Learning from Data Lecture 9: Principal Component Analysis

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

November 26, 2021

Today's Lecture

Unsupervised Learning (Part II): PCA

- Motivation
- Linear PCA
- Kernel PCA

Project Information: http://yangli-feasibility.com/home/classes/lfd2021fall/project.html

Motivation	Linear P
------------	----------

Motivation

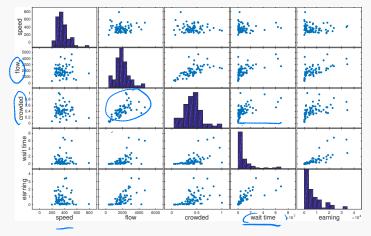
Motivation of PCA

Example: Analyzing San Francisco public transit route efficiency

features	notes
f speed	average speed
flow	# boarding pas-
_	sengers per hour
crowded	% passenger ca- pacity reached
wait time	average waiting time at bus stop
earning	net operation rev-
l	enue
÷	:

Motivation of PCA

Input features contain a lot of redundancy

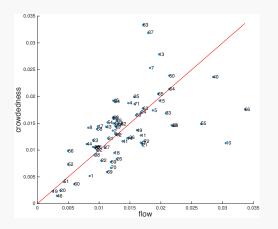


Scatter plot matrix reveals pairwise correlations among 5 major features

Motivation of PCA

Example of linearly dependent features

- Flow: average # boarding passengers per hour }
- Crowdedness: average # passengers on train train capacity

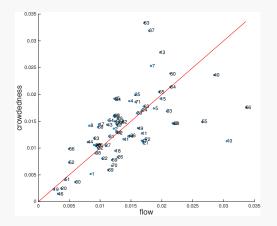


Kernel PCA

Motivation of PCA

Example of linearly dependent features

- Flow: average # boarding passengers per hour
- Crowdedness: <u>average # passengers on train</u> train capacity



How can we automatically detect and remove this redundancy?

- ▶ geometric approach ← start here!
- diagonalize covariance matrix approach

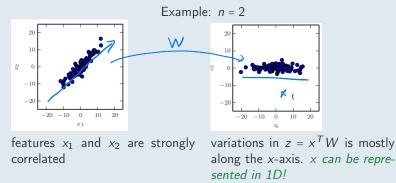
Motivation

Linear PCA

How to removing feature redundancy?

Given $\{x^{(1)}, ..., x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$.

- ▶ Find a linear, orthogonal transformation $\underline{W} : \mathbb{R}^n \to \mathbb{R}^k$ of the input data
- *W* aligns the direction of maximum variance with the axes of the new space.

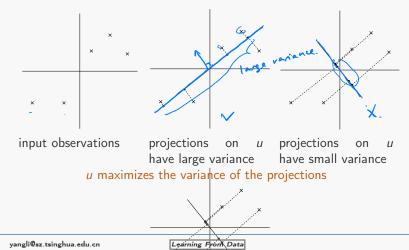


Direction of Maximum Variance

Suppose $\mu = mean(x) = 0$, $\sigma_j = var(x_j) = 1$ (variance of jth feature)

- Suppose $\mu = mean(x) = 0$, $\sigma_j = var(x_j) = 1$ (variance of jth feature)
- Find major axis of variation unit vector u:

Yang Li



Linear	PCA

Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into principal components". Journal of Educational Psychology.

PCA goals

- Find principal components u_1, \ldots, u_n that are mutually orthogonal (uncorrelated)
- Most of the variation in x will be accounted for by k principal components where $k \ll n$.

Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into principal components". Journal of Educational Psychology.

PCA goals

- Find principal components u₁,..., u_n that are mutually orthogonal (uncorrelated)
- Most of the variation in x will be accounted for by k principal components where k ≪ n.

