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Abstract—The training efficiency of distributed learning sys-
tems is vulnerable to stragglers, namely, those slow worker nodes.
A naive strategy is performing the distributed learning by incor-
porating the fastest K workers and ignoring these stragglers,
which may induce high deviation for non-IID data. To tackle
this, we develop a Live Gradient Compensation (LGC) strategy
to incorporate the one-step delayed gradients from stragglers,
aiming to accelerate learning process and utilize the stragglers
simultaneously. In LGC framework, mini-batch data are divided
into smaller blocks and processed separately, which makes the
gradient computed based on partial work accessible. Extensive
simulation experiments of image classification on CIFAR-10
dataset are conducted, and the numerical results demonstrate
the effectiveness of our proposed strategy.

Index Terms—Straggler, Distributed Learning, Non-IID, Gra-
dient Compensation

I. INTRODUCTION

Distributed implementations of gradient-based methods [1],
[2] have been essential for training large machine learning
models on massive datasets, e.g., deep neural networks for
image classification and speech recognition [3], [4]. Typical
distributed learning architecture consists of a parameter server
(PS) and distributed worker nodes – the workers compute
and send local gradients to PS in parallel, while the PS
aggregates the gradients and then broadcasts back to workers
to update local parameters [5]. In synchronous settings, the
time overhead of each iteration in such system architecture is
subject to the stragglers, i.e., slow or unresponsive workers that
are caused by performance variability as well as unexpected
incidents like network congestion and hardware failures.

Much research attention has recently focused on mitigating
stragglers either by leveraging coding-theoretic techniques
[10]–[14] or by utilizing partial work completed by stragglers
[15], [16]. In particular, it is possible to collect gradients
from only the fast workers and discard the computations on
stragglers, while still achieving convergence [8], [17], [18]. We
refer to this naive strategy as K-SGD. However, this approach
relies on the IID assumption1 of training data and is shown
to induce gradient/sampling bias in more general settings.
Another line of work leverages gradient coding to obtain the
exact gradient value despite of the stragglers [7], [9], [19]–
[21]. However in such approaches, a certain amount of over-
head (computation/data duplication) must always be present, in
order to successfully address the worst-case stragglers. Further,

1Training data among workers are independent and identically distributed
(IID), so that local gradient is an unbiased estimation of global gradient.
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Fig. 1. Distributed learning with a parameter server. (a) System architecture.
(b) Full-SGD method. (c) LGC-SGD method. LGC-SGD can significantly
reduce training time overhead while maintaining convergence, by evading
and compensating for stragglers.

gradient coding schemes are brittle in the sense that they work
perfectly only up to a fixed number of stragglers.

In this project, we propose a novel Live Gradient Compensa-
tion (LGC) framework for mitigating stragglers in distributed
learning, which is built on top of K-SGD with partial work
tolerance and gradient bias compensation mechanisms. The
central idea can be seen through a simple example shown in
Fig. 1 with one PS and three workers. In full synchronous
SGD (Full-SGD), the training time overhead of each iteration
is determined by the worst performing worker, which results
in a total training time of 2 + 2 + 2.5 = 6.5 for all three
iterations. On the other hand, we can bypass the slowest
worker in each iteration (thus collecting the results only from
the K = 2 fastest workers) and then compensate for the impact
by performing a combined gradient update in the next iteration.
This reduces the total training time to 1.2 + 1.5 + 1.3 = 4,
albeit minor gradient noise introduced due to the one-step
delay of compensation. This motivates the design of LGC-
SGD. We would like to emphasize that in contrast to the
gradient coding approach, LGC-SGD does not require any
extra computation or data storage overhead. While gradient
compensation has been developed as a technique in gradient
compression [22]–[26], we make novel use of that to mitigate
stragglers in distributed learning.

