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Abstract 
It has proved that single-atom catalysts (SACs) are able to accelerate CO2 reduction reaction (CO2RR) as electrocatalysts, but 

it is still difficult to design SACs rationally for this reaction. Based on data derived from theoretical computation, the machine 

learning method can be a solution to the problem. However, how to construct an appropriate representation of materials for 

machine learning is still an active topic. In this work, we applied machine learning to predict electrocatalysts for CO2RR using 

multiple representations. We not only obtained models with good performance in this problem, but also gave interpretation 

on the reason why different structure representations lead to different performances. 

 

1 Introduction 

Carbon dioxide (CO2) reduction, especially reduction to carbon oxide (CO), is one of the most promising ways to mitigate 

the greenhouse effect as well as obtain valuable carbon products [1, 2], which has a relatively high selectivity and brings 

widely-used resultant (CO) [3]. Electroreduction of CO2 (ECR) is an approach of realizing it, and electricity derived from 

green energy resources is enough to motivate it [4]. The most important thing we need for the reaction is a high-performance 

electrocatalyst, and the development of machine learning makes the screening and predicting process much more efficient [5]. 

Among various kinds of catalysts, single-atom catalysts (SACs), which are constructed using isolated metal atoms (doping 

atoms) dispersed on substrates, show distinct advantages on accelerating the reduction process [6, 7]. Therefore, we are trying 

to apply machine learning method to find appropriate SACs for ECR. 

One of the most important problems here is to find representations of SACs suitable for machine learning. There are 

multiple perspectives to characterize materials, leading to different ways to represent them. Descriptors or features of materials 

can be classified into structure features, which exhibit structure information (for instance, atomic positions and coordinate 

numbers of atoms) of materials, and element features, which are related to chemical and physical properties (for instance, 

ionization energy) of elements contained in the materials. Some researchers used both of the kinds of featrues to represent 

SACs and applied machine learning to screen catalysts from them [5]. Nevertheless, a procedure of feature selection is always 

necessary, for there are too many element features related to one element. But the selection is related to chemical insights of 

researchers into the problem, inevitably leading to arbitrariness. Therefore, it may be a better way to describe them only using 

the coordinates of atoms [8] with one or at most two descriptors to differentiate element types of the doping atoms. In this 

work, we applied machine learning method to predict high-performance catalysts for CO2 reduction reaction (CO2RR) using 

dataset based on coordinates of atoms in SACs with multiple structure representations. We hope to get a model which can 

predict whether a SAC is a good catalyst for CO2RR only using its structure information and some data we can get easily 

from the internet. After that, we tried to interpret the reason why some structure representation can perform better than others 

using manifold learning. 

2 Dataset and Features 

Our dataset is based on computation results of adsorption energy of CO on different SAC surfaces using VASP [9], a quantum 

chemistry computation software. SACs are constructed on five crystal surfaces of copper (Cu) with around 40 elements 

replacing one Cu atom on the surfaces each time on different sites, an example of which is shown in Figure 1. After deleting 

some abnormal structures, we got around 3000 structures with adsorption energy of CO for each of them. The adsorption 

energy of the resultant of a good catalyst should not be so small or so large, to ensure that the molecule is activated on the 

surface because of the electron transferring as well as easy to escape from the surface after the reaction. Therefore, the 



adsorption energy can be a good measurement of catalytic capacity of a material on a chemical reaction, which is set as the 

label for the regression problem. 

In this work, element features describe properties of doping atoms, including 

atomic mass, radius, electron affinity, Pauling electronegativity, ionization energy 

and number of valence electrons. Structure features are lattice parameters and 

coordinates of atoms in SACs, which directly reflect positions of atoms in the 

materials, or symmetry functions (SFs) [8, 10] of them to extract structure 

information more precisely. Besides, the transfer charge (Qt), which measures the 

movement of charge between the doping atom and the Cu substrate due to the 

difference of their chemical properties, is related to both of the factors mentioned 

above. 

3 Methods 

Machine learning algorithms we used in this work included Support Vector Machine (SVM, based on polynomial kernel and 

Gaussian kernel, respectively), Gradient Boosting Regression (GBR) and Neural Network (NN). The structure of NN in this 

work had two hidden layers, and the numbers of neurons in each layer are 100, 50/150,100 according to different sizes of 

input. The activation function of this network was ReLU. In order to deal with overfitting, we introduced a dropout layer and 

regularization techniques. In addition, the learning rate declining method was introduced to improve accuracy. 

In the training process, for SVM and GBR, the size of training set to test set was 4:1, and 0.2 of training set were used 

as the validation part to select proper parameters. For NN, the training set and test set were divided five to one. Every batch 

had half of training data, and the number of iteration was 8000. In order to determine the values of parameters including 

learning rate and its declining as well as regularization, sensitivity analysis was implemented to find the optimal value 

according to MSE and MAE. We chose a large range of these parameters and then found a smaller interval to do sensitivity 

analysis. The results are shown in Figure 2. 

 

FIG. 2. Parameter setting procedures for NN, including a) learning rate and its declining and b) regularization process. 

    Manifold learning, a dimension reduction method considering the nonlinear relationship in data, was introduced to 

interpret the difference of performances based on different representations. We applied Multidimensional Scaling (MDS) [11] 

and t-distributed Stochastic Neighbor Embedding (t-SNE) [12] for this purpose. 

4 Results 

4.1 Performances of machine learning algorithms based multiple representations 

First of all, we tested performances of machine learning algorithms mentioned above. In this primary test, the element feature 

was ionization energy, and we used the simplest method to construct structure features without SFs, which is called the simple 

matrix representation. Table 1 exhibits the results, and the “# of models” column means the number of models with different 

parameters for each algorithm. We can see clearly that GBR and NN outperform SVM largely, and we only used GBR and 

NN to do analysis further. 



