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Abstract
Hypergraphs provide a natural representation for
many complex real-world datasets such as co-
authorship, co-citation, email communication, etc.
Recently, many hypergraph neural networks are de-
signed to model such data, however, most of them
are shadow, limiting the ability to extract informa-
tion from high-order neighbors. In this paper, we
show that deep hypergraph neural networks suffer
from over-smoothing, which means stacking more
layers tends to lead to performance degradation.
And inspired by the analysis of over-smoothing
problem to GCN, we develop a deep hypergraph
neural network called HGCNII to alleviate the
problem of over-smoothing, which is an extension
of the hypergraph neural network(HGNN) model
with two simple yet effective techniques: Initial
residual and Identity mapping. We have demon-
strated the effectiveness and improved performance
of HGCNII on multiple real-world datasets com-
pared to the state-of-the-arts.

1 Introduction
Graph-based convolution neural networks [Kipf and Welling,
2016] have shown superior performance in many applications
in recent years. In traditional graph convolutional neural net-
work methods, the pairwise connections among data are em-
ployed. However, it is noted that the data structure in real
practice could be beyond pairwise connections and even far
more complicated. For example, in many real-world network
datasets such as co-authorship, co-citation, email communi-
cation, etc., relationships are complex and go beyond pair-
wise association. Hypergraphs provide a flexible and natural
modeling tool to model such complex relationships.

Recently, many hypergraph neural networks are proposed
to model data on hypergraphs. HGNN [Feng et al., 2019]
has been proposed as the first deep learning method on hy-
pergraph structure, employing hypergraph Laplacian to rep-
resent hypergraph form spectral perspective. HGHA [Bai et
al., 2019] has applied an attention module on hypergraph con-
volutional networks. DHGNN [Jiang et al., 2019] proposed
a dynamic hypergraph neural network. HyperGCN [Yadati
et al., 2019] trains a GCN for semi-supervised learning on

hypergraphs. Hyper-SAGNN [Zhang et al., 2019] proposed
a self-attention based graph neural network applicable to ho-
mogeneous and heterogeneous hypergraphs.

Despite their enormous success, most of the current hy-
pergraph convolutional networks are shadow, achieving their
best performance with 2-layer models. Inspired by the analy-
sis of the problem of over-smoothing to GCN models, in this
paper, we aim to provide theoretical and empirical evidence
to show that hypergraph convolutional networks suffer from
over-smoothing, which means stacking more layers tends to
lead to performance degradation. Furthermore, to tackle this
issue, we develop a deep hypergraph neural network called
HGCNII to alleviate the problem of over-smoothing. More
specifically, this method is an extension of the hypergraph
neural network(HGNN) model with two simple yet effective
techniques: Initial residual and Identity mapping. At each
layer, initial residual constructs a skip connection from the
input layer, while identity mapping adds an identity matrix
to the weight matrix. To evaluate the performance of the
proposed HGCNII model, we provide theoretical analysis for
HGCNII to show the effectiveness of the two techniques. In
particular, we prove that a K-layer HGCNII model can ex-
press a polynomial spectral filter of orderK with arbitrary co-
efficients. We have conducted experiments on co-authorship
and co-citation networks classification tasks. The experimen-
tal results on five datasets demonstrate the two surprisingly
simple techniques prevent over-smoothing and improved the
performance of HGCNII consistently as we increase its net-
work depth.

Our main contributions are summarized as follows:

1.We provide theoretical and empirical evidence to show
that hypergraph convolutional networks suffer from the prob-
lem of over-smoothing.

2.We propose the HGCNII, an extension of the vanilla
HGNN model with two simple yet effective techniques:
Initial residual and Identity mapping to relieve the over-
smoothing problem of hypergraph neural networks.

3.We have conducted experiments on co-authorship and
co-citation networks classification tasks. The experimental
results indicated that the performance of HGCNII consis-
tently as we increase its network depth.



2 Preliminaries
Hypergraph neural networks (HGNN). Given a hyper-
graph G = (V, E ,W), V is the vertex set, E is the hyperedge
set, W is the weight matrix of hyperedges. The hypergraph G
can be denoted by a |V|×|E| incidence matrix H, with entries
defined as

h(v, e) =

{
1 ifv ∈ e
0 ifv /∈ e (1)

For a vertex v ∈ V , its degree is defined as d(v) =∑
e∈E w(e)h(v, e). For an edge e ∈ E , its degree is defined

as δ(v) =
∑
v∈V w(e)h(v, e). Further, De and Dv denote

the diagonal matrices of the edge degrees and the vertex de-
grees, respectively. [Zhou et al., 2007] introduce the nor-
malized hypergraph laplacian matrix as ∆ = I − P , where
P = D−

