A Brief Introduction of Convolutional Neural
Network

Mathematical definition of convolution

The convolution of function f and g is written as f * g and defined as:
o9}
(F+9)®= [gt~ r)ar
—00

It is defined as the integral of the product of the two functions after one is reversed and shifted.

Proofof f x g = g * f:

Set g=+t- ¢ we hoe = t-1, S0
N :
(x> = J/Oo H2) 916 -1 -y

X
~ on ‘F(‘E‘%) 9) (/Lfb-%)
= f;oooo 1L[Jo- W) -9 - dew

=[5 i) A) it

= (g% b))

Convolution on 2D Image

Convolutional Neural Network is most commonly applied to analyze visual imagery.

Kernel size

The kernel is the number of pixels processed together. We usually use square kernel, e.g., 3 X 3 or 5 X 5. You can also define a
3 X 4 kernel.

Padding

Padding is the addition of (typically) 0-valued pixels on the borders of an image. When the kernel moves to the border of image,
there are not enough pixels for convolution. Without padding, we will ignore the borders. If we add padding, we will do the
convolution for borders with the missed parts filled with zeros.

Stride

The stride is the number of pixels that the analysis window moves on each iteration. A stride of 2 means that each kernel is offset by
2 pixels from its predecessor.

Dilation

Dilation involves ignoring pixels within a kernel. This reduces processing/memory potentially without significant signal loss. A
dilation of 2 on a 3x3 kernel expands the kernel to while still processing 9 (evenly spaced) pixels.

When a convolutional layer is defined, we can compute the output dimension through following formulas:

| \

.
mhan

A /AW

diloton = [— dileiton = L D di((/\ﬂun = (}J
A b 'f\“jwe llushrtes fhe Vccayﬁve f{e&u OTL fhee con\/bW'\bnaL
loyers with c)h{fe(mﬁ ohltron 1‘{- e ?wh«ﬂm%/ dortin forvvwa

N them .

- Now Jets Jwt mailer e width (te height 4s

] (L et () eroctl dhe. some)
i = Win + 2xpoddingl) J
n 2 : []ffacldf;@
\,-—-——v___,-)l,.)

f
L= dhilstrong) = (emelosie[1]]-1) +)
L) :_(Av[]/ :Win + lXPMMVwEIﬁ/‘ oﬁkzﬁbnl::])(UZ[%)@LH%DJ") "I
Q: How mung by o e lenel wie ?

A: n:t?ﬁ%:j

ZE!]J

(
ot widdh ol emiunt 1o | T2 | 2]

-

oo _ {Hin + 2 x padding [0] — dilation [0] x (kernel size [0] — 1) — 1
oue stride [0]

W — {mn + 2 x padding [1] — dilation [1] x (kernel_size [1] — 1) — 1
out stride [1]

An interactive visualization of convolution: https://ezyang.github.io/convolution-visualizer/index.html

Pooling
Pooling can be used to reduce the dimension.
Max pooling calculates and propagates the maximum value of a given region.

Average pooling calculates and propagates the average value of a given region.

.

-

file:///E:/course/lfd/recitation/A%20Brief%20Introduction%20of%20Convolutional%20Neural%20Netwo%20e34629f354a643518545755cd53f5de7/Untitled.png
https://ezyang.github.io/convolution-visualizer/index.html

12 120 | 30 [O

8 | 12| 2 0 2 x 2 Max-Pool 20
>

34 | 70 | 37 | 4 112

112 100 | 25 | 12

Loss

Cross-Entropy
Given probability distribution g and p, the cross-entropy of q relative to p is defined as:

H(p,q) = —E,[logq]

For discrete probability distributions p and g, we have:

H(p,q) = — Y _ p(z)logq(z)

zeX

file:///E:/course/lfd/recitation/A%20Brief%20Introduction%20of%20Convolutional%20Neural%20Netwo%20e34629f354a643518545755cd53f5de7/Untitled%201.png

In lecture3, we have the derivation of log-likelihood of Softmax as follows:

£0) = ilogp (y(i) | w(i);G)
logﬁp(_l|m >1{y’) =1}

=1

Il
Ms

ﬁ
Il
—

m k

=23 1 {u = thiogp (4 < 1 4)
i=1 l=1

= 1 {y }10g NG
i=1 |=1 Zj:l e ®

We can see that maximizing the log-likelihood is equivalent to minimize the cross-entropy loss.

)

You may also have heard of KL-divergence:

Dxw(pllg) = p(m)log(E

zeX

We actually have:

Dy (pllg) =) p(= 10g< wi)

TEX
=) p(z)logp(z) — > p(z)logq(z)
zeX zeX

—H(p) + H(p,q)

Because p is the true probability, apparently minimizing KL-Divergence is equivalent to minimize the cross-entropy.

Typical architecture

Convolutional layer + Batch normalization/Pooling layer+ RelLU layer + Fully connected layer + Loss layer.

Training a image classifier using Pytorch
(See https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html).
Training dataset: CIFAR10 dataset.

Image dimension: 3 X 32 x 32

Number of labels: 10

import torch.nn as nn

class Net (nn. Module) :
def _init_ (self):
super). init_ ()
input channel = 3

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

output channel = 6

kernel size = 3 (square kernel)
self. convl = nn.Conv2d (3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)

input channel = 6

output channel = 16

kernel size = 5 (square kernel)
self. conv2 = nn. Conv2d (6, 16, 5)
self. fcl = nn.Linear (16 * 5 * 5, 120)
self. fc2 = nn. Linear (120, 84)

self. fe3 = nn. Linear (84, 10)

def forward(self, x):

x = self.pool (F. relu(self. convl (x)))
x = self.pool (F. relu(self. conv2(x)))
x = torch. flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self. fcl(x))
x = F.relu(self. fc2(x))
x = self. fe3(x)
return x
Loss layer:

import torch.optim as optim

actually contains a softmax layer and cross entropy loss

criterion = nn.CrossEntropyLoss ()

optimizer = optim. SGD(net. parameters(), 1r=0.001, momentum=0.9)