The proposed LGC framework is evaluated on CIFAR-10
dataset with various cases by changing the level of non-IID
and the straggling period length, which verify the effectiveness



in speeding up training while keeping a high model generaliza-
tion ability. Our simulation results show that ∼35% saving in
training time can be obtained with only slight accuracy loss.
To summarize, the main contributions of this project are as
follows:
• A new distributed training strategy based on one-step

delayed gradient compensation, namely LGC-SGD, is
proposed for evading stragglers and utilizing partial work.

• The effectiveness of proposed LGC-SGD is verified on
CIFAR-10 dataset, where LGC-SGD can significantly re-
duce training time while converging to the same training
error compared with Full-SGD.

II. THE PROPOSED LGC FRAMEWORK

A. System Model for Distributed Learning

We focus on distributed optimization of a non-convex
problem on non-IID data. We assume that training data are
distributed over multiple worker nodes in a network, and
all workers jointly optimize a shared model based on local
data. Mathematically, the underlying distributed optimization
problem can be formalized as follows:

min
x∈Rd

F (x) =
1

N

N∑
i=1

Eξi∼Di
[F (x; ξi)] (1)

where N is the number of workers, Di denotes the local
dataset of i-th worker and could have different distribution
from other workers (which means the IID assumption is
relaxed), and F (x; ξi) denotes the local loss function given
shared model parameters x and training data ξi (one sample
point or a mini-batch) sampled from Di of the i-th worker.

We make all workers initialized to the same point x0,
then Full-SGD can be employed to solve the problem. At
each iteration, the i-th worker randomly draws a mini-batch
samples ξi from Di, and computes local stochastic gradient
with respect to global shared parameter xt:

g
(i)
t = g(xt; ξi) =

1

|ξi|

|ξi|∑
j=1

∇F (xt; ξ(j)i ) (2)

The parameter server aggregates all the local gradients to get
a global gradient:

g̃t =
1

N

N∑
i=1

g
(i)
t (3)

Then the result will be broadcast to all worker nodes to update
their local models and start a new iteration. This process will
repeat until the model converges.

B. Our Proposed Solution

The proposed LGC framework is described in Algorithm 1
and the training process is illustrated in Fig. 2. Specifically,
for each worker, mini-batch of data are divided into s smaller
blocks and computed incrementally. Slow worker may not be
able to completely finish its task by next iteration, but perhaps
it has processed r of s blocks and can send an approximate
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Fig. 2. Illustration of the workflow of proposed LGC-SGD. Mini-batch data
are divided into multiple blocks and processed in order.

result afterwards. At each iteration, the server collects the
fastest K fresh gradients that evaluated on entire mini-batch
as well as any delayed gradients from the previous iteration,
and obtains a parameter update by combining average fresh
gradient and a proper compensation for gradient bias of the
previous iteration. The gradient bias induced by ignoring strag-
glers is quantified by Eq. (7). Meanwhile, the remaining slow
workers are allowed to continue computing until the entire
mini-batch are evaluated or new global update is received,
after which the delayed gradients are sent to the server for
bias compensation. It is worth noting that the delayed gradients
could be computed based on full mini-batch data or a portion,
depending on the computation speed of stragglers. Suppose the
i-th worker computed r blocks of samples within an iteration
and the mini-batch size is m, the variance of local stochastic
gradient evaluated on a sample point is bounded by σ2. Then
the expectation and variance of gradient satisfy the following:

E
[
g
(i)
t

]
= ∇Fi(xt) (4)

E
[∥∥∥g(i)t −∇Fi(xt)∥∥∥2] ≤ s

r
· σ

2

m
(5)

It means that the gradient based on partial work is still a
reliable estimation, equivalent to that obtained by scaling down
mini-batch size. Therefore, if gradients of stragglers could
be measured and compensated, the training performance can
be guaranteed. That is the main motivation of the proposed
strategy. Considering the enlarged variance may influence the
training process, we adopt a linear scaling rule on the gradient
to address this issue as Eq. (6), which is similar to the linear
scaling rule on the learning rate as [33]. The scaling operation
may reduce the magnitude of gradient, but not affect the
estimation of direction, having the effect of variance reduction.