Main steps of (full) PCA:
1. Standardize x such that
$$Mean(x) = 0$$
, $Var(x_j) = 1$ for all j
2. Find projection of x, $u_1^T x$ with maximum variance
3. For $j = 2, ..., n$,
Find another projection of x, $u_j^T x$ with maximum variance,
where u_j is orthogonal to $u_1, ..., u_{j-1}$

Step 1: Standardize data

Normalize x such that Mean(x) = 0 and $Var(x_j) = 1$

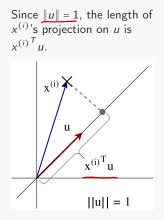
$$x^{(i)} \coloneqq x^{(i)} - \mu \leftarrow \text{recenter}$$

$$\Rightarrow \quad \boxed{x_j^{(i)}} \coloneqq x_j^{(i)} / \sigma_j \leftarrow \text{scale by } stdev(x_j)$$

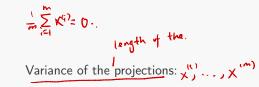
Check:

$$\operatorname{var}\left(\frac{x_{j}}{\sigma_{j}}\right) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{x_{j}^{(i)} - \mu_{j}}{\sigma_{j}}\right)^{2} = \frac{1}{\sigma_{j}^{2}} \frac{1}{m} \sum_{i=1}^{m} \left(x_{j}^{(i)} - \mu_{j}\right)^{2}$$
$$= \frac{1}{\sigma_{j}^{2}} \sigma_{j}^{2} = 1$$

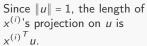
Step 2: Find Projection with Maximum Variance

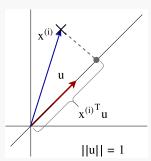


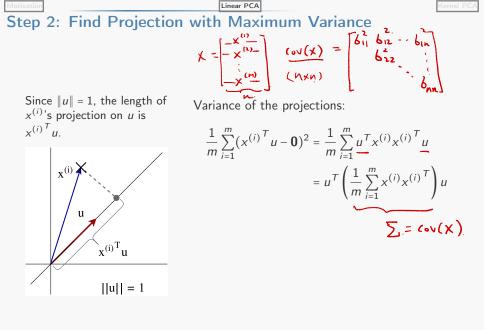
Step 2: Find Projection with Maximum Variance



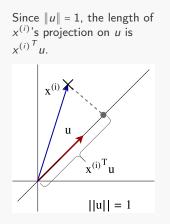
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)}{}^{T} u - \mathbf{0})^{2} = \frac{1}{m} \sum_{i=1}^{m} u^{T} x^{(i)} x^{(i)}{}^{T} u$$







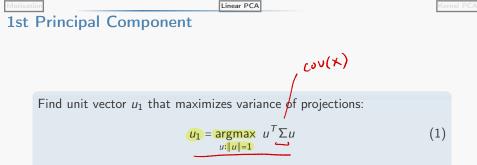
Step 2: Find Projection with Maximum Variance $5_1 = (ov(x) = \frac{1}{n} X X^{T})$



Variance of the projections:

$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)}{}^{T} \underline{u} - \mathbf{0})^{2} = \frac{1}{m} \sum_{i=1}^{m} u^{T} x^{(i)} x^{(i)}{}^{T} u$$
$$= u^{T} \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)}{}^{T} \right) u$$
$$= u^{T} \Sigma u$$

 $\sum_{x^{(1)}} \dots x^{(m)}$: the sample covariance matrix of



 u_1 is the **1st principal component** of X

 u_1 can be solved using optimization tools, but it has a more efficient solution:

Proposition 1

 u_1 is the largest eigenvector of covariance matrix Σ

 u_1 is the largest eigenvector of covariance matrix $\boldsymbol{\Sigma}$

Proof.

					1

 u_1 is the largest eigenvector of covariance matrix $\boldsymbol{\Sigma}$

Proof. Generalized Lagrange function of Problem 1:

$$L(u) = -u^T \Sigma u + \beta (u^T u - 1)$$

					1

 u_1 is the largest eigenvector of covariance matrix $\boldsymbol{\Sigma}$

Proof. Generalized Lagrange function of Problem 1

$$L(u) = -u^T \Sigma u + \beta (u^T u - 1)$$

To minimize L(u),

$$\frac{\delta L}{\delta u} = -2\Sigma u + 2\beta u = 0 \implies \Sigma u = \beta u$$

Therefore u_1 must be an eigenvector of Σ .