1
2

v HWD−1e HTD−
1
2

v .
[Feng et al., 2019] propose a hypergraph convolution

based on the spectral convolution on the hypergraph. ∆ is
a symmetric positive semi-definite matrix with eigen decom-
position ∆ = ΦΛΦT . Then, the spectral convolution of a
signal x = (x1, · · · , xn) and a filter g can be denoted as
g ∗ x = Φ((ΦT g) � (ΦTx)) = Φg(Λ)ΦTx. Following
the suggestion on [Defferrard et al., 2016] and [Kipf and
Welling, 2016], the hypergraph convolution operation can be
further approximated by the K-th order polynomial of Lapla-
cians g∗x ≈ Φ(

∑K
k=0 θkΛk)ΦTx =

(∑K
k=0 θk∆k

)
x. Sim-

ilar to the derivation of graph convolution [Kipf and Welling,
2016], the convolution operation can be simplified to the fol-
lowing expression:

g ∗ x = θD−
1
2

v HWD−1e HTD−
1
2

v x (2)

Then, recall that P = D−
1
2

v HWD−1e HTD−
1
2

v , we can build a
hypergraph convolutional layer f(X,W,Θ) in the following
formulation

X(l+1) = σ(PX(l)Θ(l)). (3)
Simplifying Graph Convolutional Networks: SGC. SGC
[Wu et al., 2019] shows that by stacking K layers, GCN cor-
responds to a fixed polynomial filter of order K on the graph
spectral domain. In particular, applying a K-layer GCN to a
signal x corresponds to

(
In − L̃

)K
x, i.e., a polynomial fil-

ter
(∑K

l=0 θlL̃
l
)
x with fixed coefficient θ, where L̃ is the

normalize Laplacian matrix of the graph.
Deep Graph Convolutional Networks: GCNII. GCNII
[Chen et al., 2020] is the closet GCN model, which either
achieves state-of-the-art performance on graph classification
task or is specifically designed for solving the over-smoothing
problem of graph neural networks. GCNII extends the vanilla
GCN with two simple techniques: Initial residual connec-
tion and Identity mapping. It is theoretically and empirically
proved that the two simple techniques are effective to relieve
over-smoothing.

3 HGCII Model
As introduced in the above section, by stacking K layers, the
HGNN model simulates polynomial filter

∑K
l=0 θl∆

l)x of or-

derK with fixed coefficients θ on the hypergraph spectral do-
main. The fixed coefficients limits the expressive power of a
multi-layer HGNN model and thus leads to over-smoothing.
Inspired by the design of GCNII [Chen et al., 2020], we ex-
tend HGNN with two simple techniques: Initial residual con-
nection and Identity mapping, to make HGNN be able to ex-
press a K order polynomial filter with arbitrary coefficients.

Specifically, at each layer, initial residual constructs a skip
connection from the input layer, while identity mapping adds
an identity matrix to the weight matrix. Then, the hypergraph
convolutional layer of HGCNII is defined as :

X(l+1) = σ
((

(1− αl)PX(l) + αlX(0)
)(

(1− βl)In + βlW(l)
))

,

(4)
where αl and βl are two hyperparameters.

4 Theorem

Theorem 1 Hypergraph neural networks suffer from the
problem of over-smoothing. Specifically, the Dirichlet energy
of embeddings will converge to zero, resulting in the loss of
discriminative power.

Proof. In this paper, we explain the phenomenon of over-
smoothing based on Dirichlet energy. In mathematics, the
Dirichlet energy is a measure of how variable a function is.
Given a function F = (f1, ...., fm), and the domain of defini-
tion D ⊂ Rn → Rm, the Dirichlet energy is to measure how
much information expressed by the function F over D:

E(F ) =

∫
D

|dF (p)|2dp =

m∑
i=1

∫
D

|∇fi(p)|2dp (5)

In many applications, they seek functions that are ”as
smooth as possible”, amounting to seeking functions F
minimizing the Dirchlet energy. But in deep learning field,
we hope the model to be more expressive over the domain
of definition. Intuitively, the bigger the Dirichlet energy is,
The stronger the model’s expression ability is. With some
assumptions on the weight matrix Θ of GCN, We can prove
that the Dirichlet energy decreases with the respect to the
number of layers.

We prove this in three steps:
1.The Dirchlet energy of HGCN decreases when multiplying
the attribute matrix of the hypergraph P.
2.The Dirchlet energy of HGCN decreases after ReLU
activation.
3.The Dirchlet energy of HGCN decreases after multiplying
the weight matrix.

