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Motivation Linear PCA Kernel PCA

Today’s Lecture

Unsupervised Learning (Part II): PCA
� Motivation
� Linear PCA
� Kernel PCA

Project Information: http://yangli-feasibility.com/home/
classes/lfd2021fall/project.html
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Motivation Linear PCA Kernel PCA

Motivation of PCA

Example: Analyzing San Francisco public transit route efficiency

features notes
speed average speed
flow # boarding pas-

sengers per hour
crowded % passenger ca-

pacity reached
wait time average waiting

time at bus stop
earning net operation rev-

enue⋮ ⋮
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Motivation of PCA

Input features contain a lot of redundancy

earning ×104
0 1 2 3 4

e
a
rn

in
g

wait time ×107
0 2 4 6 8

crowded
0 0.5 1

flow
0 2000 4000 6000

speed
0 200 400 600 800

e
a
rn

in
g

×104

0

1

2

3

4

w
a
it 

tim
e

×107

0

2

4

6

8

cr
o
w

d
e
d

0

0.2

0.4

0.6

0.8

1

flo
w

0

1000

2000

3000

4000

5000

sp
e
e
d

0

200

400

600

800

Scatter plot matrix reveals pairwise correlations among 5 major features
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Motivation of PCA

Example of linearly dependent features
� Flow: average # boarding passengers per hour
� Crowdedness: average # passengers on train

train capacity
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How can we automatically
detect and remove this
redundancy?
� geometric approach ←

start here!
� diagonalize covariance

matrix approach
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Motivation of PCA

Example of linearly dependent features
� Flow: average # boarding passengers per hour
� Crowdedness: average # passengers on train
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Motivation Linear PCA Kernel PCA

How to removing feature redundancy?

Given {x(1), . . . , x(m)}, x(i) ∈ Rn.
� Find a linear, orthogonal transformation W ∶ Rn → Rk of the input

data
� W aligns the direction of maximum variance with the axes of the

new space.
Example: n = 2

CHAPTER 5. MACHINE LEARNING BASICS
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Figure 5.8: PCA learns a linear projection that aligns the direction of greatest variance
with the axes of the new space. (Left) The original data consists of samples of x. In this
space, the variance might occur along directions that are not axis-aligned. The(Right)
transformed data z= x>W now varies most along the axis z1. The direction of second
most variance is now along z2.

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in Fig. . In Sec. , we saw that we5.8 2.12
could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares

reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation .X

Let us consider the m n× -dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with is given by:X

Var[ ] =x
1

m− 1
X>X. (5.85)
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is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in Fig. . In Sec. , we saw that we5.8 2.12
could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares

reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation .X

Let us consider the m n× -dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with is given by:X

Var[ ] =x
1

m− 1
X>X. (5.85)

147

features x1 and x2 are strongly
correlated

variations in z = xTW is mostly
along the x-axis. x can be repre-
sented in 1D!
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Motivation Linear PCA Kernel PCA

Direction of Maximum Variance

� Suppose µ = mean(x) = 0, �j = var(xj) = 1 (variance of jth feature)

� Find major axis of variation unit vector u:

input observations projections on u
have large variance

projections on u
have small variance

u maximizes the variance of the projections
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Direction of Maximum Variance

� Suppose µ = mean(x) = 0, �j = var(xj) = 1 (variance of jth feature)
� Find major axis of variation unit vector u:

3

example of this is if each data point represented a grayscale image, and each
x(i)
j took a value in {0, 1, . . . , 255} corresponding to the intensity value of

pixel j in image i.
Now, having carried out the normalization, how do we compute the “ma-

jor axis of variation” u—that is, the direction on which the data approxi-
mately lies? One way to pose this problem is as finding the unit vector u so
that when the data is projected onto the direction corresponding to u, the
variance of the projected data is maximized. Intuitively, the data starts off
with some amount of variance/information in it. We would like to choose a
direction u so that if we were to approximate the data as lying in the direc-
tion/subspace corresponding to u, as much as possible of this variance is still
retained.

