Learning from Data Lecture 8: Unsupervised Learning I

Yang Li yangli@sz.tsinghua.edu.cn

TRSI

November 19, 2021

Today's Lecture

Unsupervised Learning (Part I)

- ▸ Overview: the representation learning problem
- ▸ K-means clustering Learning
v: the repr
s clustering
- ▸ Spectral clustering

Project Introduction

Unsupervised Learning Overview

Unsupervised Learning

Similar to supervised learning, but without labels.

- ▸ Still want to learn the machine *f*
- ▸ Significantly harder in general

Unsupervised Learning

$$
x \longrightarrow f(\cdot) \longrightarrow x
$$
\ntrvised learning, but without labels.

\nto learn the machine f

\nty harder in general

\n**learning goal**

\n**rations of input feature x that can be used**

\n**g, predicting things, communicating etc.**

Similar to supervised learning, but without labels.

- ▸ Still want to learn the machine *f*
- ▸ Significantly harder in general

Unsupervised learning goal

Find representations of input feature *x* that can be used for reasoning, decision making, predicting things, comminicating etc. → Still war
→ Significa
nsupervise
nd **represe**
<u>ccision mak</u> reasoning,
-

The representation learning problem

(Y Bengio et. al. *Representation Learning: A Review and New Perspectives*, 2014)

Given input features *x*, find "simpler" features *z* that preserve the same information as *x*. -

Example: Face recognition 100×100

$$
\begin{array}{ll}\n\text{Bpectral Graph Theory} & \text{Spectral Carlo} \\
\hline\n\text{F problem} & \text{Fpectral Carlo} \\
\hline\n\text{F problem} & \text{Fright} \\
\text{Fright} & \text{Fright} \\
\text{F_{3pertral Club} & \text{Fright} \\
\text{F_{4pertral Club} & \text{Fright} \\
\text{F_{5pertral Club} & \text{Fright} \\
\text{F_{6pertral Club} & \text{Fright} \\
\text{F_{7pertral Club} & \text{Fright} \\
\text{F_{8pertral Club} & \text{Fright} \\
\text{F_{8pertral Club} & \text{Fright} \\
\text{Fright} & \text{Fright} \\
\
$$

What information is in this picture? *identity, facial attributes, gender, age, sentiment, etc* - : inform
sentime ×

Characteristics of a good representation

- ▸ low dimensional: compress information to a smaller size → *reduce data size* -
- ▸ sparse representation: most entries are zero for most data → *better interpretability* The Contribution of a good representation

terristics of a good representation

ow dimensional: compress information to

fata size

sparse representation: most entries are zero

interpretability

independent representation
- ▸ independent representations: disentangle the source of variations

Uses of representation learning

▸ Data compression

Example: Color image quantization. Each 24bit RGB color is reduced to a palette of 16 colors.

Uses of representation learning rely on the computation of *k*-d convex hulls which has a lower

▸ Abnormality (outlier, novelty) detection can be viewed as "global" outliers. However, for many interesting interesting interesting interesting interest ϵ -abhormanty (outher, novelty) detection

Example: local density-based outlier detection

*o*¹ and *o*² are the detected outliers

Yang Li yangli@sz.tsinghua.edu.cn *Learning From Data*

Uses of representation learning

⊧ Knowledge representation based on human perception
ample: word embedding Example: word embedding

Each word is represented by a 2D vector. Words in the same semantic category are grouped together

K-Means Clustering -

Clustering analysis

Given input features $\{x^{(1)},...,x^{(m)}\}$, group the data into a few *cohesive* "clusters". $x^{(1)}, \ldots, x^{(m)}\}$, group the data into a few cohesive

▸ Objects in the same cluster are more similar to each other than to those in other clusters

The k-means clustering problem

Given input data $\{x^{(1)},...,x^{(m)}\}, x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \le m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$
\underset{C}{\text{argmin}} \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|^2 \quad \text{•}
$$

Equivalent definitions:

- ▸ minimizing the within-cluster variance: *k* $\sum_{j=1}$ | C_j | $Var(C_j)$ _∂
- ▸ minimizing the pairwise squared deviation between points in the same cluster: *(homework)* cluster variance: $\sum_{j=1}^{k} |C_j| \text{Var}(C_j)$

se squared deviation between points in

sexternal deviation between points in

ork)
 $\sum_{i=1}^{k} \frac{1}{2|C_i|} \sum_{x, x' \in C_i} ||x - x'||^2$

$$
\sum_{i=1}^k \frac{1}{2|C_i|} \sum_{x,x' \in C_i} \|x - x'\|^2
$$

The k-means clustering problem

Given input data $\{x^{(1)},...,x^{(m)}\}, x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \le m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$
\underset{C}{\text{argmin}} \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|^2
$$

Equivalent definitions:

