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Today’s Lecture

Unsupervised Learning (Part I)
� Overview: the representation learning problem
� K-means clustering
� Spectral clustering

Project Introduction
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Unsupervised Learning

Similar to supervised learning, but without labels.
� Still want to learn the machine f

� Significantly harder in general

Unsupervised learning goal

Find representations of input feature x that can be used for reasoning,
decision making, predicting things, comminicating etc.
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The representation learning problem

( Y Bengio et. al. Representation Learning: A Review and New
Perspectives, 2014)

Given input features x , find “simpler" features z that preserve the same

information as x .

Example: Face recognition
100 × 100

→ x =
�����������

0.5
0⋮

0.3
1.0

�����������

�����������������
104 → z = �⋮�

What information is in this picture? identity, facial attributes, gender,
age, sentiment, etc

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

-

÷
-

-

×

- -



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory Spectral Clustering

Characteristics of a good representation

� low dimensional: compress information to a smaller size → reduce
data size

� sparse representation: most entries are zero for most data → better
interpretability

� independent representations: disentangle the source of variations

f

identity

pose

expression

f(x)
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Uses of representation learning

� Data compression

Example: Color image quantization. Each 24bit RGB color is reduced to
a palette of 16 colors.

Original Compressed

(0-255,0-255,0-255) 0-15
24bit x 300 x 400 4bit x 300 x 400 + 16 x24bit

6 times smaller
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Uses of representation learning

� Abnormality (outlier, novelty) detection
Example: local density-based outlier detection

2

fining the local neighborhood of the object. We study how this
parameter affects the LOF value, and we present practical
guidelines for choosing the MinPts values for finding local out-
liers.

• Last but not least, we present experimental results which show
both the capability and the performance of finding local outli-
ers. We conclude that finding local outliers using LOF is mean-
ingful and efficient.

The paper is organized as follows. In section 2, we discuss related
work on outlier detection and their drawbacks. In section 3 we dis-
cuss in detail the motivation of our notion of outliers, especially, the
advantage of a local instead of a global view on outliers. In section
4 we introduce LOF and define other auxiliary notions. In section 5
we analyze thoroughly the formal properties of LOF. Since LOF re-
quires the single parameter MinPts, in section 6 we analyze the im-
pact of the parameter, and discuss ways to choose MinPts values for
LOF computation. In section 7 we perform an extensive experi-
mental evaluation. 

2.  RELATED WORK
Most of the previous studies on outlier detection were conducted in
the field of statistics. These studies can be broadly classified into
two categories. The first category is distribution-based, where a
standard distribution (e.g. Normal, Poisson, etc.) is used to fit the
data best. Outliers are defined based on the probability distribution.
Over one hundred tests of this category, called discordancy tests,
have been developed for different scenarios (see [5]). A key draw-
back of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. mul-
tivariate normal outliers). But for many KDD applications, the un-
derlying distribution is unknown. Fitting the data with standard dis-
tributions is costly, and may not produce satisfactory results.
The second category of outlier studies in statistics is depth-based.
Each data object is represented as a point in a k-d space, and is as-
signed a depth. With respect to outlier detection, outliers are more
likely to be data objects with smaller depths. There are many defi-
nitions of depth that have been proposed (e.g. [20], [16]). In theory,
depth-based approaches could work for large values of k. However,
in practice, while there exist efficient algorithms for k = 2 or 3
([16], [18], [12]), depth-based approaches become inefficient for
large datasets for k ≥ 4. This is because depth-based approaches
rely on the computation of k-d convex hulls which has a lower
bound complexity of Ω(nk/2) for n objects. 
Recently, Knorr and Ng proposed the notion of distance-based out-
liers [13], [14]. Their notion generalizes many notions from the dis-
tribution-based approaches, and enjoys better computational com-
plexity than the depth-based approaches for larger values of k. Later
in section 3, we will discuss in detail how their notion is different
from the notion of local outliers proposed in this paper. In [17] the
notion of distance based outliers is extended by using the distance
to the k-nearest neighbor to rank the outliers. A very efficient algo-
rithms to compute the top n outliers in this ranking is given, but
their notion of an outlier is still distance-based.
Given the importance of the area, fraud detection has received more
attention than the general area of outlier detection. Depending on
the specifics of the application domains, elaborate fraud models
and fraud detection algorithms have been developed (e.g. [8], [6]).

