Learning from Data Lecture 8: Unsupervised Learning I

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

November 19, 2021

		verview
--	--	---------

Today's Lecture

Unsupervised Learning (Part I)

- Overview: the representation learning problem
- K-means clustering
- Spectral clustering

Project Introduction

Unsupervised Learning Overview	K-Means Clustering	Spectral Graph Theory	Spectral Clustering

Unsupervised Learning Overview

Unsupervised Learning Overview	K-Means Clustering		Spectral Graph Theory	Spectral Clustering
Line and a second second second	 	-		

Unsupervised Learning

$$\underline{x} \longrightarrow \underbrace{f(\cdot)} \longrightarrow \underbrace{f(\cdot)}$$

Similar to supervised learning, but without labels.

- Still want to learn the machine f
- Significantly harder in general

Unsupervised Learning Overview	K-Means Clustering		Spectral Graph Theory	Spectral Clustering
Line and a second second second	 	-		

Unsupervised Learning

$$x \longrightarrow f(\cdot) \longrightarrow \mathcal{K}$$

Similar to supervised learning, but without labels.

- Still want to learn the machine f
- Significantly harder in general

Unsupervised learning goal

Find **representations** of input feature *x* that can be used for reasoning, decision making, predicting things, comminicating etc.

The representation learning problem

(Y Bengio et. al. *Representation Learning: A Review and New Perspectives*, 2014)

Given input features x, find "simpler" features z that preserve the same information as x.

Example: Face recognition 100×100

$$\rightarrow \underline{x} = \begin{bmatrix} \underline{0.5} \\ 0 \\ \vdots \\ 0.3 \\ 1.0 \end{bmatrix} \} \underbrace{10^4} \rightarrow \underbrace{z = [\vdots]}_{\underline{z} = \underline{z}}$$

What information is in this picture? *identity, facial attributes, gender, age, sentiment, etc*

Characteristics of a good representation

- ▶ low dimensional: compress information to a smaller size \rightarrow reduce data size
- Sparse representation: most entries are zero for most data → better interpretability
- independent representations: disentangle the source of variations

Uses of representation learning

Data compression

Example: Color image quantization. Each 24bit RGB color is reduced to a palette of 16 colors.

Uses of representation learning

Abnormality (outlier, novelty) detection

Example: local density-based outlier detection

 o_1 and o_2 are the detected outliers

Uses of representation learning

Knowledge representation based on human perception
 Example: word embedding

Each word is represented by a 2D vector. Words in the same semantic category are grouped together

Unsupervised Learning Overview	K-Means Clustering	Spectral Graph Theory	Spectral Clustering

K-Means Clustering

Unsupervised Learning Overview	F	K-Means Clustering	Spectral Graph Theory	Spectral Clustering

Clustering analysis

Given input features $\{x^{(1)}, \ldots, x^{(m)}\}$, group the data into a few *cohesive* "clusters".

 Objects in the same cluster are more similar to each other than to those in other clusters

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, \underline{x}^{(m)}\}, x^{(i)} \in \mathbb{R}^d$, k-means clustering partition the input into $k \leq \underline{m}$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS). $\mu_1 = \frac{z}{x^{i} \epsilon c_i} x^{i}$

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}$, $x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$\underset{C}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|^2 \quad \bullet$$

Equivalent definitions:

- minimizing the within-cluster variance: $\sum_{i=1}^{\kappa} |C_i| \operatorname{Var}(C_i)_{\mathbf{a}}$
- minimizing the pairwise squared deviation between points in the same cluster: (homework)

$$\sum_{i=1}^{k} \underbrace{\frac{1}{2|C_i|}}_{x,x' \in C_i} \|x - x'\|^2$$

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}$, $x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$\underset{C}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|^2$$

Equivalent definitions:

• minimizing the within-cluster variance: $\sum_{i=1}^{\kappa} |C_i| \operatorname{Var}(C_i)$

minimizing the pairwise squared deviation between points in the same cluster: (homework)

$$\sum_{i=1}^{k} \frac{1}{2|C_i|} \sum_{x, x' \in C_i} \|x - x'\|^2$$

- maximizing between-cluster sum of squares (BCSS) (homework)

Unsupervised Learning Overview	v.	K-Means Clustering	Spectral Graph Theory	Spectral Clustering
		0 1 1 1		

K-Means Clustering Algorithm

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory	Spectral Clustering
K-Means Clustering Algorithm	
Optimal k means clustering is NP hard in Euclidean space	
• Optimal K-means clustering is NF-hard in Euclidean space.	
 Often solved via a heuristic, iterative algorithm <u>C⁽¹⁾</u> = j 	j=1,,k.
Lloyd's Algorithm (1957,1982)	
Let $c^{(i)} \in \{1, \ldots, k\}$ be the cluster label for $x^{(i)}$	
Initialize cluster centroids $\mu_1, \dots, \mu_k \in \mathbb{R}^n$ randomly Repeat until convergence { For every i , $c^{(i)} = \operatorname{argmin}_j \ x^{(i)} - \mu_j\ ^2$ } Assignment	
For each j $\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}}$ update cluster controid.	