Consider the following dataset, on which we have already carried out the
normalization steps:

Now, suppose we pick u to correspond the the direction shown in the
figure below. The circles denote the projections of the original data onto this
line.

4

We see that the projected data still has a fairly large variance, and the
points tend to be far from zero. In contrast, suppose had instead picked the
following direction:

Here, the projections have a significantly smaller variance, and are much
closer to the origin.

We would like to automatically select the direction u corresponding to
the first of the two figures shown above. To formalize this, note that given a

4

We see that the projected data still has a fairly large variance, and the
points tend to be far from zero. In contrast, suppose had instead picked the
following direction:

Here, the projections have a significantly smaller variance, and are much
closer to the origin.

We would like to automatically select the direction u corresponding to
the first of the two figures shown above. To formalize this, note that given a

input observations projections on u
have large variance

projections on u
have small variance

u maximizes the variance of the projections
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Linear PCA
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Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into

principal components". Journal of Educational Psychology.

PCA goals

� Find principal components u1, . . . ,un that are mutually orthogonal
(uncorrelated)

� Most of the variation in x will be accounted for by k principal
components where k � n.

Main steps of (full) PCA:
1. Standardize x such that Mean(x) = 0,Var(xj) = 1 for all j
2. Find projection of x , uT

1
x with maximum variance

3. For j = 2, . . . ,n ,
Find another projection of x , uTj x with maximum variance,
where uj is orthogonal to u1, . . . ,uj−1
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Principal Component Analysis (PCA)
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Motivation Linear PCA Kernel PCA

Step 1: Standardize data

Normalize x such that Mean(x) = 0 and Var(xj) = 1

x(i) ∶= x(i) − µ ← recenter

x(i)j ∶= x(i)j ��j ← scale by stdev(xj)
Check:

var � xj
�j
� = 1

m

m�
i=1
�
�
x(i)j − µj

�j

�
�

2

= 1
�2

j

1
m

m�
i=1
�x(i)j − µj�2

= 1
�2

j

�2

j = 1
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Motivation Linear PCA Kernel PCA

Step 2: Find Projection with Maximum Variance

Since �u� = 1, the length of
x(i)’s projection on u is
x(i)Tu.

Variance of the projections:

1
m

m�
i=1
(x(i)Tu − 0)2 = 1

m

m�
i=1

uT x(i)x(i)Tu

= uT � 1
m

m�
i=1

x(i)x(i)T�u
= uT⌃u

⌃ : the sample covariance matrix of
x(1) . . . x(m).
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Step 2: Find Projection with Maximum Variance
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Step 2: Find Projection with Maximum Variance
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Motivation Linear PCA Kernel PCA

1st Principal Component

Find unit vector u1 that maximizes variance of projections:

u1 = argmax
u∶�u�=1 uT⌃u (1)

u1 is the 1st principal component of X

u1 can be solved using optimization tools, but it has a more efficient
solution:

Proposition 1

u1 is the largest eigenvector of covariance matrix ⌃

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data
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Proposition 1

u1 is the largest eigenvector of covariance matrix ⌃

Proof.

Generalized Lagrange function of Problem 1:

L(u) = −uT⌃u + �(uTu − 1)
To minimize L(u),

�L

�u
= − 2⌃u + 2�u = 0 �⇒ ⌃u = �u

Therefore u1 must be an eigenvector of ⌃.
Let u1 = vj , the eigenvector with the jth largest eigenvalue �j ,

uT
1
⌃u1 = vT

j ⌃vj = �jvj
T vj = �j .

Hence u1 = v1, the eigenvector with the largest eigenvalue �1.
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Proposition 2

The jth principal component of X , uj is the jth largest eigenvector of
⌃ .

Proof.