In contrast to fraud detection, the kinds of outlier detection work
discussed so far are more exploratory in nature. Outlier detection
may indeed lead to the construction of fraud models.
Finally, most clustering algorithms, especially those developed in
the context of KDD (e.g. CLARANS [15], DBSCAN [7], BIRCH
[23], STING [22], WaveCluster [19], DenClue [11], CLIQUE [3]),
are to some extent capable of handling exceptions. However, since
the main objective of a clustering algorithm is to find clusters, they
are developed to optimize clustering, and not to optimize outlier de-
tection. The exceptions (called “noise” in the context of clustering)
are typically just tolerated or ignored when producing the clustering
result. Even if the outliers are not ignored, the notions of outliers are
essentially binary, and there are no quantification as to how outly-
ing an object is. Our notion of local outliers share a few fundamen-
tal concepts with density-based clustering approaches. However,
our outlier detection method does not require any explicit or implic-
it notion of clusters.

3.  PROBLEMS OF EXISTING 
(NON-LOCAL) APPROACHES

As we have seen in section 2, most of the existing work in outlier
detection lies in the field of statistics. Intuitively, outliers can be de-
fined as given by Hawkins [10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism.

This notion is formalized by Knorr and Ng [13] in the following
definition of outliers. Throughout this paper, we use o, p, q to de-
note objects in a dataset. We use the notation d(p, q) to denote the
distance between objects p and q. For a set of objects, we use C
(sometimes with the intuition that C forms a cluster). To simplify
our notation, we use d(p, C) to denote the minimum distance be-
tween p and object q in C, i.e. d(p,C) = min{ d(p,q)  | q ∈ C }.

Definition 2: (DB(pct, dmin)-Outlier)
An object p in a dataset D is a DB(pct, dmin)-outlier if at least
percentage pct of the objects in D lies greater than distance
dmin from p, i.e., the cardinality of the set {q ∈ D | d(p, q) ≤
dmin} is less than or equal to (100 − pct)% of the size of D.

The above definition captures only certain kinds of outliers. Be-
cause the definition takes a global view of the dataset, these outliers
can be viewed as “global” outliers. However, for many interesting
real-world datasets which exhibit a more complex structure, there
is another kind of outliers. These can be objects that are outlying

C2

C1

o2
o1

Figure 1: 2-d dataset DS1
o1 and o2 are the detected outliers
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Uses of representation learning
� Knowledge representation based on human perception

Example: word embedding

http://ruder.io/word-embeddings-1/

Each word is represented by a 2D vector. Words in the same semantic category
are grouped together
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K-Means Clustering
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Clustering analysis

Given input features {x(1), . . . , x(m)}, group the data into a few cohesive
“clusters”.

� Objects in the same cluster are more similar to each other than to
those in other clusters
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The k-means clustering problem

Given input data {x(1), . . . , x(m)}, x(i) ∈ Rd , k-means clustering

partition the input into k ≤ m sets C1, . . . ,Ck to minimize the
within-cluster sum of squares (WCSS).

argmin
C

k�
j=1 �x∈Cj

�x − µj�2

Equivalent definitions:

� minimizing the within-cluster variance:
k�
j=1
�Cj �Var(Cj)

� minimizing the pairwise squared deviation between points in the
same cluster: (homework)

k�
i=1

1
2�Ci � �x,x ′∈Ci

�x − x ′�2
� maximizing between-cluster sum of squares (BCSS) (homework)
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K-Means Clustering Algorithm

� Optimal k-means clustering is NP-hard in Euclidean space.
� Often solved via a heuristic, iterative algorithm

Lloyd’s Algorithm (1957,1982)

Let c(i) ∈ {1, . . . , k} be the cluster label for x(i)
Initialize cluster centroids µ1, . . . µk ∈ Rn randomly
Repeat until convergence{