▸ minimizing the within-cluster variance: *k* ∑ ∣*C^j* ∣Var(*C^j*)

j=1 ▸ minimizing the pairwise squared deviation between points in the Ĺ٦ same cluster: *(homework)*

$$
\sum_{i=1}^{k} \frac{1}{2|C_i|} \sum_{x, x' \in C_i} \|x - x'\|^2
$$
\neen-cluster sum of squares (BCSS)

- n
- ▸ maximizing between-cluster sum of squares (BCSS) *(homework)*

K-Means Clustering Algorithm

- ▸ Optimal k-means clustering is NP-hard in Euclidean space. <u>**Learning Overview Control CK-Means Clustering** Clustering and Spectral Grand Control Contro</u>
-

Repeat until convergence{ For every *i* , $c^{(i)}$ = argmin_{*j*} $\|x^{(i)} - \mu_j\|^2$ For each *j* $\mu_j := \frac{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}}$ $\mu_j := \frac{\sum_{i=1}^n \mathbb{I}\{c^{(i)}=j\}}{\sum_{i=1}^m \mathbb{I}\{c^{(i)}=j\}}$ } $\underline{c}^{(i)} \in \{1, ..., k\}$ be the cluster
is indize cluster centres
is until convergence
 $\overline{c}^{(i)}$ = argmin_j $\|\underline{x}^{(i)} - \mu_j\|^2$
or each j " assignment | update cluster centroid .

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

K-Means Clustering Algorithm

- ▸ Optimal k-means clustering is NP-hard in Euclidean space.
- ▸ Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \ldots, k\}$ be the cluster label for $x^{(i)}$

```
Initialize cluster centroids \mu_1, \ldots, \mu_k \in \mathbb{R}^n randomly
Repeat until convergence{
    For every i ,
       c^{(i)} := \argmin_i ||x^{(i)} - \mu_i||^2 ← assign x^{(i)} to the cluster
                                             with the closest centroid
    For each j
          \mu_j := \frac{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}}\sum_{i=1}^{m} 1\{c^{(i)}=j\}}
```
Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

K-Means Clustering Algorithm

- ▸ Optimal k-means clustering is NP-hard in Euclidean space.
- ▸ Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \ldots, k\}$ be the cluster label for $x^{(i)}$

```
Initialize cluster centroids \mu_1, \ldots, \mu_k \in \mathbb{R}^n randomly
Repeat until convergence{
    For every i ,
       c^{(i)} := \argmin_i ||x^{(i)} - \mu_i||^2 ← assign x^{(i)} to the cluster
                                            with the closest centroid
    For each j
          \mu_j := \frac{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}}\sum_{i=1}^{n-1} \frac{1}{i} \{c^{(i)}=j\} ← update centroid
}
```
Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

K-Means clustering discussion

▸ K-Means learns a *k*-dimensional *sparse* representation. i.e. $x^{(i)}$ is transformed into a "one-hot" vector $z^{(i)} \in \mathbb{R}^k$.

$$
z_j^{(i)} = \begin{cases} 1 & \text{if } c^{(i)} = j \\ 0 & \text{otherwise} \end{cases}
$$

▸ Only converges to a local minimum: initialization matters!

Practical considerations

- ▸ Replicate clustering trails and choose the result with the smallest **WCSS** licate clustering trails and choose the
SS
v to initialize centroids μ_j 's ?
Uniformly random sampling ©
Distance-based sampling e.g. kmeans+
SODA 2007] ©
v to choose k?
Cross validation (later lecture)
G-Means [Hamerly
- \triangleright How to initialize centroids μ_i 's ?
	- \cdot Uniformly random sampling \circledcirc
	- ▸ Distance-based sampling e.g. kmeans++ [Arthur & Vassilvitskii SODA 2007]
- ▸ How to choose *k*?
	- ▸ Cross validation (later lecture)
	- ▸ G-Means [Hamerly & Elkan, NIPS 2004]
- ▸ How to improve k-means efficiency?
	- ▸ Elkan's algorithm [Elkan, ICML 2003]
	- ▸ Mini-batch k-means [D. Sculley, WWW 2010]

Spectral Graph Theory Graph Terminologies and Similarity Graphs **Spectral Clustering Spectral Clustering** $\overline{\mathcal{C}}$

K-Means vs Spectral Clustering

Graph Terminologies

- An **undirect graph** $G = (\underline{V}, \underline{E})$ consists of 3. $\text{nodes } V = \{v_1, \ldots, v_n\} \text{ and edges}$ $E = \{e_1, \ldots, e_m\}$
 $E = \{e_1, \ldots, e_m\}$
	- ▶ Edge e_{ij} connects v_i and v_j if they are adjacent or neighbors. adjacent or neighbors.
	- ▸ Adjacency matrix $W_{ij} = \begin{cases} 1 & \text{if } i \neq j \end{cases}$ 1 if there is an edge *eij* $W_{ij} = \begin{cases} 1 & \text{if there is} \ 0 & \text{otherwise} \end{cases}$
	- \triangleright **Degree** d_i of node v_i is the number of neighbors of *vi*. .