Algorithms R2 score RMSE MAE # of models 

SVM (poly kernel) 0.701461 0.334459 0.220453 1737 

SVM (rbf kernel) 0.778075 0.288367 0.154408 360 

GBR 0.924240 0.164814 0.098185 768 

NN 0.923467 0.174112 0.096741 125 

Table 1. Performances of test set of different algorithms trained on simple matrix representation with ionization energy as the 

element feature. Qt feature was included in the test. 

To find whether SFs can enhance the performance of machine learning, we applied GBR and NN on four structure 

representations, respectively, and the results are exhibited in Table 2. Ionization energy is the element feature in this test, and 

we trained the model with and without Qt in the dataset. We can see from the results that SF2 performs the best, which 

introduces cosine function to build up its formulas and considers three-body terms. As for algorithms, the overall performance 

of NN is better than GBR especially when we dropped the Qt feature, due to its flexibility. Figure 3 exhibits results of GBR 

and NN trained on SF2 dataset. In addition, we applied GBR to test which element feature is the most relevant to this task, 

and Table 3 shows the results. Radii of doping atoms and numbers of valence electrons contained in them have the greatest 

influence on the adsorption energy of CO. 

Models Representations 
With Qt Without Qt 

R2 score RMSE MAE # of models R2 score RMSE MAE # of models 

GBR 

Simple matrix 0.924240 0.164814 0.098185 768 0.858092 0.225568 0.139255 768 

SF1 (cos, 1-2b) 0.932955 0.155044 0.088203 768 0.890579 0.198073 0.115673 768 

SF2 (cos, 1-3b) 0.951977 0.13122 0.068191 768 0.934283 0.153501 0.082745 768 

SF3 (tanh, 1-3b) 0.926178 0.168253 0.095829 768 0.880999 0.213621 0.124485 768 

NN 

Simple matrix 0.923467 0.174112 0.096741 125 0.893924 0.182700 0.114121 125 

SF1 (cos, 1-2b) 0.947504 0.146773 0.103090 125 0.920241 0.176440 0.125913 125 

SF2 (cos, 1-3b) 0.973240 0.100557 0.070464 125 0.955572 0.133868 0.093109 125 

SF3 (tanh, 1-3b) 0.966210 0.113079 0.078114 125 0.947613 0.143289 0.099713 125 

Table 2. Performances of test set of GBR and NN trained on dataset of four structure representations with ionization energy 

as the element feature. 

 

FIG. 3. Test results of a) NN and b) GBR trained on dataset with SF2 as its structure representation and ionization energy as 

its element feature, including Qt. 

Element features 
With Qt Without Qt 

R2 score RMSE MAE # of models R2 score RMSE MAE # of models 

Electron affinity 0.956053 0.125528 0.065512 768 0.893515 0.195398 0.100101 768 

Ionization energy 0.951977 0.13122 0.068191 768 0.934283 0.153501 0.082745 768 

Mass 0.952887 0.129971 0.065548 768 0.935897 0.151605 0.079542 768 

Electronegativity 0.954798 0.127307 0.065529 768 0.911229 0.178406 0.093158 768 

Radius 0.960604 0.11885 0.060189 768 0.937464 0.149741 0.088968 768 

Valence elections 0.959973 0.119799 0.059767 768 0.937084 0.150195 0.082222 768 

Table 3. Performances of test set of GBR trained on dataset of six element features, respectively, with SF2 being the structure 

feature. 



4.2 Manifold learning analysis of different structure representations 

We used manifold learning techniques to find the reason why different representations lead to difference machine learning 

model performances. In this section, we applied MDS and t-SNE on dataset containing four structure features, respectively, 

in which the element feature was ionization energy. Besides, dataset with and without Qt feature was also tested to see why 

models perform worse without it. Results are shown in Figure 4 for MDS and Figure 5 for t-SNE. 

 

FIG. 4. Visualization of dataset reduced to 2-dimension by MDS with structure representation being 1) simple matrix, 2) SF1, 

3) SF2, and 4) SF3 while ionization energy being the element feature. The test was done a) including and b) not including Qt. 

 

FIG. 5. Visualization of dataset reduced to 2-dimension by t-SNE with structure representation being 1) simple matrix, 2) SF1, 

3) SF2, and 4) SF3 while ionization energy being the element feature. The test was done a) including and b) not including Qt. 

The data dimension is reduced to make them visible to see the distribution. In Figure 4 a), the best performance is derived 

from dataset of subgraph 3). In this picture, data gathers into several groups with two lines at both sides of them, and the 

pattern is similar with that of the subgraph 2), whose performance is a little worse. Data points at 1) exhibit in a shape of 

straight lines with less dispersion, leading to bad performance, and this character can be found in both Figure 4 and 5. The 

result of t-SNE shows more information of why dataset with Qt can perform better. In Figure 5, the distribution of data with 

Qt is more stretched compared with that of data without Qt, which is consistent with the conclusion discussed in MDS situation. 

All information above may provide an interpretation of the better performance of dataset including Qt and using SF2 as its 

structure representation. 

5 Conclusion 

Machine learning is used more and more widely in material science field, while how to represent materials is still a problem 

remaining to be solved. This work applied machine learning to predict good electrocatalysts of CO2RR, comparing 

performances of dataset using different structure and element features, as well as providing an interpretation of it by manifold 

learning. The application of machine learning on material science is still a topic worth researching on. 
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