		IOU

Kernel PCA

Proposition 1

 u_1 is the largest eigenvector of covariance matrix $\boldsymbol{\Sigma}$

Proof. Generalized Lagrange function of Problem 1

$$L(u) = -u^T \Sigma u + \beta (u^T u - 1)$$

To minimize L(u),

$$\frac{\delta L}{\delta u} = -2\Sigma u + 2\beta u = 0 \implies \Sigma u = \beta u$$

Therefore u_1 must be an eigenvector of Σ . Let $u_1 = v_j$, the eigenvector with the *j*th largest eigenvalue λ_j ,

$$u_1^T \Sigma u_1 = \mathbf{v}_j^T \Sigma \mathbf{v}_j = \lambda_j \mathbf{v}_j^T \mathbf{v}_j = \lambda_j.$$

Hence $u_1 = v_1$, the eigenvector with the largest eigenvalue λ_1 .

The jth principal component of X , $\textbf{u_j}$ is the jth largest eigenvector of Σ .

Proof.

		on

Proposition 2

The jth principal component of X , u_j is the jth largest eigenvector of Σ .

Proof. Consider the case j = 2,

$$u_2 = \underset{u: \|u\|=1, u_1^T u=0}{\operatorname{argmax}} u^T \Sigma u$$
(2)

		on

Kernel PCA

Proposition 2

The jth principal component of X , u_j is the jth largest eigenvector of Σ .

Proof. Consider the case j = 2,

$$u_2 = \underset{\boldsymbol{u}:\|\boldsymbol{u}\|=1, u_1^T \boldsymbol{u}=0}{\operatorname{argmax}} u^T \Sigma u \tag{2}$$

The Lagrangian function:

$$L(u) = -u^T \Sigma u + \beta_1 (u^T u - 1) + \beta_2 (u_1^T u)$$

Minimizing L(u) yields:

$$\beta_2 = 0, \Sigma u = \beta_1 u$$

Kernel PCA

Proposition 2

The jth principal component of X , u_j is the jth largest eigenvector of Σ .

Proof. Consider the case j = 2,

$$u_2 = \underset{u:\|u\|=1, u_1^T u=0}{\operatorname{argmax}} u^T \Sigma u$$
(2)

The Lagrangian function:

$$L(u) = -u^T \Sigma u + \beta_1 (u^T u - 1) + \beta_2 (u_1^T u)$$

Minimizing L(u) yields:

$$\beta_2 = 0, \Sigma u = \beta_1 u$$

To maximize $u^T \Sigma u = \lambda$, u_2 must be the eigenvector with the second largest eigenvalue $\beta_1 = \lambda_2$. The same argument can be generalized to cases j > 2. (Use induction to prove for $j = 1 \dots n$)

Motivation	Linear PCA	Kernel PCA
Summary		

We can solve PCA by solving an eigenvalue problem! Main steps of (full) PCA:

- **1.** Standardize x such that Mean(x) = 0, $Var(x_j) = 1$ for all j
- **2.** Compute $\Sigma = cov(x)$
- **3.** Find principal components u_1, \ldots, u_n by eigenvalue decomposition: $\Sigma = U \Lambda U^T$. $\leftarrow U$ is an orthogonal basis in \mathbb{R}^n

Next we project data vectors x to this new basis, which spans the **principal component space**.

▶ Projection of sample $x \in \mathbb{R}^n$ in the principal component space:

$$z^{(i)} = \begin{bmatrix} x^{(i)}^T u_1 \\ \vdots \\ x^{(i)}^T u_n \end{bmatrix} \in \mathbb{R}^{t}$$

PCA Projection

▶ Projection of sample $x \in \mathbb{R}^n$ in the principal component space:

$$z^{(i)} = \begin{bmatrix} x^{(i)}^{T} u_{1} \\ \vdots \\ x^{(i)}^{T} u_{n} \end{bmatrix} \in \mathbb{R}^{t}$$

Matrix notation:

$$z^{(i)} = \begin{bmatrix} | & | \\ u_1 & \dots & u_n \\ | & | \end{bmatrix}^T x^{(i)} = U^T x^{(i)}, \text{ or } Z = XU$$