Consider the case j = 2,

u2 = argmax
u∶�u�=1,uT

1 u=0u
T⌃u (2)

The Lagrangian function:

L(u) = −uT⌃u + �1(uTu − 1) + �2(uT1 u)
Minimizing L(u) yields:

�2 = 0,⌃u = �1u

To maximize uT⌃u = �, u2 must be the eigenvector with the second
largest eigenvalue �1 = �2. The same argument can be generalized to
cases j > 2. (Use induction to prove for j = 1 . . .n )
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Proposition 2
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Proposition 2

The jth principal component of X , uj is the jth largest eigenvector of
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Summary

We can solve PCA by solving an eigenvalue problem!
Main steps of (full) PCA:
1. Standardize x such that Mean(x) = 0,Var(xj) = 1 for all j
2. Compute ⌃ = cov(x)
3. Find principal components u1, . . . ,un by eigenvalue decomposition:

⌃ = U⇤UT . ← U is an orthogonal basis in Rn

Next we project data vectors x to this new basis, which spans the
principal component space.
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PCA Projection

� Projection of sample x ∈ Rn in the principal component space:

z(i) =
��������
x(i)Tu1⋮
x(i)Tun

��������
∈ Rn

� Matrix notation:

z(i) =
�������
� �
u1 . . . un� �

�������
T

x(i) = UT x(i), or Z = XU
� The truncated transformation Zk = XUk keeping only the first k

principal components is used for dimension reduction.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Motivation Linear PCA Kernel PCA

PCA Projection

� Projection of sample x ∈ Rn in the principal component space:

z(i) =
��������
x(i)Tu1⋮
x(i)Tun

��������
∈ Rn

� Matrix notation:

z(i) =
�������
� �
u1 . . . un� �

�������
T

x(i) = UT x(i), or Z = XU

� The truncated transformation Zk = XUk keeping only the first k
principal components is used for dimension reduction.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Motivation Linear PCA Kernel PCA

PCA Projection

� Projection of sample x ∈ Rn in the principal component space:

z(i) =
��������
x(i)Tu1⋮
x(i)Tun

��������
∈ Rn

� Matrix notation:

z(i) =
�������
� �
u1 . . . un� �

�������
T

x(i) = UT x(i), or Z = XU
� The truncated transformation Zk = XUk keeping only the first k

principal components is used for dimension reduction.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Motivation Linear PCA Kernel PCA

Properties of PCA

� The variance of principal component projections are

Var(xTuj) = uj T⌃uj = �j for j = 1, . . . ,n

� % of variance explained by the jth principal component:
�j∑n
i=1 �i

.

i.e. projections are uncorrelated
� % of variance accounted for by retaining the first k principal

components (k ≤ n): ∑k
j=1 �j

∑n
j=1 �j

Another geometric interpretation of PCA is minimizing projection
residuals. (see homework!)
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Covariance Interpretation of PCA

PCA removes the “redundancy” (or noise) in input data X :
Let Z = XU be the PCA projected data,

cov(Z) = 1
m
ZTZ = 1

m
(XU)T (XU) = UT � 1

m
XTX�U = UT⌃U

Since ⌃ is symmetric, it has real eigenvalues. Its eigen decomposition is

⌃ = U⇤UT

where

U =
�������
� �
u1 . . . un� �

�������
,⇤ =

�������
�1 �

�n

�������
Then

cov(Z) = UT (U⇤UT )U = ⇤
The principal component transformation XU diagonalizes the sample
covariance matrix of X
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PCA Example: Iris Dataset

� 150 samples
� input feature dimension: 4

First two input attributes
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PCA Example: Iris Dataset

� 150 samples
� input feature dimension: 4

PCA Projection on 2 Principal Components
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% of variance explained by PC1: 73%, by PC2: 22%
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PCA Example: Eigenfaces

Learning image representations for face recognition using PCA [Turk and
Pentland CVPR 1991]

Training data Eigenfaces: k principal components
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PCA Example: Eigenfaces

Each face image is a linear combination of the
eigenfaces (principal components)

Each image is represented by k weights

Recognize faces by
classifying the weight
vectors. e.g. k-Nearest
Neighbor
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PCA Example: Eigenfaces

Each face image is a linear combination of the
eigenfaces (principal components)

Each image is represented by k weights

Recognize faces by
classifying the weight
vectors. e.g. k-Nearest
Neighbor
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Motivation Linear PCA Kernel PCA