$$
d_i = \sum_{j=1}^n w_{ij}
$$

Graph Terminologies

$$
W = \begin{bmatrix} 0 & 0.2 & 1.2 & 0 \\ 0.2 & 0 & 0.5 & 0.9 \\ 1.2 & 0.5 & 0 & 0 \\ 0 & 0.9 & 0 & 0 \end{bmatrix} \mathbf{1}_{n} =
$$

$$
\underbrace{W \mathbf{1}_{n}}_{w} \qquad \underbrace{1_{n} \geq \begin{bmatrix} i \\ i \\ 1 \end{bmatrix}}_{w} \begin{bmatrix} n \\ n \end{bmatrix}.
$$

▸ Weigtlied undirected graph *G* = (*V,E,W*)

- ▸ Edge weight *wij* ∈ R≥⁰ between *vⁱ* and *v^j edge* (v_i, v_j) *exists iff* $w_{ii} > 0$
- \triangleright Weighted adjacency matrix $W = [w_{ij}]$

$$
\left\{\n\begin{array}{l}\n\text{Vertex degree } d_i = \sum_{j=1}^n w_{ij} \\
\text{Degree matrix } D = diag(d_1, \ldots, d_n) \\
\downarrow \downarrow \downarrow \downarrow \\
\downarrow \downarrow \downarrow \downarrow \\
\downarrow \downarrow \downarrow \downarrow \\
\downarrow \downarrow \uparrow \downarrow \\
\downarrow \downarrow \downarrow \downarrow \\
\downarrow \downarrow \downarrow \downarrow \\
\downarrow \downarrow \downarrow \downarrow\n\end{array}\n\right\}
$$

Graph Terminologies

Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D mesh etc

Use graph to represent similarity in data

- A typical **similarity graph** $G = (\underline{V}, E)$ is
	- \mapsto $v_i \leftrightarrow x^{(i)}$ **Example 5 v**_{*i*} \leftrightarrow \times ^{(*i*})
 b^{*v*}_{*i*} and *v_{<i>j*} are connected if $s_{ij} \ge \delta$ for some threshold δ
 ustering: Divide data into groups such that points i
- ► Clustering: Divide data into groups such that points in the same

group are similar and points in different groups are dissimilar group are similar and points in different groups are dissimilar
- ▸ Spectral Clustering (informal): *Find a partition of G such that edges between the same group have high weight and edges between di*ff*erent groups have very low weight.* ↳ A typical **similarity graph** $G = (\underline{V}, E)$ is
 $\begin{array}{l}\n\star \vee_j \star \vee_j \star \vee_k^{(i)}\n\star \vee_j \star \star \vee_l^{(i)}\n\star \vee_j \star \star \vee_l^{(i)}\n\star \vee_l^{(i)} \star \star \vee_l^{(i)}\n\star \vee_l^{(i)} \star \star \vee_l^{(i)}\n\star \vee_l^{(i)} \star \star \vee_l^{(i)}\n\star \vee_l^{(i)} \star \vee_l^{(i)}\n\star \vee_l^{(i$

ϵ -neighborhood • add edges to all instances inside a ball of

Add edges to all points in the **a ball of radius of** centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale radius *e* Neighborhood Methods \mathcal{L}^{max} and \mathcal{L}^{max} (keeping \mathcal{L}^{max} Add edges

sentered a

Drawback

similar sca

sentest

Add edges **d**
| points
sitive to]
?
?

k-Nearest Neighbors D^r and its contract an

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors

Fully connected graph

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i, j = 1, ..., m
$$

ϵ -neighborhood • add edges to all instances inside a ball of

Add edges to all points in the **a ball of radius of** centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale radius *e* Neighborhood Methods \mathcal{L}^{max} and \mathcal{L}^{max} (keeping \mathcal{L}^{max} Fried Learning Overview
Fried Learning Overview
Fried Similari
- Fried Similar Scale
Retainance at V
Drawbacks: Sensitian Scale
Retainance Similar Scale
Retainance Drawbacks: may 1
Prawbacks: may 1

k-Nearest Neighbors

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i, j = 1, ..., m
$$

ϵ -neighborhood • add edges to all instances inside a ball of

Add edges to all points in the **a ball of radius of** centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale radius *e* Neighborhood Methods \mathcal{L}^{max} and \mathcal{L}^{max} (keeping \mathcal{L}^{max}

k-Nearest Neighbors prs and its contract and its

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i, j = 1, ..., m
$$

Drawbacks: *W* is not sparse -

 $k = 3$

${\sf Similarity\ graphs}$ examples

Spectral Clustering as Graph Partitioning

Find a partition of the graph such that

- ▸ Edges between groups have a low weight
- ▸ Edges within each group have a high weight

