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COMMENTS

• Mention collaborators in your assignments. See the policies for details.

• Provide sufficient arguments in your proof.

POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the problems individually. As
we sometimes reuse problem set questions from previous years, covered by papers and web pages, we
expect the students NOT to copy, refer to, or look at the solutions in preparing their answers (relating
to an unauthorized material is considered a violation of the honor principle). Similarly, we expect to
not to google directly for answers (though you are free to google for knowledge about the topic). If
you do happen to use other material, it must be acknowledged here, with a citation on the submitted
solution.

• Required homework submission format: You can submit homework either as one single PDF
document or as handwritten papers. Written homework needs to be provided during the class in
the due date, and PDF document needs to be submitted through Tsinghua’s Web Learning (http:
//learn.tsinghua.edu.cn/) before the end of due date.

• Collaborators: In a separate section (before your answers), list the names of all people you collab-
orated with and for which question(s). If you did the HW entirely on your own, PLEASE STATE
THIS. Each student must understand, write, and hand in answers of their own.

1.1. (Sigmoid Function) Show that the sigmoid function

σ(x) =
1

1 + exp(−x)

satisfies the following properties.
(a) (0.5 points) σ(−x) = 1− σ(x).

(b) (0.5 points)
dσ(x)

dx
= σ(x)(1− σ(x)).

1.2. (Ridge Regression) Ridge regression was developed as a possible solution to the imprecision of least
square estimators when linear regression models have some multicollinear (highly correlated) independent
variables.
We can formulate the ridge regression loss function as the following

J(θ)
def
= ||y −Xθ||2 + λ||θ||2,

where X is the design matrix, y is the corresponding label vector, and θ is the weight vector. For an
appropriate λ,
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(a) (1 point) calculate ∇θJ(θ),

(b) (1 point) give the gradient descend iteration equation with learning rate α,

(c) (1 point) derive the optimal parameter θ∗ for the normal equation method.

1.3. (MAP) Suppose we have m samples x1, x2, ..., xm independently drawn from a normal distribution with
known variance σ2 and unknown mean θ, i.e.

P (xi|θ) =
1√
2πσ2

exp(− (xi − θ)2

2σ2
).

Maximum likelihood estimation (MLE) assumes that the optimal parameter θ is the one that generates
the observed data with the highest probability, i.e. θMLE

def
= argmaxθ P (x1, x2, ..., xm|θ). However,

what if we know some additional prior information about the distribution of θ? e.g. Let θ be a random
variable following a Gaussian distribution, i.e. θ ∼ N(ν, µ2). We can calculate the posterior distribution
of θ using Bayes’ theorem and derive the MAP estimator θMAP , i.e.

θMAP
def
= argmaxθP (θ|x1, . . . , xm) =

P (x1, . . . , xm|θ)P (θ)

P (x1, . . . , xm)
.

(a) (1 point) Find the MLE estimator for θ;

(b) (1 point) Find the MAP estimator for θ;

(c) (1 point) Compare the estimators of MLE and MAP when n is very large.

1.4. (Softmax Regression)(3 points) In multivariate classification problems, we use softmax function to derive
the likelihood of each possible label y and predict the most probable one for data x ∈ Rn. To train
parameter matrix Θ ∈ Rn×k from the given samples

(
x(i), y(i)

)
, i = 1, . . . ,m, we need to calculate the

derivative of the softmax model’s log-likelihood function

ℓ(Θ)
def
=

m∑
i=1

log p(y(i)|x(i);Θ) =

m∑
i=1

k∑
l=1

1
{
y(i) = l

}
log

eθ
T
l x(i)∑k

j=1 e
θT
j x(i)

.

Calculate ∇θ1ℓ(Θ).

1.5. (Implicit Bias of Gradient Descent)(Bonus 3 points) Consider the problem of solving an under-determined
system of linear equation y = Ax where A ∈ Rm×n with m < n. Of course, the solution is not unique.
Nevertheless, let us solve it by minimizing the least square error

min
x

f(x)
def
= ∥y −Ax∥2,

say using the simplest gradient descent algorithm:

xk+1 = xk − α∇f(xk).

If we initialize x0 as the origin 0, then when the above gradient descent algorithm converges,

(a) (1.5 points) calculate x∞,

(b) (1.5 points) prove that x∞ = AT(AAT)−1y. Hint: Use the SVD of A.

This is a phenomenon widely exploited in the practice of learning deep neural networks. Although due
to over-parameterization, parameters that minimize the cost function might not be unique, the choice
of optimization algorithms with proper initialization (here gradient descent starting from the origin)
introduces implicit bias for the optimization path and converges to a desirable solution.