PCA Projection

▶ Projection of sample $x \in \mathbb{R}^n$ in the principal component space:

$$z^{(i)} = \begin{bmatrix} x^{(i)} & u_1 \\ \vdots \\ x^{(i)} & u_n \end{bmatrix} \in \mathbb{R}^{n}$$

Matrix notation:

$$z^{(i)} = \begin{bmatrix} | & | \\ u_1 & \dots & u_n \\ | & | \end{bmatrix}^T x^{(i)} = U^T x^{(i)}, \text{ or } Z = XU$$

• The truncated transformation $Z_k = XU_k$ keeping only the first k principal components is used for **dimension reduction**.

Properties of PCA

The variance of principal component projections are

$$\operatorname{Var}(x^T u_j) = u_j^T \Sigma u_j = \lambda_j \text{ for } j = 1, \dots, n$$

Properties of PCA

The variance of principal component projections are

$$\operatorname{Var}(x^{T}u_{j}) = u_{j}^{T}\Sigma u_{j} = \lambda_{j} \text{ for } j = 1, \dots, n$$

• % of variance explained by the *j*th principal component: $\frac{\lambda_j}{\sum_{i=1}^n \lambda_i}$. i.e. projections are uncorrelated

Properties of PCA

The variance of principal component projections are

$$\operatorname{Var}(x^T u_j) = u_j^T \Sigma u_j = \lambda_j \text{ for } j = 1, \dots, n$$

- % of variance explained by the *j*th principal component: $\frac{\lambda_j}{\sum_{i=1}^n \lambda_i}$. i.e. projections are uncorrelated
- W of variance accounted for by retaining the first k principal components (k ≤ n): ∑_{j=1}^k λ_j
 ∑_{j=1}ⁿ λ_j

Another geometric interpretation of PCA is minimizing projection residuals. (see homework!)

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data X: Let Z = XU be the PCA projected data,

$$\operatorname{cov}(Z) = \frac{1}{m} Z^{\mathsf{T}} Z = \frac{1}{m} (XU)^{\mathsf{T}} (XU) = U^{\mathsf{T}} \left(\frac{1}{m} X^{\mathsf{T}} X \right) U = U^{\mathsf{T}} \Sigma U$$

Kernel PCA

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data X: Let Z = XU be the PCA projected data,

$$\operatorname{cov}(Z) = \frac{1}{m} Z^{\mathsf{T}} Z = \frac{1}{m} (XU)^{\mathsf{T}} (XU) = U^{\mathsf{T}} \left(\frac{1}{m} X^{\mathsf{T}} X \right) U = U^{\mathsf{T}} \Sigma U$$

Since $\boldsymbol{\Sigma}$ is symmetric, it has real eigenvalues. Its eigen decomposition is

 $\Sigma = U \Lambda U^T$

where

$$U = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Kernel PCA

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data X: Let Z = XU be the PCA projected data,

$$\operatorname{cov}(Z) = \frac{1}{m} Z^{\mathsf{T}} Z = \frac{1}{m} (XU)^{\mathsf{T}} (XU) = U^{\mathsf{T}} \left(\frac{1}{m} X^{\mathsf{T}} X \right) U = U^{\mathsf{T}} \Sigma U$$

Since $\boldsymbol{\Sigma}$ is symmetric, it has real eigenvalues. Its eigen decomposition is

 $\Sigma = U \Lambda U^T$

where

$$U = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Then

$$\operatorname{cov}(Z) = U^T (U \wedge U^T) U = \Lambda$$

Kernel PCA

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data X: Let Z = XU be the PCA projected data,

$$\operatorname{cov}(Z) = \frac{1}{m} Z^{\mathsf{T}} Z = \frac{1}{m} (XU)^{\mathsf{T}} (XU) = U^{\mathsf{T}} \left(\frac{1}{m} X^{\mathsf{T}} X \right) U = U^{\mathsf{T}} \Sigma U$$

