions Ay ... At that minimizes JUNN NENKON and VENKON min $\sum_{i=1}^{k} \frac{\text{cut}(A_i, A_i)}{|A_i|}$ (Normalized Cut) (1) $\forall \neq j$, $AinA_{i} = \phi$, UA;=V - Transform (1) into an optimization problem of Laplacian L=P-W. $\min_{\substack{j \in \mathbb{R}^{n} \\ j \in \mathbb{R}^{n}}} \frac{f_{i}}{\sum_{i \in I}} \frac{f_{i}}{f_{i}} \frac{f_{i}}{f_{i}} \frac{f_{i}}{f_{i}} (2),$ st. +: + = + i≠j Properties of L : - smallest objervalue $\lambda_1 = 0$ $\begin{array}{c} (n \times n) & - & D : \lambda_1 \leq \lambda_2 \cdots \leq \lambda_n. \\ & = & \\ & - & \uparrow \\ & 1 & . \end{array}$ E.

Spectral Graph Theory Graph Laplacian $\begin{array}{c}
 & V_{1} \\
 & V_{2} \\
 & V_{3}
\end{array}$ 1 A= 1 51 L=D-W [L] **Proposition** 1 A 71 1A2= 00 Let G be an undirected graph with non-negative weights W, the multiplicity \underline{k} of eigenvalue 0 of \underline{L} is the number of connected components A_1, \ldots, A_k in G. The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$ 1). When k=1, G is connected Suppose of is an eigenvector of L, with eigenvalue O then $f^T L f = f^T (0 \cdot f) = 0$. $\sum_{i=1}^{n} w_{ij}(f_i - f_j)^2 = 0.$ $\sum_{(i,j)\in E}^{\infty} w_{ij}(f_i - f_j)^2 = 0$, For all $(i,j)\in E$, $f_i = f_j^{-1}$ since G is connected. wi > 0 Therefore f is a constant vector : $f = c \cdot 1 = C \cdot$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹: d_{1}

$$L_{rw} = \underbrace{D^{-1}L}_{I} = I - D^{-1}W$$

Properties of L_{rw}

- λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ , v solve the generalized eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of L with eigenvector 1
- L_{rw} is positive semi-definite and has *n* non-negative eigenvalues $\widehat{\mathbf{0}} = \lambda_1 < \lambda_2 < \ldots < \lambda_n$

¹"rw" comes from its interpertation as "random walk". Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{rw}

- ▶ λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ , v solve the generalized eigenproblem $Lv = \lambda Dv$
- \blacktriangleright 0 is an eigenvalue of L with eigenvector ${\bf 1}$
- L_{rw} is positive semi-definite and has *n* non-negative eigenvalues $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$

Proposition 2

Let G be an undirected graph with non-negative weights W, the multiplicity k of eigenvalue 0 of L_{rw} is the number of connected components A_1, \ldots, A_k in G.

The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \underline{\mathbf{1}}_{A_k}$

 $^1"rw"$ comes from its interpertation as "random walk". Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

Solving graph cut

$$\begin{array}{c} |A| = 3, \quad |A| =$$

Solving graph cut

Recall the definition of RatioCut:

$$\underset{A_{1},...,A_{k}}{\min} \sum_{i}^{k} \frac{\underline{cut}(A_{i},\bar{A}_{i})}{|A_{i}|}$$

$$\Longrightarrow \underset{A_{1},...,A_{k}}{\min} \sum_{i}^{k} \frac{f_{(i)}^{T}Lf_{(i)}}{f_{(i)}^{T}f_{(i)}} \underset{\varepsilon}{\overset{\iota}{\underset{I}}}{\overset{\iota}{\underset{I}}} \underset{I^{\dagger}_{I},I^{\dagger}_{I}}{\overset{\iota}{\underset{I}}}$$

$$(3)$$

Relax the $f_{(i)}$'s to be real vectors:

$$\min_{\substack{f_{(1)},\dots,f_{(k)}\in\mathbb{R}^{n}\\ s.t.}} \sum_{i}^{k} \frac{f_{(i)}^{T}Lf_{(i)}}{f_{(i)}^{T}f_{(i)}} \qquad (5)$$

$$s.t. f_{(i)}^{T}f_{(j)} = 0, \text{ for all } i \neq j$$

Solving graph cut

Since rescaling $f_{(i)}$ by constants does not change the objective, (3) is equivalent to

$$\begin{array}{c} \min_{f_{(1)},\dots,f_{(k)}\in\mathbb{R}^{n}}\sum_{i}^{k}f_{(i)}^{T}Lf_{(i)} & (6) \\ f_{(1)},\dots,f_{(k)}\in\mathbb{R}^{n} \sum_{i}^{k}f_{(i)}^{T}Lf_{(i)} = 0, \text{ for all } i \neq j \\ f_{(i)}^{T}f_{(i)} = 1, \text{ for all } i = 1,\dots,k \\
\begin{array}{c} \text{Let } F = \left[f_{(1)}\dots f_{(k)}\right], (5) \text{ can be written in matrix notation:} \\ F \in \left[f_{(1)}\dots f_{(k)}\right], (5) \text{ can be written in matrix notation:} \\ f_{F \in \mathbb{R}^{n}} \underbrace{\text{tr}(F^{T}LF)}_{s.t. F^{T}F = I} \right] \\ f_{F \in \mathbb{R}^{n}} \underbrace{f_{F} \in \mathbb{R}^{n}}_{j} \int_{0}^{smulle^{st}} \frac{1}{s} \\ f_{F} = \left[f_{F} + f_{F} + f$$

To get discrete cluster labels, we can apply k-means clustering or the rows of F*.

Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight $\underline{W}_{v_{1}} = \begin{bmatrix} -y_{1} \\ -y_{2} \\ -y_{$
- Define $y_i \in \mathbb{R}^k$ as the ith row of V, cluser y_1, \ldots, y_n into k clusters $C_1, \ldots, \overline{C_k}$ using k-means

Output: A_1, \ldots, A_k where $A_i = \{j | y_j = C_i\}$ cluster label

• Unormalized spectral clustering is relaxed solution to the RatioCut problem.

Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight W
- Compute first k eigenvectors $V = [v_1, ..., v_k]$ of generalized eigen problem $Lv = \lambda Dv$
- ▶ Define $y_i \in \mathbb{R}^k$ as the ith row of V, cluser y_1, \ldots, y_n into k clusters C_1, \ldots, C_k using k-means

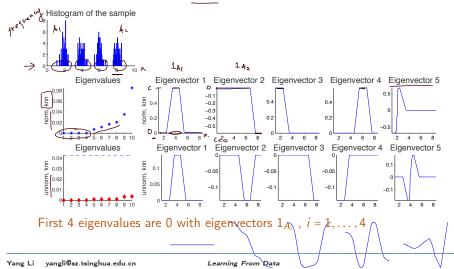
Output: A_1, \ldots, A_k where $A_i = \{j | y_j = C_i\}$

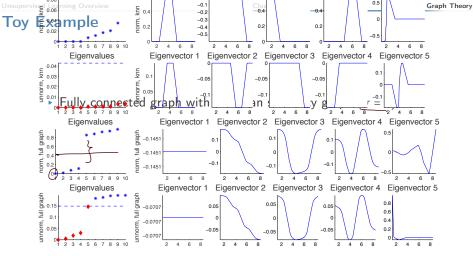
 Normalized spectral clustering (*L_{rw}*) is a relaxed solution to the NCut problem.

K-Means Clustering

Toy Example

- 200 data points sampled from 4 Gaussian distributions
- KNN similarity graph (k = 10)

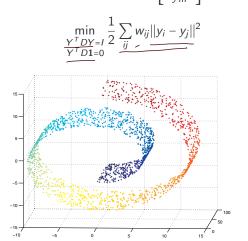




First eigenvector is 1 since the graph has only 1 connected component

Spectral Embedding

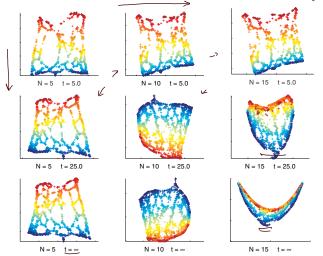
Also known as Laplacian Eigenmaps [Belkin et. al., 2003]: $\chi = \mathcal{R}^{k \times d}$.



Spectral Embedding

Example: 2D embedding results:

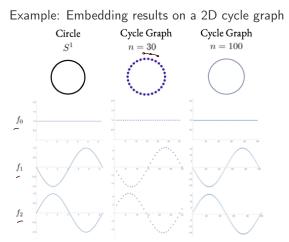
- ► *N*: number of neighbors in kNN graph
- ▶ t: hyperparameter in the similarity function $W_{i,j} = \exp(\frac{||x_i-x_j||^2}{t})$



Yang Li yangli@sz.tsinghua.edu.cn

Learning From Data

Spectral Embedding

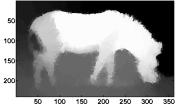


Also studied in graph signal processing and differential geometry

Additional topics of graph Laplacian methods

Graph spectra can be used as topological features for supervised and unsupervised learning

- Laplacian eigenmaps for d<u>imension reduct</u>ion and visualization
- Unsupervised segmentation
- Graph-based <u>semi-supervised</u> learning (manifold regularization) f^rLf



Unsupervised segmentation using NCut [Shi & Malik, 2000]

Lazy Snapping (semi-supervised graph cut) [Li et. al. 2004]

Summary

Representation learning

- Transform input features into "simpler" or "interpretable" representations.
- ▶ Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms and their assumptions

- K-Means: assumes data are isotropic Gaussian, different clusters have the same prior probability
- Spectral Methods: manifold assumption, cluster labels of a node depends on its neighbors

