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Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Today’s Lecture

Unsupervised Learning (Part I)
� Overview: the representation learning problem
� K-means clustering
� Spectral clustering

Project Introduction
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Clustering from a graph point of view

� Given data points x(1), . . . , x(n) and similarity measure sij ≥ 0 for
all x(i), x(j)

� A typical similarity graph G = (V ,E) is
� vi ↔ x(i)
� vi and vj are connected if sij ≥ � for some threshold �

� Clustering: Divide data into groups such that points in the same
group are similar and points in different groups are dissimilar

� Spectral Clustering (informal): Find a partition of G such that
edges between the same group have high weight and edges between
different groups have very low weight.
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Spectral Clustering as Graph Partitioning

Find a partition of the graph such that
� Edges between groups have a low weight
� Edges within each group have a high weight
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Graph Cut Formulation
Case k = 2:
� Given partition A, Ā, define a cut as the total weight of edges

weights between groups:

cut(A, Ā) ∶= �
i∈A,j∈Ā

wij

� Example: cut({p1,p2,p3},{p4,p5,p6}) = 1,
cut({p1,p2,p3,p4},{p5,p6}) = 2
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Graph Cut Formulations
Case k > 2:
� Given partition A1, . . . ,Ak , define a cut as the total edges weights

between groups:

cut(A1, . . . ,Ak) ∶= 1
2

k�
i=1

cut(Ai , Āi)

Minimizing cut directly tends to favor small isolated clusters.
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Graph Cut Formulations
Case k > 2:
� Given partition A1, . . . ,Ak , define a cut as the total edges weights

between groups:

cut(A1, . . . ,Ak) ∶= 1
2

k�
i=1

cut(Ai , Āi)
Minimizing cut directly tends to favor small isolated clusters.
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Balanced Graph Cut

RatioCut and NCut

Find a k-way partition of graph G ( Ai ∪ . . . ∪Ak = V ,Ai ∩Aj = � ) that
minimizes:

RatioCut(A1, . . . ,Ak) = 1
2

k�
i=1

cut(Ai , Āi)�Ai � [Hagen & Kahng,1992]

NCut(A1, . . . ,Ak) = 1
2

k�
i=1

cut(Ai , Āi)
vol(Ai) ,

vol(Ai) = �
i∈A,j∈V

wij [Shi & Malik ,2000]

Both RatioCut and NormalizeCut can be approximated by spectral
method.
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Balanced Graph Cut
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W
Properties of L

� For every f ∈ Rn, f TLf = 1
2 ∑n

i,j=1 wij(fi − fj)2

� L is symmetric and positive semi-definite
� The smallest eigenvalue of L is 0 with eigenvector 1

� L has n real eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �n
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W
Properties of L

� For every f ∈ Rn, f TLf = 1
2 ∑n

i,j=1 wij(fi − fj)2

� L is symmetric and positive semi-definite
� The smallest eigenvalue of L is 0 with eigenvector 1

� L has n real eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �n
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W
Properties of L

� For every f ∈ Rn, f TLf = 1
2 ∑n

i,j=1 wij(fi − fj)2
� L is symmetric and positive semi-definite

� The smallest eigenvalue of L is 0 with eigenvector 1

� L has n real eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �n
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W
Properties of L

� For every f ∈ Rn, f TLf = 1
2 ∑n

i,j=1 wij(fi − fj)2
� L is symmetric and positive semi-definite
� The smallest eigenvalue of L is 0 with eigenvector 1

� L has n real eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �n
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Graph Laplacian
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Graph Laplacian
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A Review on Eigenvalue Problem

The Eigenvalue Problem

Nonzero vector u ∈ Rn is an eigenvector of matrix A ∈ Rn×n if

Au = �u
for some � ∈ R. We call � the eigenvalue corresponding to u.