Since Σ is symmetric, it has real eigenvalues. Its eigen decomposition is

 $\Sigma = U \Lambda U^T$

where

$$U = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

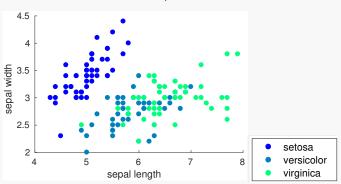
Then

$$\operatorname{cov}(Z) = U^T (U \wedge U^T) U = \Lambda$$

The principal component transformation XU diagonalizes the sample covariance matrix of X

PCA Example: Iris Dataset

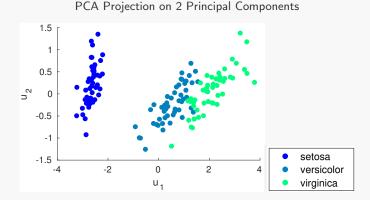
- 150 samples
- input feature dimension: 4



First two input attributes

PCA Example: Iris Dataset

- 150 samples
- input feature dimension: 4



% of variance explained by PC1: 73%, $\$ by PC2: 22%

Learning From Data

PCA Example: Eigenfaces

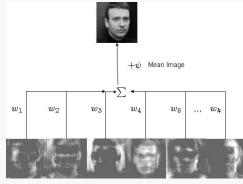
Learning image representations for face recognition using PCA [Turk and Pentland CVPR 1991]

Training data

Eigenfaces: k principal components

PCA Example: Eigenfaces

Each face image is a linear combination of the **eigenfaces** (principal components)

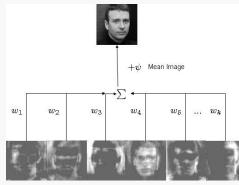


Each image is represented by k weights

Linear PCA

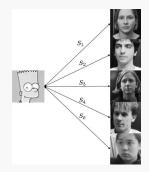
PCA Example: Eigenfaces

Each face image is a linear combination of the **eigenfaces** (principal components)



Each image is represented by k weights

Recognize faces by classifying the weight vectors. e.g. k-Nearest Neighbor

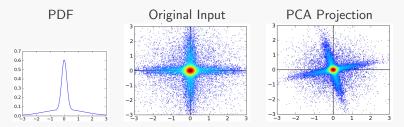


- Assumes input data is real and continuous
- Assumes approximate normality of input space (but may still work well on non-normally distributed data in practice) <- sample mean & covariance must be sufficient statistics

Assumes input data is real and continuous

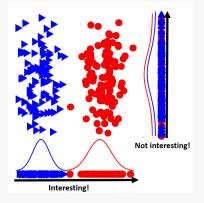
 Assumes approximate normality of input space (but may still work well on non-normally distributed data in practice) ← sample mean & covariance must be sufficient statistics

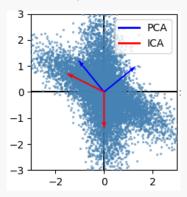
Example of strongly non-normal distributed input:



PCA results may not be useful when

- Axes of larger variance is less 'interesting' than smaller ones.
- Axes of variations are not orthogonal;
- Data has non-linear relationships (see kernel PCA)





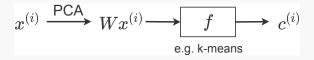
		- 1

Kernel	PCA
--------	-----

Kernel PCA

Kernel PCA

Feature extraction using PCA

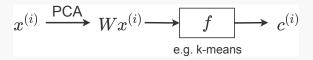


Linear PCA assumes data are separable in \mathbb{R}^n

Kernel PCA

Kernel PCA

Feature extraction using PCA



Linear PCA assumes data are separable in \mathbb{R}^n

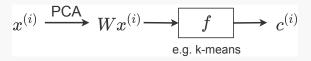
A non-linear generalization

• Project data into higher dimension using feature mapping $\phi: \mathbb{R}^n \to \mathbb{R}^d \ (d \ge n)$

Kernel PCA

Kernel PCA

Feature extraction using PCA



Linear PCA assumes data are separable in \mathbb{R}^n

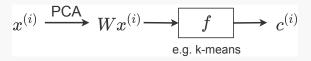
A non-linear generalization

- Project data into higher dimension using feature mapping $\phi: \mathbb{R}^n \to \mathbb{R}^d \ (d > n)$
- Feature mapping is defined by a kernel function $K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$ or kernel matrix $K \in \mathbb{R}^{m \times m}$

