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Today's Lecture

Unsupervised Learning (Part I)

» Overview: the representation learning problem

» K-means clustering
» Spectral clustering

Project Introduction
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Similar to supervised learning, but without labels.
» Still want to learn the machine f
» Significantly harder in general
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Unsupervised Learning

—

Similar to supervised learning, but without labels.

» Still want to learn the machine f

» Significantly harder in general

Unsupervised learning goal

Find representations of input feature x that can be used for reasoning,
decision making, predicting things, comminicating etc.
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[Unsupervised Learning Overview] ISR Lo RSN
The representation learning problem

(Y Bengio et. al. Representation Learning: A Review and New
Perspectives, 2014)

Given input features x, find “simpler" features z that preserve the same
information as x.

Example: Face recognition
100 x 100

I
—
[

s x=|: ;10" >—5 2z

E

What information is in this picture? identity, facial attributes, gender,
age, sentiment, etc
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Characteristics of a good representation

» low dimensional: compress information to a smaller size — reduce
ata size

» sparse representation: most entries are zero for most data — better
interpretability
ity

» independent representations: disentangle the source of variations

J)

identity

pose

expression

|
~
!
| — —
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Uses of representation learning

» Data compression

Example: Color image quantization. Each 24bit RGB color is reduced to
a palette of 16 colors.

Original o Compressed

(0-255,0-255,0-255)

24bit x 300 x 400 (@biDx 300 x 400 + 16 >pabil

— | — 6 times sma//er
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[ Unsupervised Learning Overviewl

Uses of representation learning

» Abnormality (outlier, novelty) detection

Example: local density-based outlier detection

Cpo- -

* C_%l

01 and oy are the detected outliers

Lo
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| Unsupervised Learning Overviewl

Uses of representation learning

NSNS

» Knowledge representation based on human perception
Example: word embedding word2vec

T ord embeddiag
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|http ://ruder.io/word-embeddings- 1/|

Each word is represented by a 2D vector. Words in the same semantic category
are grouped together
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K-Means Clustering
Clustering analysis
Given input features {x) ... x(™M} group the data into a few cohesive
“clusters”. - -
o o  oEE
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o ]
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» Objects in the same cluster are more similar to each other than to

those in other clusters
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L K-Means Clustering

The k-means clustering problem

Given input data {x™), ..., x(M}, x() e RY k-means clustering
partition the input into k < m sets Cy,..., Cx to minimize the
within-cluster sum of squares (WCSS).  — P

. (uj‘ = x’é()'

argmmZ > Ix- MJH
C/" j 1 xeG; N

S— o

Lo
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[K-Means Clustering]| Lo RSN
The k-means clustering problem

Given input data {x(M, ... x(M} x() ¢ R k-means clustering
partition the input into k < m sets Cy,..., Cx to minimize the

within-cluster sum of squares (WCSS). el
VorC )= 1 Z 1M
J \6\ %ef)‘
argmmz > Ix = wl?
J=1xeG;
Equivalent definitions: \] ‘
K
» minimizing the within-cluster variance: Z |Cj|Var(Cj)
Jj=1 ——
> 1 M a

J=
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The k-means clustering problem

Given input data {x(M, ... x(M} x() ¢ R k-means clustering
partition the input into k < m sets Cy,..., Cx to minimize the
within-cluster sum of squares (WCSS).

argmmZ > Ix- MJH

J=1xeG;

Equivalent definitions:
K
» minimizing the within-cluster variance: Z |C|Var(C)
j=1
» minimizing the pairwise squared deviation between points_in the
same cluster: (homework)

LS e
i=1 |C:|
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The k-means clustering problem

Given input data {x(M, ... x(M} x() ¢ R k-means clustering
partition the input into k < m sets Cy,..., Cx to minimize the
within-cluster sum of squares (WCSS).

argmmZ > Ix =12

J=1xeG;

—

Equivalent definitions:
K
> minimizing the within-cluster variance: »"|C;|Var(C;)
j=1
» minimizing the pairwise squared deviation between p0|nt(si|n the
same cluster: (homework)

1

k
X—X,2
2o 2 k=l

x,x'eC;

» maximizing between-cluster sum of squares (BCSS) (homework)
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IK-Means Clusteringl

K-Means Clustering Algorithm

» Optimal k-means clustering is NP-hard in Euclidean space.

» Often solved via a heuristic, iterative algorithm
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K-Means Clustering Algorithm

» Optimal k-means clustering is NP-hard in Euclidean space.

» Often solved via a heuristic, iterative algorithm

Ci”:‘ j:l/--’)(_
Lloyd’s Algorithm (1957,1982)
Let () € {1,...,k} be the cluster label for x(/)
—_ —
Initialize cluster centroids pi,...ux € R" randomly

Repeat until convergence{ detn
For every i, e

= argmin; I -mil? MSISV\NA-(-

For each j

il
1y KcD=j3x u\:otaﬂ cluota r @ ntr

B L~ O Y=o |
> |

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory
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K-Means Clustering

K-Means Clustering Algorithm

» Optimal k-means clustering is NP-hard in Euclidean space.