Graph Cut Formulation

Case $k = 2$:

► Given partition A , \overline{A} , define a cut as the total weight of edges weights between groups:

Graph Cut Formulations

Case *k* > 2:

▶ Given partition A_1, \ldots, A_k , define a cut as the total weight of edges weights between groups:

$$
cut(A_1,\ldots,A_k) \coloneqq \frac{1}{2}\sum_{i=1}^k \underbrace{cut(A_i)\overline{A_i}})
$$

Graph Cut Formulations

Case *k* > 2:

 \triangleright Given partition A_1, \ldots, A_k , define a cut as the total weight of edges weights between groups:

A_1, \ldots, A_k , define a cut as the total weight of edges
A_1, \ldots, A_k , define a cut as the total weight of edges
$\mathcal{L}_{\text{un}(\mathcal{A}_1, \ldots, \mathcal{A}_k)} := \frac{1}{2} \sum_{i=1}^k \text{cut}(A_i, \bar{A}_i)$

\nLet A_1, \ldots, A_k are the probability of edges and the probability of the graph \mathbf{A}_i and \mathbf{A}_i .

Minimizing cut directly tends to unbalanced partitions. Alternative solutions:

 $A₂$

a

'

 $\bigotimes_{A} \bigotimes$

Graph Cut Formulations

Case *k* > 2:

 \triangleright Given partition A_1, \ldots, A_k , define a cut as the total weight of edges weights between groups:

$$
cut(A_1,\ldots,A_k) \coloneqq \frac{1}{2}\sum_{i=1}^k cut(A_i,\bar{A}_i)
$$

Minimizing cut directly tends to unbalanced partitions. Alternative solutions:

RatioCut and NCut

RatioCut and NCut
 $\begin{array}{cc} \text{RatioCut} & \text{(A)} \text{A1} & \text{(B)} \text{A2} \\ \text{(C)} & \text{(D)} \\ \text{(E)} & \text{(E)} \\$

RatioCut and NCut

Find a k-way partition of graph G ($A_i \cup ... \cup A_k = V, A_i \cap A_i = \emptyset$) that minimizes:

minimizes:
\nRatioCut(A₁,..., A_k) =
$$
\frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_i, \bar{A}_i)}{(A_i)}
$$

\n
$$
Nortl:2eJ.
$$
\n
$$
Ncut(A_1,..., A_k) = \frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_i, \bar{A}_i)}{(vol(A_i))}, vol(A_i) = \sum_{i \in A, j \in V} w_{ij}
$$
\n
$$
N lwt(A_{1}, A_{1}) = \frac{1}{2} \left(\frac{1}{vol(A_i)} + \frac{1}{vol(A_i)} \right)
$$
\n
$$
V = \frac{1}{2} \left(\frac{1}{vol(A_i)} + \frac{1}{vol(A_i)} \right)
$$
\n
$$
V = \frac{1}{2} \left(\frac{1}{vol(A_i)} + \frac{1}{vol(A_i)} \right)
$$

Graph Cut Formulations

 $\text{Case } k > 2$

 \triangleright Given partition A_1, \ldots, A_k , define a cut as the total weight of edges weights between groups:

$$
cut(A_1,\ldots,A_k):=\frac{1}{2}\sum_{i=1}^k cut(A_i,\bar{A}_i)
$$

Minimizing cut directly tends to unbalanced partitions. Alternative solutions:

RatioCut and NCut

Find a k-way partition of graph G ($A_i \cup ... \cup A_k = V$, $A_i \cap A_i = \emptyset$) that minimizes:

$$
RatioCut(A_1, ..., A_k) = \frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_i, \bar{A}_i)}{|A_i|}
$$

ing cut directly tends to unbalanced partitions. Alternativ-
\ns:
\n
$$
u\mathbf{t} \text{ and } \mathbf{NCut}
$$
\n
$$
u\mathbf{t} \text{ and } \mathbf{NCut}
$$
\n
$$
u\mathbf{r} \text{ and } \mathbf{NCut}
$$
\n
$$
u\mathbf{r} \text{ and } \mathbf{NCut}
$$
\n
$$
u\mathbf{r} \text{ and } \mathbf{Cut}
$$
\n
$$
u\mathbf{r} \text{ and } \mathbf{Cut}
$$
\n
$$
u\mathbf{r} \text{ and } \mathbf{Cut} \text{ and } \mathbf{Cut}
$$

Both RatioCut and NormalizeCut can be approximated *by spectral method.* oth
<u>Ietho</u>
_{rangli@s}

Yang Li yangli@sz.tsinghua.edu.cn *Learning From Data*