� A has at most n distinct eigenvalues

Eigenvalue Decomposition

Let U = [u1, . . . ,un] be the matrix of n linearly independent eigenvectors
of A and ⇤ = diag([�1, . . . ,�n]) , then

A = U⇤U−1
� If A is symmetric, A can be decomposed as A = U⇤UT where U is

an orthogonal matrix (UTU = I ).
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Rayleigh-Ritz Theorem

Theorem 1

Given symmetric matrix A ∈ Rn×n, the solution to the minimization
problem is the smallest eigen vector of A

min
x∈Rn

xTAx (1)

s.t. ��x ��2 = 1

� An equivalent form of (1) is minimizing the Rayleigh quotient
xTAx
xT x

min
x≠0∈Rn

xTAx

xT x

� Rayleigh quotient xTAx
xT x is scale invariant.
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Rayleigh-Ritz Theorem

Generalization to multiple vectors:

Theorem 2

Given symmetric matrix A ∈ Rn×n, x = [x1, . . . , xk], xi ∈ Rn, the solution to
the minimization problem are k smallest eigen vector of A:

min
X∈Rn×k tr(XTAX ) (2)

s.t. XTX = I
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W

Properties of L

� The smallest eigenvalue of L is 0 with eigenvector 1

� L has n real eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �n
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W

Properties of L

� The smallest eigenvalue of L is 0 with eigenvector 1

� L has n real eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �n
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Graph Laplacian

Proposition 1

Let G be an undirected graph with non-negative weights W , the
multiplicity k if eigenvalue 0 of L is the number of connected
components A1, . . . ,Ak in G .
The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . ,1Ak
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(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997)
1:

Lrw = D−1L = I −D−1W
Properties of Lrw
� � is an eigenvalue of Lrw with eigenvector v if and only if �, v solve

the generalized eigenproblem Lv = �Dv
� 0 is an eigenvalue of L with eigenvector 1

� Lrw is positive semi-definite and has n non-negative eigenvalues
0 = �1 ≤ �2 ≤ . . . ≤ �n

Proposition 2

Let G be an undirected graph with non-negative weights W , the
multiplicity k of eigenvalue 0 of Lrw is the number of connected
components A1, . . . ,Ak in G .
The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . ,1Ak

1"rw" comes from its interpertation as “random walk”. Another definition of
normalized graph Laplacian is D− 1

2 LD− 1
2
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(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997)
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components A1, . . . ,Ak in G .
The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . ,1Ak
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Solving graph cut

Define f ∈ {0,1}n to be the indicator function for partition A ⊂ V :

fi ∶= {1A}i =
�������
1 vi ∈ A
0 vi ∈ Ā

We have that ��f ��2 = �A�.
Cut(A, Ā) can be written as a function of f and graph Laplacian L:

f TLf = 1
2

n�
i,j=1

wij(fi − fj)2

= 1
2

��� �
vi∈A,vj∈Ā

wij + �
vi∈Ā,vj∈A

wij

��� = �
vi∈A,vj∈Ā

wij = cut(A, Ā)
Let f(1), . . . , f(k) be k indicator functions 1Ai , . . . ,1Ak . They are mutually
orthogonal (i.e. f T(i)f(j) = 0 for all i ≠ j).
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Solving graph cut

Recall the definition of RatioCut:

min
A1,...,Ak

k�
i

cut(Ai , Āi)�Ai � (3)

�⇒ min
A1,...,Ak

k�
i

f T(i)Lf(i)
f T(i)f(i)

(4)

Relax the f(i)’s to be real vectors:

min
f(1),...,f(k)∈Rn

k�
i

f T(i)Lf(i)
f T(i)f(i)

(5)

s.t. f T(i)f(j) = 0, for all i ≠ j
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Solving graph cut

Since rescaling f(i) by constants does not change the objective, (3) is
equivalent to

min
f(1),...,f(k)∈Rn

k�
i

f T(i)Lf(i) (6)

s.t. f T(i)f(j) = 0, for all i ≠ j
f T(i)f(i) = 1, for alli = 1, . . . , k

Let F = �f(1) . . . f(k)�, (5) can be written in matrix notation:

min
F∈Rn

tr(FTLF )
s.t. FTF = I

� By Theorem 2 , optimal solution F ∗ is the first k eigenvectors of L.
� To get discrete cluster labels, we can apply k-means clustering on

the rows of F ∗.
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Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points x(1), . . . , x(n) and cluster size k