PCA Limitations

� Assumes input data is real and continuous
� Assumes approximate normality of input space (but may still work

well on non-normally distributed data in practice) ← sample mean
& covariance must be sufficient statistics

Example of strongly non-normal distributed input:

PDF Original Input PCA Projection
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PCA Limitations

PCA results may not be useful when
� Axes of larger variance is less ‘interesting‘ than smaller ones.
� Axes of variations are not orthogonal;
� Data has non-linear relationships (see kernel PCA)
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Kernel PCA

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data
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Kernel PCA

Feature extraction using PCA

PCA

e.g. k-means

Linear PCA assumes data are separable in Rn

A non-linear generalization

� Project data into higher dimension using feature mapping
� ∶ Rn → Rd (d ≥ n)

� Feature mapping is defined by a kernel function
K �x(i), x(j)� = �(x(i))T�(x(j)) or kernel matrix K ∈ Rm×m

� We can now perform standard PCA in the feature space
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Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal

component analysis. In Advances in kernel methods) Sample covariance matrix of
feature mapped data (assuming �(x) is centered)

⌃ = 1
m

m�
i=1

�(x(i))�(x(i))T ∈ Rd×d

Let (�k ,uk), k = 1, . . . ,d be the eigen decomposition of ⌃:

⌃uk = �kuk

PCA projection of x(l) onto the kth principal component uk :

�(x(l))Tuk
How to avoid evaluating �(x) explicitly?
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The Kernel Trick

Represent projection �(x(l))Tuk using kernel function K :
� Write uk as a linear combination of �(x(1)), . . . ,�(x(m)):

uk = m�
i=1

↵i
k�(x(i))

� PCA projection of x(l) using kernel function K :

�(x(l))Tuk = �(x(l))T m�
i=1

↵i
k�(x(i)) = m�

i=1
↵i
kK(x(l), x(i))

How to find ↵i
k ’s directly ?
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The Kernel Trick

Kth eigenvector equation:

⌃uk = � 1
m

m�
i=1

�(x(i))�(x(i))T�uk = �kuk

� Substitute uk = ∑m
i=1 ↵(i)k �(x(i)), we obtain

K↵k = �km↵k

where ↵k =
�������
↵1

k⋮
↵m
k

�������
can be solved by eigen decomposition of K

� Normalize ↵k such that uTk uk = 1:

uTk uk = m�
i=1

m�
j=1

↵i
k↵

j
k�(x(i))T�(x(j)) = ↵T

k K↵k = �km(↵T
k ↵k)

�↵k�2 = 1
�km
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Kernel PCA

When E[�(x)] ≠ 0 , we need to center �(x):
�̃(x(i)) = �(x(i)) − 1

m

m�
l=1

�̃(x(l))

The “centralized” kernel matrix is

K̃i,j = �̃(x(i))T �̃(x(j))
In matrix notation:

K̃ = K − 1mK −K1m + 1mK1m

where 1m =
�������
1�m . . . 1�m⋮ � ⋮
1�m . . . 1�m

�������
∈ Rmxm

Use K̃ to compute PCA
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Kernel PCA Example

original data standard PCA
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Kernel PCA Example

Polynomial kernel PCA Gaussian kernel PCA
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k(x , x ′) = (x ⋅ x ′ + 1)5 k(x , x ′) = exp�− ��x−x ′��2
2�2 �
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Discussions of kernel PCA

� Often used in clustering, abnormality detection, etc

� Requires finding eigenvectors of m ×m matrix instead of n × n
� Dimension reduction by projecting to k-dimensional principal

subspace is generally not possible

The Pre-Image problem: reconstruct data in input space x from feature space
vectors �(x)
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Summary

Representation learning
� Transform input features into “simpler” or “interpretable”

representations.
� Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms:
low dimension sparse disentangle variations

k-means
PCA
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Homework

Homework 3 due in one week: SVM and Neural Network

How to get partial credits for programming problems?

if result are still undesirable by the deadline,
� Write your thought process in sentences in a README file or on the

problem answer sheet.
� Explain the problem you run into.
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