» Often solved via a heuristic, iterative algorithm

Lloyd’s Algorithm (1957,1982)
Let () € {1,...,k} be the cluster label for x(")

Lo

Initialize cluster centroids pi,...ux € R" randomly
Repeat until convergence{
For every i,
c( = argmin; x4 = > < assign x) to the cluster
with the closest centroid
' For each j
xR 1{c(D=j}x(®

:} SA S TCOR)

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory
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K-Means Clustering

K-Means Clustering Algorithm

» Optimal k-means clustering is NP-hard in Euclidean space.

» Often solved via a heuristic, iterative algorithm

Lloyd’s Algorithm (1957,1982)
Let () € {1,...,k} be the cluster label for x(")

Lo

Initialize cluster centroids pi,...ux € R" randomly
Repeat until convergence{
For every i,
c( = argmin; x4 = > < assign x) to the cluster
with the closest centroid
' For each j
O D= .

| W= 21’21 l{c(i)zj} < update centroid

| ¥

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory
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IK-Means Clusteringl

K-Means clustering discussion

» K-Means learns a k-dimensional sparse representation.
i.e. x() is transformed into a “one-hot” vector z() e R:

(i _ )1

% o

if ¢ =
otherwise

» Only converges to a local minimum: initialization matters!

A .

TRUE CLUSTERING °
o (X

N

RANDOM SEED1 @

N

RANDOMSEED2 ®
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Practical considerations

» Replicate clustering trails and choose the result with the smallest
WCSS

> How to initialize centroids y;'s ?

> Uniformly random sampling ®
» Distance-based sampling e.g. kmeans++ [Arthur & Vassilvitskii
SODA 2007] © -

» How to choose k7

» Cross validation (later lecture)
» G-Means [Hamerly & Elkan, NIPS 2004]
» How to improve k-means efficiency?

» Elkan's algorithm [Elkan, ICML 2003]
» Mini-batch k-means [D. Sculley, WWW 2010]
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|Spectral Graph Theory|
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I I I I ISpectraI Graph Theoryl :

K-Means vs Spectral Clustering

K-Means Spectral Clustering
5 two circles, 2 clusters (K-means) s wocircles, 2 clusters.
45| 45)
4 4
35 35|
3] 3
25 25
2 2|
15 15
1 1
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0.5
"0 05 1 15 2 25 3 35 4 45 5 ° 08 ! . 2 25 3 38 4
(i) (e)

[Shi & Malik 00; Ng, Jordan, Weiss NIPS 01]
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| l Spectral Graph Theory| :

Graph Terminologies

» An undirect graph G = (V, E) consists of
nodes V = {vi,...,v,} and edges
E={e,....em}

> Edge ¢; connects v; and v; if they are
adjacent or neighbors.

» Adjacency matrix

W - {1 if there is an edge e

0 otherwise

» Degree d; of node v; is the number of
neighbors of v;.

n
d,' = Z W,'j
— j=1

[ |
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Spectral Graph Theory| :

Graph Terminologies

(93‘3('”):

W=112 05 0 o0
0 09 0 0
wi, e

(rto. L= LS

» Weigtlied undirected graph
G=(V,E,W)

» Edge Weighﬁv,-j € Ryg between v; and v;
edge (v, v;) exists iff w; >0

» Weighted adjacency matrix W = [wi]

> Vertex degree d; = Y1, w;
> Degree matrix D = diag(ds,. .., d,)

by e de. O
I ley, [D"‘Jﬂ
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ISpectraI Graph Theoryl :

Graph Terminologies

k=2, )
A}; jarﬂ\) o FO\fE+‘°“ "7- V.

VN\A
» Given vertex subset Ac V, Iett V\A be
the complement of A in the graph
» Subset indicator function 14 € R":

1 ifV,'EA
Lafiy=1> 22
Lati} {o if v; ¢ A
» Sets Ai,...,Ax form a partition of the
graph if A;nA; =@ for all j #j and
AlU...UA =V

—_—

Yang Li  yangli@sz.tsinghua.edu.cn

Learning From Datal



Spectral Graph Theory|

Represent data using a graph

NSNS

Some data are naturally represented by a graph e.g. social networks, 3D

mesh etc

Use graph to represent similarity in data
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Spectral Graph Theory| :

Clustering from a graph point of view

\\ ne
S{)P: ”X - XJU
» Given data points x(), ..., x(" and similarity measure sij > 0 for
all x(0, x0) e