g
(i)
t =

r

s
· 1
r

r∑
k=1

g(xt; ξi[k]) (6)

Let g̃t and g̃′t denote the average gradient of N and K
workers respectively, and St the set of fastest K workers. Then
the gradient bias caused by ignoring stragglers can be obtained



Algorithm 1 Live Gradient Compensation SGD
1: Input: learning rate η, total iteration T , partition number
s, mini-batch size m, total workers N , threshold K

2: Initial: x0 ∈ Rd; e−1 = 0
3: for t = 0, 1, ..., T − 1 do
4: On each worker i :
5: divide mini-batch samples ξi into s partitions
6: g

(i)
t = 0, r

(i)
t = 1

7: while r(i)t ≤ s and update not received do

8: g
(i)
t = g

(i)
t + g(xt; ξi[r

(i)
t ])

9: r
(i)
t = r

(i)
t + 1

10: end while
11: send g(i)t = g

(i)
t /s to server

12: wait for global update g̃t from server
13: update local model: xt+1 = xt − ηg̃t
14: On server:
15: collect fastest K gradients from workers

16: average: g̃t′ =
1

K

∑
i∈St

g
(i)
t

17: if t ≥ 1 then
18: collect delayed (N −K) gradients from stragglers
19: calculate compensation:

20: et−1 =
1

N

∑
i/∈St−1

g
(i)
t−1 −

N −K
N

g̃′t−1

21: end if
22: obtain the global update: g̃t = g̃t

′ + et−1
23: send g̃t to all workers
24: end for

as follows:

et = g̃t − g̃′t =
N −K
N

 1

N −K
∑
k/∈St

g
(k)
t −

1

K

∑
k∈St

g
(k)
t


(7)

The first term in parentheses in the last step yields the
average gradient of stragglers, and the second term is the
aforementioned average gradient of fastest K workers.

III. SIMULATION

A. Experimental Setup

Dataset and Model. The well-known CIFAR-10 dataset
contains 10 object classes with 50,000 training samples and
10,000 testing samples. Here we use the notation non-IID(c)
to mean that each worker is allocated with c categories of
samples. We constructed our model based on VGG-11 [35],
where we adjusted the neural network to fit the input size and
kept only one fully connected layer without dropout layer.

Simulation Setting. To simulate the straggling behaviors,
we use shifted exponential distribution to generate the per-
iteration computation time, on which the stragglers are iden-
tified. The mini-batch size is set to 32 and each training
algorithm is run for total 60 epochs. The initial learning rate is

set to 0.1 and divided by 10 after 30 epochs. The momentum
is set to 0.9 and weight decay is set to 0.0005. For K-SGD
and LGC-SGD, the first 2 epochs are run in Full-SGD fashion
as warmup. All algorithms are implemented in PyTorch.

B. Numerical Results

We conduct simulations for N = 10 workers and choose
K = 7 as the straggler threshold value. As [21] we introduce
dependency between stragglers across iterations by fixing per-
iteration computation time for h iterations, after which the
computation time for each worker will be generated randomly
and independently again. To begin with, we simply assume
that the stragglers can complete all computations before the
beginning of next iteration. We repeated each experiment for
three times and reported the average result. Fig. 3 shows the
main results of model test accuracy under different level of
non-IID for different straggling behaviors.
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Fig. 3. Test accuracy comparison of training methods under various level
of non-IID and different straggling period length. LGC-SGD outperforms K-
SGD and catches up with Full-SGD.
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Fig. 4. The convergence of training loss over iterations and time. LGC-SGD
has faster training speed and comparable convergence error than Full-SGD.

1) Robustness to Non-IID: We reduce the value of c to
generate data distributions with increasing non-IID level and
test the robustness of LGC-SGD. It can be found that Full-
SGD performs well despite of data skewness among workers.
However, the K-SGD has lower test accuracy, especially
under large data skewness and persistent straggling behavior,
such as non-IID(2) and non-IID(3) in Fig. 3(b)(c)(d), and
even diverges under non-IID(1). In contrast, the proposed



LGC-SGD can effectively leverage gradient compensation to
eliminate gradient bias during the training process, achieving
comparable model generalization ability as Full-SGD after the
same number of training iterations.