� Build a graph connecting x(1), . . . , x(n) with weight W
� Compute first k eigenvectors V = [v1, . . . , vk] of L
� Define yi ∈ Rk as the ith row of V , cluser y1, . . . , yn into k clusters
C1, . . . ,Ck using k-means

Output: A1, . . . ,Ak where Ai = {j �yj = Ci}
� Unormalized spectral clustering is relaxed solution to the RatioCut

problem.
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Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points x(1), . . . , x(n) and cluster size k

� Build a graph connecting x(1), . . . , x(n) with weight W
� Compute first k eigenvectors V = [v1, . . . , vk] of generalized eigen

problem Lv = �Dv
� Define yi ∈ Rk as the ith row of V , cluser y1, . . . , yn into k clusters
C1, . . . ,Ck using k-means

Output: A1, . . . ,Ak where Ai = {j �yj = Ci}
� Normalized spectral clustering (Lrw ) is a relaxed solution to the

NCut problem.
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Toy Example

� 200 data points sampled from 4 Gaussian distributions
� KNN similarity graph (k = 10)
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Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of Lrw and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with � = 1 as similarity function.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 2 drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histograms
of a sample drawn from this distribution. As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi� xj |2/2�

2) with � = 1. As similarity graph we consider both the fully connected
graph and the k-nearest neighbor graph with k = 10. In Figure 1 we show the first eigenvalues and eigenvectors
of the unnormalized Laplacian L and the normalized Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. �i

(for the moment ignore the dashed line and the different shapes of the eigenvalues in the plots for the unnormalized
case; their meaning will be discussed in Section 8.4). In the eigenvector plots of an eigenvector v = (v1, . . . , v200)0

we plot xi vs. vi. The first two rows of Figure 1 show the results based on the k-nearest neighbor graph. We can see
that the first four eigenvalues are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the k-nearest neighbor graph, in which case the eigenvectors are given
as in Propositions 2 and 4. The next two rows show the results for the fully connected graph. As the Gaussian
similarity function is always positive, this graph only consists of one connected component. Thus, eigenvalue 0
has multiplicity 1, and the first eigenvector is the constant vector. The following eigenvectors carry the information
about the clusters. For example, in the unnormalized case (last row), if we threshold the second eigenvector at
0, then the part below 0 corresponds to clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly,

7

First 4 eigenvalues are 0 with eigenvectors 1Ai , i = 1, . . . ,4
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Toy Example

� Fully connected graph with Gaussian similarity graph (� = 1)
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Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of Lrw and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with � = 1 as similarity function.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 2 drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histograms
of a sample drawn from this distribution. As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi� xj |2/2�

2) with � = 1. As similarity graph we consider both the fully connected
graph and the k-nearest neighbor graph with k = 10. In Figure 1 we show the first eigenvalues and eigenvectors
of the unnormalized Laplacian L and the normalized Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. �i

(for the moment ignore the dashed line and the different shapes of the eigenvalues in the plots for the unnormalized
case; their meaning will be discussed in Section 8.4). In the eigenvector plots of an eigenvector v = (v1, . . . , v200)0

we plot xi vs. vi. The first two rows of Figure 1 show the results based on the k-nearest neighbor graph. We can see
that the first four eigenvalues are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the k-nearest neighbor graph, in which case the eigenvectors are given
as in Propositions 2 and 4. The next two rows show the results for the fully connected graph. As the Gaussian
similarity function is always positive, this graph only consists of one connected component. Thus, eigenvalue 0
has multiplicity 1, and the first eigenvector is the constant vector. The following eigenvectors carry the information
about the clusters. For example, in the unnormalized case (last row), if we threshold the second eigenvector at
0, then the part below 0 corresponds to clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly,

7

First eigenvector is 1 since the graph has only 1 connected component
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Spectral Embedding
Also known as Laplacian Eigenmaps [Belkin et. al., 2003]:

� Learn a k-dimensional embedding Y =
�������
−y1−⋮−ym−

�������
∈ Rn×k

min
YTDY=I
Y TD1=0

1
2�ij wij ��yi − yj ��2

1388 M. Belkin and P. Niyogi
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Figure 1: 2000 Random data points on the swiss roll.

