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2.1. (Kernel Regression Least Square) Suppose we are given a dataset {(x(i), y(i))}mi=1

consisting of m independent samples, where x(i) ∈ Rn is a n-dimension vector, and
y(i) ∈ R. Now, we aim to learn a linear model f(x) = θTφ(x) in a given feature
space, i.e. φ(x) : X → F, with regularization term λ‖θ‖22. The loss function of the
linear regression problem can be given as,

m∑
i=1

[y(i) − (θTφ(x(i)))]2 + λ‖θ‖22. (1)

(a) (2 points) Prove that the optimal parameter θ∗ is in the span of features {φ(x(i))}mi=1,
i.e. θ∗ =

∑m
i=1 ciφ(x

(i)), where ci then becomes the term needed to be opti-
mized.(Hint: Set the differentiation of the loss over θ to 0)

(b) (2 points) The mapping function φ(·) can often result to a high-dimensional or
infinite feature φ(x). Thus, we adopt a kernel K(x(i),x(j))

def
=
〈
φ(x(i)), φ(x(j))

〉
to make the calculation easier. Based on (a), we know that

f(x) = θTφ(x) =
m∑
i=1

ci
〈
φ(x(i)), φ(x)

〉
(2)

‖θ‖22 =

〈
m∑
i=1

ciφ(x
(i)),

m∑
j=1

cjφ(x
(j))

〉
= cTKc, (3)

where c def
= [c1, . . . cm]

T and K ∈ Rm×m with the (i, j)-th entry defined as
K(x(i),x(j)). Now please rewrite the loss function (1) using c and K, and
give the optimal parameter c∗.

2.2. (Least-Squares SVM) Suppose we are given a training dataset {(x(i), y(i))}mi=1 con-
sisting of m independent examples, where x(i) ∈ Rn is n-dimension vector, and
y(i) ∈ {−1, 1}. The Least-Squares Support Vector Machine (LS-SVM) aims to con-
struct a linear model f(x) = wTφ(x) + b in a given feature space, i.e. φ(x) : X→ F,
that is able to distinguish between examples drawn from different categories C− and
C+, such that

x ∈

{
C+, f(x) ≥ 0

C−, o.w.
.

The optimal model parameters (w∗, b∗) are given by solving a constrained optimiza-
tion problem,

minimize
w,b

1

2
‖w‖22 +

1

2µ

m∑
i=1

ε2i

subject to yi = w
Tφ(xi) + b+ εi, i = 1, . . . ,m,

, (4)
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where µ is a regularization hyper-parameter. The primal Lagrangian for this optimi-
sation problem (4) gives the unconstrained minimisation problem,

L =
1

2
‖w‖22 +

1

2µ

m∑
i=1

ε2i −
m∑
i=1

αi[w
Tφ(xi) + b+ εi − yi], (5)

where α def
= [α1, . . . αm]

T is a vector of Lagrange multipliers.

(a) (1 point) Give the KKT optimality conditions for this problem.

(Hint: Set
∂L

∂w
=
∂L

∂b
=
∂L

∂εi
=
∂L

∂αi

= 0)

(b) (2 points) Denoting that K(x(i),x(j))
def
=
〈
φ(x(i)), φ(x(j))

〉
, prove that[

K + µI 1
1T 0

] [
α∗

b∗

]
=

[
y
0

]
.

(c) (1 point) Let M def
= K + µI, prove that

α∗ =M−1(y − b∗1), b∗ =
1TM−1y

1TM−11
,

where y def
= [y1, . . . ym]

T and 1
def
= [1, . . . 1]T .

2.3. (Kernel SVM) Suppose we are given a training dataset {(x(i), y(i))}mi=1 consisting of
m independent examples, where x(i) ∈ Rn is n-dimension vector, and y(i) ∈ {−1,+1}.
When the data are not linearly separable, consider the Kernel-SVM given by

minimize
w,b

1

2
‖w‖22

subject to yi(w
Tφ(xi) + b) ≥ 1, i = 1, . . . ,m,

(6)

where φ(x) is a mapping function φ(x) : (x1, x2) 7→
(
x21,
√
2x1x2, x

2
2

)
.

(a) (1 point) Prove thatK(xi,xj)
def
= φ(xi)

Tφ(xj) is positive semi-definite symmet-
ric, i.e. for any vector v ∈ Rm, vTKv ≥ 0 .

(b) (2 points) Given data set
{
((1,
√
2)T, 1), ((

√
2, 1)T, 1), ((2,

√
2)T,−1)

}
, derive the

optimal value of w∗ and b∗ in (6).

(c) (1 point) In (b), for new sample (4
√
2, 1)T, make your decision of classification.