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

}

K-Means Clustering

K-Means Clustering Algorithm

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \dots, k\}$ be the cluster label for $x^{(i)}$

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

K-Means Clustering

K-Means Clustering Algorithm

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \dots, k\}$ be the cluster label for $x^{(i)}$

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

Unsupervised Learning Overview		K-Means Clustering	Spectral Graph Theory	Spectral Clustering
	ha utura ar	linguation		

K-Means clustering discussion

K-Means learns a k-dimensional sparse representation.
 i.e. x⁽ⁱ⁾ is transformed into a "one-hot" vector z⁽ⁱ⁾ ∈ ℝ^k:

$$z_j^{(i)} = \begin{cases} 1 & \text{if } c^{(i)} = j \\ 0 & \text{otherwise} \end{cases}$$

Only converges to a local minimum: initialization matters!

Unsupervised Learning Overview	K-Means Clustering	Spectral Graph Theory	Spectral Clustering

Practical considerations

- Replicate clustering trails and choose the result with the smallest WCSS
- How to initialize centroids μ_j 's ?
 - Uniformly random sampling ②
 - ▶ Distance-based sampling e.g. kmeans++ [Arthur & Vassilvitskii SODA 2007] ☺
- How to choose <u>k</u>?
 - Cross validation (later lecture)
 - G-Means [Hamerly & Elkan, NIPS 2004]
- How to improve k-means efficiency?
 - Elkan's algorithm [Elkan, ICML 2003]
 - Mini-batch k-means [D. Sculley, WWW 2010]

Unsupervised Learning Overview	K-Means Clustering	Spectral Graph Theory	Spectral Clustering	

Spectral Graph Theory

Graph Terminologies and Similarity Graphs

Spectral Clustering Spectral Clustering

K-Means vs Spectral Clustering

Graph Terminologies

- An undirect graph G = (V, E) consists of nodes V = {v₁,..., v_n} and edges E = {e₁,..., e_m}
- Edge e_{ij} connects v_i and v_j if they are adjacent or neighbors.
- Adjacency matrix
 - $\underline{W_{ij}} = \begin{cases} 1 & \text{if there is an edge } e_{ij} \\ 0 & \text{otherwise} \end{cases}$
- **Degree** d_i of node v_i is the number of neighbors of v_i .

$$d_i = \sum_{j=1}^n w_{ij}$$

Graph Terminologies

$$W = \begin{bmatrix} 0 & 0.2 & 1.2 & 0 \\ 0.2 & 0 & 0.5 & 0.9 \\ 1.2 & 0.5 & 0 & 0 \\ 0 & 0.9 & 0 & 0 \end{bmatrix} \mathbf{1}_{n} = \underbrace{W \mathbf{1}_{n}}_{n} \mathbf{1}_{n} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} n \\ n \end{bmatrix}$$

- Weigtlied undirected graph G = (V, E, W)
- Edge weight $w_{ii} \in \mathbb{R}_{\geq 0}$ between v_i and v_j edge (v_i, v_j) exists iff $w_{ii} > 0$
- Weighted adjacency matrix W = [w_{ii}]

• Vertex degree
$$d_i = \sum_{j=1}^n w_{ij}$$

• Degree matrix
$$D = diag(d_1, \dots, d_n)$$

 $\begin{bmatrix} 1 & 4' \\ 1 & 6' \\ 1 & 7' \\ 0 & 9' \end{bmatrix} \in d_n$

$$\begin{bmatrix} d_1 & 0' \\ 0 & d_n \end{bmatrix}$$

Unsupervised Learning Overview

-Means Clustering

Graph Terminologies

Unsupervised Learning Overview	K-Means Clustering	Spectral Graph Theory	Spectral Clustering
			-

Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D mesh etc

Use graph to represent similarity in data

- Given data points $x^{(1)}, \ldots, x^{(n)}$ and similarity measure $s_{ij} \ge 0$ for all $x^{(i)}, x^{(j)}$
- A typical similarity graph G = (V, E) is
 - $v_i \leftrightarrow x^{(i)}$ • v_i and v_j are connected if $s_{ij} \ge \delta$ for some threshold δ
- Clustering: Divide data into groups such that points in the same group are similar and points in different groups are dissimilar
- L > Spectral Clustering (informal): Find a partition of G such that edges between the same group have high weight and edges between different groups have very low weight.