Note that t = ∞ corresponds to the case when the weights are set to 1. Unlike
Isomap, our algorithm does not attempt to isometrically embed the swiss
roll into R2. However, it manages to unroll the swiss roll, thereby preserving
the locality, although not the distances, on the manifold. We observe that for
small values of N, we obtain virtually identical representations for different
t’s. However, when N becomes bigger, smaller values of t seemingly lead to
better representations.

It is worthwhile to point out that an isometric embedding preserving
global distances such as that attempted by Isomap is theoretically possible
only when the surface is flat, that is, the curvature tensor is zero, which is the
case with the swiss roll. However, a classical result due to gauss shows that
even for a two-dimensional sphere (or any part of a sphere), no distance-
preserving map into the plane can exist.

6.2 A Toy Vision Example. Consider binary images of vertical and hori-
zontal bars located at arbitrary points in the visual field. Each image contains
exactly one horizontal or vertical bar at a random location in the image plane.
In principle, we may consider each image to be represented as a function

f : [0, 1] × [0, 1] → {0, 1},

where f (x) = 0 means the point x ∈ [0, 1] × [0, 1] is white and f (x) = 1
means the point is black. Let v(x, y) be the image of a vertical bar. Then

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data
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Spectral Embedding
Example: 2D embedding results:
� N: number of neighbors in kNN graph
� t: hyperparameter in the similarity function Wi,j = exp( ��xi−xj ��2t )Laplacian Eigenmaps 1389

N = 5     t = 5.0 N = 10     t = 5.0 N = 15     t = 5.0

N = 5     t = 25.0 N = 10     t = 25.0 N = 15     t = 25.0

N = 5     t = ∞ N = 10    t = ∞ N = 15     t = ∞

Figure 2: Two-dimensional representations of the swiss roll data, for different
values of the number of nearest neighbors N and the heat kernel parameter t.
t = ∞ corresponds to the discrete weights.

all images of vertical bars may be obtained from v(x, y) by the following
transformation:

vt(x, y) = v(x − t1, y − t2).

The space of all images of vertical bars is a two-dimensional manifold, as is
the space of all horizontal bars. Each of these manifolds is embedded in the
space of functions (L2([0, 1] × [0, 1])). Notice that although these manifolds
do not intersect, they come quite close to each other. In practice, it is usually
impossible to tell whether the intersection of two classes is empty.

To discretize the problem, we consider a 40 × 40 grid for each image.
Thus, each image may be represented as a 1600-dimensional binary vector.
We choose 1000 images (500 containing vertical bars and 500 containing
horizontal bars) at random. The parameter N is chosen to be 14 and t = ∞.

In Figure 3, the left panel shows a horizontal and vertical bar to provide
a sense of the scale of the image. The middle panel is a two-dimensional
representation of the set of all images using the Laplacian eigenmaps. Notice
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Additional topics of graph Laplacian methods

Graph spectra can be used as
topological features for supervised
and unsupervised learning
� Laplacian eigenmaps for

dimension reduction and
visualization

� Unsupervised segmentation
� Graph-based semi-supervised

learning

Unsupervised segmentation using
NCut [Shi & Malik, 2000]

Lazy Snapping (semi-supervised
graph cut) [Li et. al. 2004]
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Summary

Representation learning
� Transform input features into “simpler” or “interpretable”

representations.
� Used in feature extraction, dimension reduction, clustering etc
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