For every i ,
c(i) ∶= argminj �x(i) − µj�2

← assign x(i) to the cluster
with the closest centroid

For each j

µj ∶= ∑m
i=1 1{c(i)=j}x(i)
∑m

i=1 1{c(i)=j}

← update centroid

}

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory
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K-Means clustering discussion

� K-Means learns a k-dimensional sparse representation.
i.e. x(i) is transformed into a “one-hot” vector z(i) ∈ Rk :

z(i)j =
�������
1 if c(i) = j
0 otherwise

� Only converges to a local minimum: initialization matters!
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Practical considerations

� Replicate clustering trails and choose the result with the smallest
WCSS

� How to initialize centroids µj ’s ?
� Uniformly random sampling /
� Distance-based sampling e.g. kmeans++ [Arthur & Vassilvitskii

SODA 2007] ,
� How to choose k?

� Cross validation (later lecture)
� G-Means [Hamerly & Elkan, NIPS 2004]

� How to improve k-means efficiency?
� Elkan’s algorithm [Elkan, ICML 2003]
� Mini-batch k-means [D. Sculley, WWW 2010]
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Spectral Graph Theory

Graph Terminologies and Similarity Graphs
Spectral Clustering
Spectral Clustering
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K-Means vs Spectral Clustering

K-Means Spectral Clustering

[Shi & Malik 00; Ng, Jordan, Weiss NIPS 01]
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Graph Terminologies

W =
���������

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

���������

� An undirect graph G = (V ,E) consists of
nodes V = {v1, . . . , vn} and edges
E = {e1, . . . , em}

� Edge eij connects vi and vj if they are
adjacent or neighbors.

� Adjacency matrix

Wij =
�������
1 if there is an edge eij
0 otherwise

� Degree di of node vi is the number of
neighbors of vi .

di = n�
j=1

wij
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Graph Terminologies

W =
���������

0 0.2 1.2 0
0.2 0 0.5 0.9
1.2 0.5 0 0
0 0.9 0 0

���������

� Weigthed undirected graph

G = (V ,E ,W )
� Edge weight wij ∈ R≥0 between vi and vj

edge (vi , vj) exists iff wij > 0
� Weighted adjacency matrix W = [wij]
� Vertex degree di = ∑n

j=1 wij

� Degree matrix D = diag(d1, . . . ,dn)
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Graph Terminologies

A

� Given vertex subset A ⊂ V , let Ā = V �A be
the complement of A in the graph

� Subset indicator function 1A ∈ Rn:

1A{i} =
�������
1 if vi ∈ A
0 if vi ∉ A

� Sets A1, . . . ,Ak form a partition of the
graph if Ai ∩Aj = � for all i ≠ j and
A1 ∪ . . . ∪Ak = V
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Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D
mesh etc

Use graph to represent similarity in data
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Clustering from a graph point of view

� Given data points x(1), . . . , x(n) and similarity measure sij ≥ 0 for
all x(i), x(j)

� A typical similarity graph G = (V ,E) is
� vi ↔ x(i)
� vi and vj are connected if sij ≥ � for some threshold �

� Clustering: Divide data into groups such that points in the same
group are similar and points in different groups are dissimilar

� Spectral Clustering (informal): Find a partition of G such that
edges between the same group have high weight and edges between
different groups have very low weight.
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Building similarity graphs from data

✏-neighborhood

Add edges to all points inside a ball of radius f
centered at v

Drawbacks: sensitive to e, edge weights are on
similar scale

k-Nearest Neighbors

Add edges between v ’s k-nearest neighbors.

Drawbacks: may result in asymmetric and irregular
graph

Fully connected graph

Often, Gaussian similarity is used

Wi,j = exp�− ��x(i) − x(j)��22
2�2 � for i , j = 1, . . . ,m

Drawbacks: W is not sparse

Neighborhood Methods

• k-Nearest Neighbor Graph (k-NNG)
• add edges between an instance and its       

k-nearest neighbors

• e-Neighborhood
• add edges to all instances inside a ball of 

radius e

e

k = 3

12

Neighborhood Methods

• k-Nearest Neighbor Graph (k-NNG)
• add edges between an instance and its       

k-nearest neighbors
k = 3

12
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Similarity graphs examples

that in such a case, the data point should be considered an outlier anyway, and then it does not really matter in
which cluster the point will end up.