2) Robustness to Straggling Period: We also change the
h to simulate different straggling behavior to investigate the
impact on training. Fig. 3 provides the test results of 3
cases, where h = 1 means the stragglers are random and
independent every iteration while h = 10 means that stragglers
are randomly selected every 10 iterations. It’s interesting to see
that when h = 1, the test result of K-SGD is less affected by
non-IID, verifying our result in Theorem 1. As we increase
the value of h, the model trained by K-SGD results in lower
test accuracy due to gradient bias induced by discarding the
computation of stragglers. However, the model trained by
LGC-SGD still achieves nearly equal test result to Full-SGD.

3) Efficiency Improvement: Take the case of c = 3 and
h = 10, the convergence of training loss in terms of the
number of iterations and generated wall-clock time are plotted
in Fig. 4, where we use Xi ∼ 0.05 + Exp(0.02) to generate
and simulate per-iteration time. The Full-SGD can achieve
lowest convergence error at the cost of longer overall training
time, while K-SGD can save per-iteration time but result in
higher convergence error. However, the LGC-SGD can have
the best of both worlds by significantly reduce training time
as K-SGD while achieving almost the same training loss as
Full-SGD. The simulation result demonstrates that LGC-SGD
can reduce training time by up to ∼35% compared with the
Full-SGD, while achieving nearly the same convergence error.

C. Discussions

Finally, we perform analysis on other factors that may affect
the performance of LGC-SGD. Specifically, we evaluate the
behaviors of LGC-SGD with different choices of K, different
percentages of the mini-batch data that are processed by
stragglers for each iteration as well as different system sizes.
In this part, we fix c = 3 and h = 10 while the results are
similar for other values of c and h.

1) Tradeoff through K: As mentioned previously, the selec-
tion of threshold K is non-trivial and highlights an important
tradeoff between minimizing training error and training time.
We gradually increased the value of K from 5 to 10 for fixed
number of iterations to plot the optimal frontier of training
time and training loss as Fig. 5, in which different colors
represent different values of K and the red digital labels denote
test accuracy. It can be found that as K decreases, the model
test accuracy of K-SGD degrades substantially while LGC-
SGD only has slight accuracy loss. It experimentally reveals
that the selection of K is an explicit tradeoff bewteen training
time and model accuracy. And the optimal frontier achieved
by LGC-SGD significantly improves that of K-SGD.

2) Partial Work: We artificially make the slow workers only
process different percentages of mini-batch data to study the
influence of tolerating partial work of stragglers. We keep
the batch-size as m = 32 and set the number of blocks as
s = 4, then simulations are conducted under fixed and random
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Fig. 6. Tolerating partial work by linear scaling on the gradient of stragglers.

amount of partial work (r = 1 ∼ 4). Particularly, we compare
the results of LGC-SGD with and without linear scaling on
the delayed gradients of stragglers as shown in Fig. 6. It can
be seen that LGC-SGD with linear scaling on delayed gradient
can effectively utilize the partial work of stragglers.

IV. CONCLUSION

In this work, we proposed a live gradient compensation
framework to evade stragglers in distributed learning system.
It can overcome the drawbacks of naively ignoring stragglers
in synchronous SGD and unlike gradient coding approaches
does not require any extra computation/storage overhead. We
particularly investigated the performance of LGC-SGD on
non-IID training data, providing theoretical analysis on the
convergence error and quantifying the tradeoff by selecting dif-
ferent straggler threshold value. Simulation results on CIFAR-
10 dataset verified our theoretical findings and demonstrated
the effectiveness of proposed LGC-SGD. Future work includes
developing strategies to dynamically adjust different hyper-
parameters in LGC-SGC in practical distributed systems.
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