Writing Assignment 2

Issued: Friday 22nd October, 2021

Due: Wednesday 3rd November, 2021

2.1. (Kernel Regression Least Square) Suppose we are given a dataset $\{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{m}$ consisting of *m* independent samples, where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{n}$ is a *n*-dimension vector, and $y^{(i)} \in \mathbb{R}$. Now, we aim to learn a linear model $f(\boldsymbol{x}) = \boldsymbol{\theta}^{\mathrm{T}} \phi(\boldsymbol{x})$ in a given feature space, i.e. $\phi(\boldsymbol{x}) : \boldsymbol{X} \to \boldsymbol{\mathcal{F}}$, with regularization term $\lambda \|\boldsymbol{\theta}\|_{2}^{2}$. The loss function of the linear regression problem can be given as,

$$\sum_{i=1}^{m} [y^{(i)} - (\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}))]^2 + \lambda \|\boldsymbol{\theta}\|_2^2.$$
(1)

- (a) (2 points) Prove that the optimal parameter $\boldsymbol{\theta}^*$ is in the span of features $\{\phi(\boldsymbol{x}^{(i)})\}_{i=1}^m$, i.e. $\boldsymbol{\theta}^* = \sum_{i=1}^m c_i \phi(\boldsymbol{x}^{(i)})$, where c_i then becomes the term needed to be optimized.(Hint: Set the differentiation of the loss over $\boldsymbol{\theta}$ to 0)
- (b) (2 points) The mapping function $\phi(\cdot)$ can often result to a high-dimensional or infinite feature $\phi(\boldsymbol{x})$. Thus, we adopt a kernel $\boldsymbol{K}(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}) \stackrel{\text{def}}{=} \langle \phi(\boldsymbol{x}^{(i)}), \phi(\boldsymbol{x}^{(j)}) \rangle$ to make the calculation easier. Based on (a), we know that

$$f(\boldsymbol{x}) = \boldsymbol{\theta}^{\mathrm{T}} \phi(\boldsymbol{x}) = \sum_{i=1}^{m} c_i \left\langle \phi(\boldsymbol{x}^{(i)}), \phi(\boldsymbol{x}) \right\rangle$$
(2)

$$\|\boldsymbol{\theta}\|_{2}^{2} = \left\langle \sum_{i=1}^{m} c_{i} \phi(\boldsymbol{x}^{(i)}), \sum_{j=1}^{m} c_{j} \phi(\boldsymbol{x}^{(j)}) \right\rangle = \boldsymbol{c}^{T} \boldsymbol{K} \boldsymbol{c}, \qquad (3)$$

where $\boldsymbol{c} \stackrel{\text{def}}{=} [c_1, \ldots c_m]^T$ and $\boldsymbol{K} \in \mathbb{R}^{m \times m}$ with the (i, j)-th entry defined as $\boldsymbol{K}(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$. Now please rewrite the loss function (1) using \boldsymbol{c} and \boldsymbol{K} , and give the optimal parameter \boldsymbol{c}^* .

2.2. (Least-Squares SVM) Suppose we are given a training dataset $\{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{m}$ consisting of m independent examples, where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{n}$ is n-dimension vector, and $y^{(i)} \in \{-1, 1\}$. The Least-Squares Support Vector Machine (LS-SVM) aims to construct a linear model $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) + b$ in a given feature space, i.e. $\phi(\boldsymbol{x}) : \mathfrak{X} \to \mathbb{F}$, that is able to distinguish between examples drawn from different categories \mathcal{C}^{-} and \mathcal{C}^{+} , such that

$$oldsymbol{x} \in egin{cases} {\mathfrak{C}^+}, & f(oldsymbol{x}) \geq 0 \ {\mathfrak{C}^-}, & o.w. \end{cases}$$

The optimal model parameters (\boldsymbol{w}^*, b^*) are given by solving a constrained optimization problem,

$$\begin{array}{ll} \underset{\boldsymbol{w},b}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \frac{1}{2\mu} \sum_{i=1}^{m} \epsilon_{i}^{2} \\ \text{subject to} & y_{i} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{i}) + b + \epsilon_{i}, \quad i = 1, \dots, m, \end{array}$$

$$(4)$$

where μ is a regularization hyper-parameter. The primal Lagrangian for this optimisation problem (4) gives the unconstrained minimisation problem,

$$\mathcal{L} = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{2\mu} \sum_{i=1}^m \epsilon_i^2 - \sum_{i=1}^m \alpha_i [\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b + \epsilon_i - y_i],$$
(5)

where $\boldsymbol{\alpha} \stackrel{\text{def}}{=} [\alpha_1, \dots, \alpha_m]^T$ is a vector of Lagrange multipliers.

- (a) (1 point) Give the KKT optimality conditions for this problem. (Hint: Set $\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}} = \frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial \epsilon_i} = \frac{\partial \mathcal{L}}{\partial \alpha_i} = 0$)
- (b) (2 points) Denoting that $\boldsymbol{K}(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}) \stackrel{\text{def}}{=} \langle \phi(\boldsymbol{x}^{(i)}), \phi(\boldsymbol{x}^{(j)}) \rangle$, prove that

$$\begin{bmatrix} \boldsymbol{K} + \mu \boldsymbol{I} & \boldsymbol{1} \\ \boldsymbol{1}^T & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}^* \\ b^* \end{bmatrix} = \begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{bmatrix}.$$

(c) (1 point) Let $\boldsymbol{M} \stackrel{\text{def}}{=} \boldsymbol{K} + \mu \boldsymbol{I}$, prove that

$$\alpha^* = M^{-1}(y - b^*1), \qquad b^* = \frac{\mathbf{1}^T M^{-1} y}{\mathbf{1}^T M^{-1} \mathbf{1}},$$

where $\boldsymbol{y} \stackrel{\text{def}}{=} [y_1, \dots, y_m]^T$ and $\mathbf{1} \stackrel{\text{def}}{=} [1, \dots, 1]^T$.

2.3. (Kernel SVM) Suppose we are given a training dataset $\{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{m}$ consisting of m independent examples, where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{n}$ is *n*-dimension vector, and $y^{(i)} \in \{-1, +1\}$. When the data are not linearly separable, consider the Kernel-SVM given by

$$\begin{array}{ll} \underset{\boldsymbol{w},b}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{subject to} & y_i(\boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}_i) + b) \geq 1, \quad i = 1, \dots, m, \end{array}$$
(6)

where $\phi(\boldsymbol{x})$ is a mapping function $\phi(\boldsymbol{x}) : (x_1, x_2) \mapsto (x_1^2, \sqrt{2}x_1x_2, x_2^2).$

- (a) (1 point) Prove that $\boldsymbol{K}(\boldsymbol{x}_i, \boldsymbol{x}_j) \stackrel{\text{def}}{=} \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j)$ is positive semi-definite symmetric, i.e. for any vector $\boldsymbol{v} \in \mathbb{R}^m$, $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{v} \geq 0$.
- (b) (2 points) Given data set $\{((1,\sqrt{2})^{T},1),((\sqrt{2},1)^{T},1),((2,\sqrt{2})^{T},-1)\}$, derive the optimal value of \boldsymbol{w}^{*} and b^{*} in (6).
- (c) (1 point) In (b), for new sample $(4\sqrt{2}, 1)^{T}$, make your decision of classification.