To summarize, the conclusion is that both unnormalized spectral clustering and normalized spectral clustering
with Lrw are well justified by the perturbation theory approach. Normalized spectral clustering with Lsym can also
be justified by perturbation theory, but it should be treated with more care if the graph contains vertices with very
low degrees.

8 Practical details

In this section we will briefly discuss some of the issues which come up when actually implementing spectral
clustering. There are several choices to be made and parameters to be set. However, the short discussion in this
section is mainly meant to raise awareness about the general problems which can occur. We will look at toy
examples only. For thorough studies on the behavior of spectral clustering for various real world tasks we refer to
the literature.

8.1 Constructing the similarity graph

Choosing the similarity graph and its parameters for spectral clustering is not a trivial task. This already starts with
the choice of the similarity function sij itself. In general one should try to ensure that the local neighborhoods
induced by this similarity function are “meaningful”, but in particular in a clustering setting this is very difficult
to assess. Ultimately, the choice of the similarity function depends on the domain the data comes from, and no
general rules can be given. The second choice concerns the construction of the similarity graph, that is which type
of graph we choose and how we set the parameter which governs its connectedness (e.g., the parameter " of the
"-neighborhood graph or the parameter k of the k-nearest neighbor graph).
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Figure 3: Different similarity graphs, see text for details.

To illustrate the behavior of the different graphs we use the toy example presented in Figure 3. As underlying
distribution we choose a distribution on 2 with three clusters: two “moons” and a Gaussian. The density of the
bottom moon is chosen to be larger than the one of the top moon. The upper left panel in Figure 3 shows a sample
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Spectral Clustering as Graph Partitioning

Find a partition of the graph such that
� Edges between groups have a low weight
� Edges within each group have a high weight
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Graph Cut Formulation
Case k = 2:
� Given partition A, Ā, define a cut as the total weight of edges

weights between groups:

cut(A, Ā) ∶= �
i∈A,j∈Ā

wij

� Example: cut({p1,p2,p3},{p4,p5,p6}) = 1,
cut({p1,p2,p3,p4},{p5,p6}) = 2

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

- -
-

-

.

-

=
-

I



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory Spectral Clustering

Graph Cut Formulations
Case k > 2:
� Given partition A1, . . . ,Ak , define a cut as the total weight of edges

weights between groups:

cut(A1, . . . ,Ak) ∶= 1
2

k�
i=1

cut(Ai , Āi)

Minimizing cut directly tends to unbalanced partitions. Alternative
solutions:

RatioCut and NCut

Find a k-way partition of graph G ( Ai ∪ . . . ∪Ak = V ,Ai ∩Aj = � ) that
minimizes:

RatioCut(A1, . . . ,Ak) = 1
2

k�
i=1

cut(Ai , Āi)�Ai �
NCut(A1, . . . ,Ak) = 1

2

k�
i=1

cut(Ai , Āi)
vol(Ai) , vol(Ai) = �

i∈A,j∈V
wij

Both RatioCut and NormalizeCut can be approximated by spectral
method.
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Minimizing cut directly tends to unbalanced partitions. Alternative
solutions:

RatioCut and NCut

Find a k-way partition of graph G ( Ai ∪ . . . ∪Ak = V ,Ai ∩Aj = � ) that
minimizes:

RatioCut(A1, . . . ,Ak) = 1
2

k�
i=1

cut(Ai , Āi)�Ai �
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vol(Ai) , vol(Ai) = �

i∈A,j∈V
wij

Both RatioCut and NormalizeCut can be approximated by spectral
method.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

= %*t .-1.



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory Spectral Clustering

Graph Cut Formulations
Case k > 2:
� Given partition A1, . . . ,Ak , define a cut as the total weight of edges

weights between groups:

cut(A1, . . . ,Ak) ∶= 1
2

k�
i=1

cut(Ai , Āi)
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