First step We follow the definition of the Dirchlet energy
E(f) in graph from other literature [Cai and Wang, 2020]. E(f)
of scalar funtion f ∈ RN∗1 on the hypergraph is defined as:

E(f) = fT∆f (6)



Let us denot the eigenvalue of ∆ by λ1, λ2, ..., λN and the
associated eigenvectores are v1, v2, ..., vn, where ci ∈ R,

E(Pf) = fT (IN −∆)T∆(IN −∆)f

= fT (IN −∆)∆(IN −∆)f

=
∑

c2iλi(1− λi)2

≤ (1− λmin)E(f) ≤ E(f)

(7)

Second step When the model is activated by ReLU func-
tion, we can prove that E(σ(X)) ≤ E(X). We first prove
it holds for a scalar function f and then extend it to vector
field X. We extend formul(6) by E(f) =

∑
i,j∈V ( fi√

1+di
−

fj√
1+dj

)2, where di are the diagonal elements in Dv . For any

hypergraph:

| 1√
1 + di

fi −
1√

1 + dj
fj |

≥ |σ(
1√

1 + di
fi)− σ(

1√
1 + dj

fj)|

= | 1√
1 + di

σ(fi)−
1√

1 + dj
σ(fj)|

(8)

Because vector functions are superpositions of scalar func-
tions, it’s sure that it holds for vector function after complet-
ing the proof in scalar field.

Third step Expand E(XΘ) in matrix form,

E(XΘ) = tr(ΘTXT∆XΘ)

= tr(XT∆XΘΘT )

≤ tr(XT∆X)σmax(ΘΘT )

= E(X)||ΘT ||22

(9)

Where σmax denotes the largest eigenvalue.
Therefore, by these three steps, we can conclude that for any
layer l∈ N+,

E(fl(X)) = E(σP (σP (σP (...)Θl−2)Θl−1)Θl)

≤ E(σ ∗ (1− λmin)lX)

l∏
1

||Θl||22
(10)

when l → ∞, the left side in (10) will converge to zero.
Now we have proved that the Dirichlet energy will decrease
when stacking more layers, which explains the phenomenon
of over-smoothing.

Theorem 2 A K-layer HGCNII can express a K order
polynomial filter

∑K
k=0 θk∆k with arbitrary coefficients θ.

Proof. Similar to the derivation in SGC [Wu et al., 2019],
we can obtain that by stacking K layers, the HGNN model
simulates a polynomial filter

∑K
k=0 θk∆k with fixed coeffi-

cients θ. Next, we prove that by the two simple techniques:
Initial residual and Identity mapping, a K− layer HGCNII
model can express a K order polynomial filter with arbitrary
coefficients.

For simplicity, we assume the signal vector x to be non-
negative. Note that we can convert x into a non-negative input
layer X(0) by a linear transformation X(0) = Px. We consider
a weaker version of HGCNII by fixing αl = 0.5 and fixing
the weight matrix (1−βl)In +βlW(l) to be γlIn, where γl is
a learnable parameter. We have

X(l+1) =
1

2
σ
(
P (X(l) + x)γlIn

)
(11)

Since the input feature x is non-negative, we can remove co-
efficient 1

2 and ReLU operation for simplicity:

X(l+1) =γlP (X(l) + x) = γl

(
(In −∆)(X(l) + x)

)
(12)

Consequently, we can express the final representation afterK
layers HGCNII as:

X(l+1) =

(
K−1∑
l=0

(
K−1∏

k=K−l−1

γk

)
(In −∆)

l

)
x. (13)

On the other hand, as introduced in the begining, a polyno-
mial filter of K−layer HGCNII can be expressed as:(

K−1∑
k=0

θk∆k

)
x =

(
K−1∑
k=0

θk (In − (In −∆))
k

)
x

=

(
K−1∑
k=0

θk

(
k∑
l=0

(−1)l
(
k
l

)
(In −∆)

l

))
x

=

(
K−1∑
l=0

(
K−1∑
k=l

θk(−1)l
(
k
l

)
(In −∆)

l

))
x

(14)

To show that HGCNII can express an arbitrary K-order
polynomial filter, we need to prove that there exists a solution
γl, l=0, · · · ,K − 1 such that the corresponding coefficients of
(In −∆)

l in (13) and (14) are equivalent. More precisely, we
need to show the following equation system has a solution γl,
l=0, · · · ,K − 1.

K−1∏
k=K−l−1

γk =
k∑
l=0

θk(−1)l
(
k
l

)
, k = 0, · · · ,K − 1. (15)

Note that we can solve the equation system by

γK−l−1 =

K−1∑
k=l

θk(−1)l
(
k
l

)
/

K−1∑
k=l−1

θk(−1)l−1
(

k
l − 1

)
(16)

for l=0, · · · ,K − 2 and γK−1l =
∑K−1
k=0 θk. This prove that

a K-layer HGCNII can express the K-th order polynomial
filter with arbitrary coefficients.

5 Experiments
In this section, we evaluate the performance of HGCNII
against the state-of-art hypergraph neural network models on
a wide variety of open hypergraph datasets.