Building similarity graphs from data

Building similarity graphs from data

e-neighborhood

Add edges to all points intergrading of Methods Drawbacks: sensitive to \boldsymbol{e} , edge weights are on similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, ..., m$

Building similarity graphs from data

e-neighborhood

Add edges to all points integrite ghild of the odd Method centered at v Drawbacks: sensitive to e, edge weights are on similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors. Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, \dots, m$

k = 3

Building similarity graphs from data

ϵ -neighborhood

Add edges to all points i **Nileighlofordhood** Methods centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors. Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, \dots, m$

Drawbacks: W is not sparse

Similarity graphs examples

Spectral Clustering as Graph Partitioning

Find a partition of the graph such that

- Edges between groups have a low weight
- Edges within each group have a high weight

Graph Cut Formulation

Case k = 2:

 Given partition A, A, define a cut as the total weight of edges weights between groups:

Graph Cut Formulations

Case k > 2:

 Given partition A₁,..., A_k, define a cut as the total weight of edges weights between groups:

$$cut(A_1,\ldots,A_k) \coloneqq \frac{1}{2} \sum_{i=1}^k \underbrace{cut(\widehat{A_i},\overline{A_i})}_{i=1}$$

-0

Graph Cut Formulations

Case k > 2:

• Given partition A_1, \ldots, A_k , define a cut as the total weight of edges weights between groups:

$$\underbrace{cut(A_1,\ldots,A_k)}_{i=1} := \frac{1}{2} \sum_{i=1}^k cut(A_i,\bar{A}_i)$$

Minimizing cut directly tends to unbalanced partitions. Alternative solutions:

Yang Li

ya

A,

(und (Az A)

Graph Cut Formulations

Case k > 2:

 Given partition A₁,..., A_k, define a cut as the total weight of edges weights between groups:

$$cut(A_1,\ldots,A_k) \coloneqq \frac{1}{2}\sum_{i=1}^k cut(A_i,\bar{A}_i)$$

Minimizing cut directly tends to unbalanced partitions. Alternative 1solutions: $p_{A_1}(L_1 (A_1, A_2) = \frac{1}{2} \left(\underbrace{L_2 (A_1, A_2)}_{|A_1|} \right)$

RatioCut and NCut

Find a k-way partition of graph G ($A_i \cup \ldots \cup A_k = V, A_i \cap A_j = \emptyset$) that minimizes:

$$\frac{RatioCut}{(A_{1}, \dots, A_{k})} = \frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_{i}, \bar{A}_{i})}{(A_{i})}$$
Normalized.

$$\underbrace{NCut}(A_{1}, \dots, A_{k}) = \frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_{i}, \bar{A}_{i})}{(vol(A_{i}))}, vol(A_{i}) = \sum_{i \in A, j \in V} w_{ij}$$

$$\underbrace{Nut}(A_{1}, A_{i}) = \frac{1}{2} \left(\underbrace{4}_{Vol} + 4_{Vol} A_{i} \right)$$

$$\underbrace{Nut}(A_{1}, A_{i}) = \frac{1}{2} \left(\underbrace{4}_{Vol} + 4_{Vol} A_{i} \right)$$

$$\underbrace{I_{earning From Data}}$$

Graph Cut Formulations

Case k > 2:

Given partition A₁,..., A_k, define a cut as the total weight of edges weights between groups:

$$cut(A_1,\ldots,A_k) \coloneqq \frac{1}{2}\sum_{i=1}^k cut(A_i,\bar{A}_i)$$

Minimizing cut directly tends to unbalanced partitions. Alternative solutions:

RatioCut and NCut

Find a k-way partition of graph G ($A_i \cup \ldots \cup A_k = V, A_i \cap A_j = \emptyset$) that minimizes:

$$RatioCut(A_1,\ldots,A_k) = \frac{1}{2}\sum_{i=1}^k \frac{cut(A_i,\bar{A}_i)}{|A_i|}$$

$$NCut(A_1,\ldots,A_k) = \frac{1}{2}\sum_{i=1}^k \frac{cut(A_i,\bar{A}_i)}{vol(A_i)}, vol(A_i) = \sum_{i \in A, j \in V} w_{ij}$$

Both RatioCut and NormalizeCut can be **approximated** by spectral method.