Kernel PCA

Kernel PCA

Feature extraction using PCA



Linear PCA assumes data are separable in \mathbb{R}^n

A non-linear generalization

- Project data into higher dimension using feature mapping $\phi: \mathbb{R}^n \to \mathbb{R}^d \ (d > n)$
- Feature mapping is defined by a kernel function $K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$ or kernel matrix $K \in \mathbb{R}^{m \times m}$
- We can now perform standard PCA in the feature space

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\boldsymbol{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) \boldsymbol{\phi}(\boldsymbol{x}^{(i)})^{T} \in \mathbb{R}^{d \times d}$$

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\boldsymbol{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) \boldsymbol{\phi}(\boldsymbol{x}^{(i)})^{T} \in \mathbb{R}^{d \times d}$$

Let $(\lambda_k, u_k), k = 1, \dots, d$ be the eigen decomposition of Σ :

 $\Sigma u_k = \lambda_k u_k$

Linear PC/

Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^T \in \mathbb{R}^{d \times d}$$

Let $(\lambda_k, u_k), k = 1, \dots, d$ be the eigen decomposition of Σ :

 $\Sigma u_k = \lambda_k u_k$

PCA projection of $x^{(l)}$ onto the *kth* principal component u_k :

 $\phi(x^{(l)})^T u_k$

Linear

Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^T \in \mathbb{R}^{d \times d}$$

Let $(\lambda_k, u_k), k = 1, \dots, d$ be the eigen decomposition of Σ :

 $\Sigma u_k = \lambda_k u_k$

PCA projection of $x^{(l)}$ onto the *kth* principal component u_k :

 $\phi(x^{(l)})^T u_k$

How to avoid evaluating $\phi(x)$ explicitly?

Motivation The Kernel Trick Linear PCA

Kernel PCA

Represent projection $\phi(x^{(l)})^T u_k$ using kernel function K:

• Write u_k as a linear combination of $\phi(x^{(1)}), \ldots, \phi(x^{(m)})$:

$$u_k = \sum_{i=1}^m \alpha_k^i \phi(x^{(i)})$$

Kernel PCA

The Kernel Trick

Represent projection $\phi(x^{(l)})^T u_k$ using kernel function K:

• Write u_k as a linear combination of $\phi(x^{(1)}), \ldots, \phi(x^{(m)})$:

$$u_k = \sum_{i=1}^m \alpha_k^i \phi(x^{(i)})$$

• PCA projection of $x^{(l)}$ using kernel function K:

$$\phi(x^{(l)})^T u_k = \phi(x^{(l)})^T \sum_{i=1}^m \alpha_k^i \phi(x^{(i)}) = \sum_{i=1}^m \alpha_k^i \mathcal{K}(x^{(l)}, x^{(i)})$$

How to find α_k^i 's directly ?

The Kernel Trick

Kth eigenvector equation:

$$\Sigma u_k = \left(\frac{1}{m} \sum_{i=1}^m \phi(x^{(i)}) \phi(x^{(i)})^T\right) u_k = \lambda_k u_k$$

• Substitute $u_k = \sum_{i=1}^m \alpha_k^{(i)} \phi(x^{(i)})$, we obtain

$$K\alpha_k = \lambda_k m\alpha_k$$

where
$$\alpha_k = \begin{bmatrix} \alpha_k^1 \\ \vdots \\ \alpha_k^m \end{bmatrix}$$
 can be solved by eigen decomposition of K

The Kernel Trick

Kth eigenvector equation:

$$\Sigma u_k = \left(\frac{1}{m} \sum_{i=1}^m \phi(x^{(i)}) \phi(x^{(i)})^T\right) u_k = \lambda_k u_k$$

• Substitute $u_k = \sum_{i=1}^m \alpha_k^{(i)} \phi(x^{(i)})$, we obtain

$$K\alpha_k = \lambda_k m\alpha_k$$

where
$$\alpha_k = \begin{bmatrix} \alpha_k^1 \\ \vdots \\ \alpha_k^m \end{bmatrix}$$
 can be solved by eigen decomposition of K