Dataset and experimental setup. In this experiment, the
task is to classify co-authorship and co-citation data. We use
three co-citation network datasets: Cora, Pubmed and Cite-
seer, and two co-authorship network datasets: Cora, DBLP,
which are used in recent hypergraph neural network [Yadati
et al., 2019]. In these co-citation datasets, nodes correspond
to documents, and edges correspond to citation; each node
feature corresponds to the bag-of-words representation of the
document and belongs to one of the academic topics. And
in the co-authorship datasets, edges indicate there exists co-
authors among those documents. Statistics of the datasets are
summarized in Table 1.

For baselines, We compare HGCNII with state-of-the-art
hypergraph neural networks: HGNN [Feng et al., 2019] and
HyperGCN [Yadati et al., 2019], and a backbone Multilayer
perceptron (MLP) that does not use the hypergraph structure
to make predictions.

We use the Adam SGD optimizer with a learning rate of
0.01 and early stopping with a patience of 200 epochs. We
set αl = 0.3, and βl ≈ λ

l with λ = 1.5.

Results on Node Classification. Table 2 shows that on the
five datasets, HGCNII consistently improves as we increase
the number of layers, while HGNN and HyperGCN drop
rapidly when the number of layers exceeds 2. It is noted
that MLP has always got low accuracy, indicating that hyper-
graph structure is effective to make predictions. And HGCNII
outperform SOTA HyperGCN on Cora, Pubmed and DBLP
datasets.

Hypernode Visualizaiton. We also draw t-SNE and feature
maps for hypernode representations. Figure 1 is the t-SNE
visualization of learned node representations, which include
original features, different layers of HGNN and different lay-
ers of HGCNII on Cora dataset. Different colors represent
different node classes. As we can observe that the classes
are separated to a good extend on 2-layer HGNN, indicat-
ing that it learns meaningful embeddings which distinguish
the different classes. And it shows the effectiveness of hy-
pergraph convolutional networks. However, as the number of
layers increases, the embeddings of different classes also tend
to be similar and lead to indistinguishable features. Instead,
HGCNII consistently get separate results as we increase the
number of layers. Overall, the results suggest that hypergraph
neural networks suffer from severe over-smoothing problems,
while HGCNII can effectively relieve the over-smoothing
problem and extend the HGNN into a truly deep model. Fig-
ure 2 is the feature map of learned embedding of the first 50
hypernodes. It can come to the same conclusion.

6 Conclusion
We analyze the over-smoothing problem of hypergraph neu-
ral networks. We propose HGCNII, a simple and deep hy-
pergraph neural network model that can prevent the problem
of over-smoothing, by initial residual connection and identity
mapping. Experiments show that the deep HGCNII model
relieve the problem of over-smoothing and achieves SOTA
results on node classificaiton problem on hypergraphs.

Table 1: Summary of classification accuracy(%) results with various
depths.(Red is the best, and blue is the second.

Dataset Method Layers
2 4 8 16 32 64

Cora
(co-auth
orship)

MLP 35.16 35.04 34.37 34.37 34.41 33.25
HyperGCN 68.81 57.87 15.5 OOM OOM OOM
HGNN 68.96 65.89 29.95 29.98 29.95 29.98
HGCNII 72.04 74.45 74.34 74.96 73.87 74.03

DBLP
(co-auth
orship)

MLP 47.31 47.19 47.16 46.57 OOM OOM
HyperGCN 68.76 54.36 15.95 OOM OOM OOM
HGNN 88.32 87.72 83.67 27.61 27.63 OOM
HGCNII 88.56 89.42 89.4 89.5 OOM OOM

Cora
(co-cita
tion)

MLP 35.16 35.05 34.37 34.37 34.41 33.25
HyperGCN 68.11 57.75 7.63 OOM OOM OOM
HGNN 47.2 47.16 14.56 13.16 16.12 13.2
HGCNII 68.15 69.12 69.67 70.05 70.48 70.17

Pubmed
(co-cita
tion)

MLP 44.48 41.52 43.33 40.24 43 42.34
HyperGCN 76.57 52.52 20.94 OOM OOM OOM
HGNN 30.82 31.76 24.06 23.25 24.29 21.75
HGCNII 76 76.34 76.46 76.79 77.45 77.57

Citeseer
(co-cita
tion)

MLP 35.15 35.59 34.98 34.88 34.66 34.92
HyperGCN 64.4 51.04 18.27 OOM OOM OOM
HGNN 41.49 41.43 35.44 21.61 21.39 21.39
HGCNII 62.07 61.97 63.3 62.1 62.2 63.11

Figure 1: t-SNE visualization of the hypernode representations on
Cora. Colors represent node classes.

Figure 2: Feature maps of hypernode representations on Cora.
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