> A typical similarity graph G = (V,E) is
L e x®
» v; and v; are connected if s; > ¢ for some threshold ¢
— = e
» Clustering: Divide data into groups such that points in the same}
group are similar and points in different groups are dissimilar
[, » Spectral Clustering (informal): Find a partition of G such that
y =T L
edges between the same group have high weight and edges between
different groups have very low weight.
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Spectral Graph Theory| :

Building similarity graphs from data

e-neighborhood O E-ned
Add edges to all points inside a ball of radius O R buq
centered at v L =0 0
' g),'l
o =0
k-Nearest Neighbors
g e e
Add edges between v's k-nearest neighbors. 0 )
O k=3
Fully connected graph 0
Often, Gaussian similarity is used O
. . \ \/\J(‘j
_ Ix® x93 - 0.6 .
W,J—exp( 772 fori,j=1,...,m ~L |
T _
/
- @ ~b
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Spectral Graph Theory|

Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius 7
centered at v <

Drawbacks: sensitive to ¢, edge weights are on
similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

x = xD|3

) fori,j=1,...,m

o O
//’-~\\
RS
\ Nl
\\\_—’,’ O
O
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Spectral Graph Theory|

Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius 7
centered at v
Drawbacks: sensitive to e, edge weights are on
similar scale

O

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Drawbacks: may result in asymmetric and irregular
graph
Fully connected graph

Often, Gaussian similarity is used

x = xD|3

) fori,j=1,...,m

L
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Spectral Graph Theory|

Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius 7
centered at v
Drawbacks: sensitive to e, edge weights are on
similar scale

, O
k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Drawbacks: may result in asymmetric and irregular O
graph
Fully connected graph

O

Often, Gaussian similarity is used

x = xD|3

) fori,j=1,...,m

Drawbacks: W is not sparse

O
/”-~\\\
O
......... 1
¢y
\\\_—’,’ O
O
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Spectral Graph Theory]|

Similarity graphs examples

Data points

epsilon—graph, epsilon=0.3

NSNS
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[ | [x-Means Clustering] |Spectral Graph Theory|
Spectral Clustering as Graph Partitioning

Find a partition of the graph such that
» Edges between groups have a low weight
—_—n

» Edges within each group have a high weight

Best cut »l/ \ P5
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Spectral Graph Theory|

Graph Cut Formulation

Case k=2:

» Given partition A, A define a cut as the total weight of edges
weights betweén groups:

cut(AA) = > w;
ieA,jeA

» Example: cut({p1,p2,p3},{pa,ps,ps}) =1,
CUt({pl, P2, p3, p4}7 {p57 PG}) :_%

Best cut

NSNS
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ISpectraI Graph Theoryl :

Graph Cut Formulations

Case k > 2:
» Given partition Az, ..., A, define a cut as the total weight of edges
weights between groups:

1& -
CUl’(Al, e ,Ak) = E Z CUtiA,'!A;)
i=1
—J
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Spectral Graph Theory|

Graph Cut Formulations

Case k > 2:
» Given partition Ay, ..., Ak, define a cut as the total weight of edges
weights between groups:

cut(As, .. A = Zcut(AHA g\é%‘}r °

Minimizing cut directly tends to unbalanced partitions. Alternative
solutions:
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Spectral Graph Theory)

Graph Cut Formulations

Case k > 2:
» Given partition Ay, ..., Ak, define a cut as the total weight of edges
weights between groups: A
1 - :
CUl"(Al7 LA E Z CUl'(A,'7 A,)
-1 l
Minimizing cut directly tends to unbalanced partitions. Alternatlv \ (ue((,lA'z,A\)
solutions: {Zo\h\(»:t (A\,P\D \A | Ao + \Azl)
RatioCut and NCut T3 37
Find a k-way partition of graph G ( Aju...UA, =V, AinA; =2 ) that
minimizes: . B
1 t(A;, A;
RatioCut(Ay,...,A) == > G )
u c‘—’_" 2i4 E|Ai| j
Novme +Leel. B -
1 A, A
NCut(Ar, - A = 5 ) WA A) oay= T w
23 (vol(Ai icAjeV

1
N(M‘{U'\'/ \) 2—( Vo[(A) WlCAw)
[
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Spectral Graph Theory|

Graph Cut Formulations

Case k > 2:
» Given partition Ay, ..., Ak, define a cut as the total weight of edges
weights between groups:

1& -
CUl"(Al7 e ,Ak) = 5 Z CLIt'(A,'7 A,)
i=1
Minimizing cut directly tends to unbalanced partitions. Alternative
solutions:
RatioCut and NCut
Find a k-way partition of graph G ( Aju...UA, =V, AinA; =2 ) that

minimizes: ) -
RatioCut(Ay, .., Ay) = + 3 AL A)
25 Al
1 & cut(Ai, A)
NCut(Aq,...,Ax) ==Y ————= vol(A) = Wi
2 ,; vol (A;) I_GAZJ;GV ij

Both RatioCut and NormalizeCut can be approximated by spectral
method.
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