• Normalize α_k such that $u_k^T u_k = 1$:

$$u_k^T u_k = \sum_{i=1}^m \sum_{j=1}^m \alpha_k^i \alpha_k^j \phi(x^{(i)})^T \phi(x^{(j)}) = \alpha_k^T K \alpha_k = \lambda_k m(\alpha_k^T \alpha_k)$$

$$\|\alpha_k\|^2 = \frac{1}{\lambda_k m}$$

Learning From Data

Kernel PCA

When $\mathbb{E}[\phi(x)] \neq 0$, we need to center $\phi(x)$:

$$\widetilde{\phi}(x^{(i)}) = \phi(x^{(i)}) - \frac{1}{m} \sum_{l=1}^{m} \widetilde{\phi}(x^{(l)})$$

Kernel PCA

When $\mathbb{E}[\phi(x)] \neq 0$, we need to center $\phi(x)$:

$$\widetilde{\phi}(x^{(i)}) = \phi(x^{(i)}) - \frac{1}{m} \sum_{l=1}^{m} \widetilde{\phi}(x^{(l)})$$

The "centralized" kernel matrix is

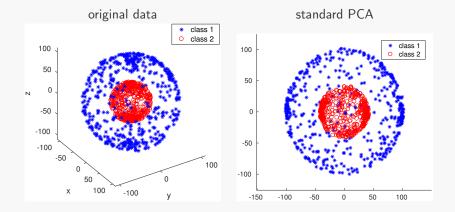
$$\widetilde{K}_{i,j} = \widetilde{\phi}(x^{(i)})^T \widetilde{\phi}(x^{(j)})$$

т

In matrix notation:

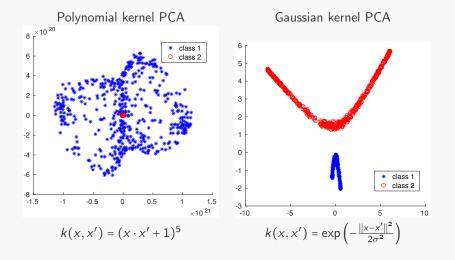
$$\widetilde{K} = K - \mathbf{1}_m K - K \mathbf{1}_m + \mathbf{1}_m K \mathbf{1}$$
where $\mathbf{1}_m = \begin{bmatrix} 1/m & \dots & 1/m \\ \vdots & \ddots & \vdots \\ 1/m & \dots & 1/m \end{bmatrix} \in \mathbb{R}^{m \times m}$
Use \widetilde{K} to compute PCA

Kernel PCA Example



Learning From Data

Kernel PCA Example



Discussions of kernel PCA

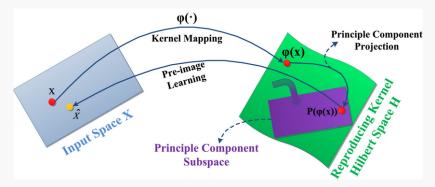
Often used in clustering, abnormality detection, etc

Discussions of kernel PCA

- Often used in clustering, abnormality detection, etc
- Requires finding eigenvectors of $m \times m$ matrix instead of $n \times n$

Discussions of kernel PCA

- Often used in clustering, abnormality detection, etc
- Requires finding eigenvectors of $m \times m$ matrix instead of $n \times n$
- Dimension reduction by projecting to k-dimensional principal subspace is generally not possible



The Pre-Image problem: reconstruct data in input space x from feature space vectors $\phi(x)$

Representation learning

- Transform input features into "simpler" or "interpretable" representations.
- Used in feature extraction, dimension reduction, clustering etc

Motivation	
Sum	mary

Representation learning

- Transform input features into "simpler" or "interpretable" representations.
- Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms:

	low dimension	sparse	disentangle variations
k-means		\checkmark	
PCA	\checkmark		\checkmark

Homework 3 due in one week: SVM and Neural Network

How to get partial credits for programming problems?

if result are still undesirable by the deadline,

- Write your thought process in sentences in a README file or on the problem answer sheet.
- Explain the problem you run into.