Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 = [01,02,...,04] € RY in linear regression with d — 1 unknowns.
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example
» Suppose H is parameterized by d real numbers. e.g.
0 =[01,6>,... ,.] € RY in linear regression with d — 1 unknowns.
» In a 64-bjt floating point representation, size of hypothesis class:
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example
» Suppose H is parameterized by d real numbers. e.g.
0 = [01,02,...,04] € RY in linear regression with d — 1 unknowns.

» In a 64-bit floating point representation, size of hypothesis class:
|7‘[| 264d

» How many samples do we need to guarantee e(h) < e(h*) + 27 to
hold with probability at least 1 — §7
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 =1[01,62,...,04] € R9 in linear regression with d — 1 unknowns.
» In a 64-bit floating point representation, size of hypothesis class:
|7{| 264d

» How many samples do we need to guarantee e(h) < e(h*) + 27 to
hold with probability at least 1 — §7

1 264d 1
m > O(’y—log 5 ):O<—|0g5> = 0,5(d)
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Infinite hypothesis class: Challenges F. &)
I )7

ﬂ*’ = O(36)

Can we apply the same theorem to infinite 7 ‘7,; — )
Fce } )[s C- g
Example 7 joa ..ﬂ__

Es
» Suppose H is parameterized by d real numbers. e.g. F) =X 4 bhy-5
0 = [01,02,...,04] € RY in linear regression with d — 1 unknowns. o L)

» In a 64-bit floating point representation, size of hypothesis class
|7‘[| 264d

» How many samples do we need to guarantee e(h) < e(h*) 4 27 to C_,ejtﬁ)

hold with probability at least 1 — §7
¢/ 1o
o.s@]

64d
mZO(llog2 ):O(Iog >
- 2

To learn well, the number of samples has to be linear in d
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Infinite hypothesis class: Challenges

Size of@iepends on the choice of parameterization

f—

Example

2n + 2 parameters:

Iy = 1{(ug - vg) 4= (uf = v12)x1 k.. 1R (u,2, - vﬁ)x,, >0}

————

is equivalent the hypothesis with n + 1 parameters:
ho(x) = 1{6o —|—£9]X1 +...+0,x, >0}

- / & Rl pacamctals,

SV

<

—_—
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Infinite hypothesis class: Challenges

Learning Theory

Size of H depends on the choice of parameterization

Example

2n + 2 parameters:
hu, = H{(ug = v§) + (uf — vi)xa + ... + (uj — vi)xn > 0}
is equivalent the hypothesis with n + 1 parameters:

hg(X) = 1{90 +O01x1 + ...+ Opx, > 0}

We need a complexity measure of a hypothesis class invariant to
parameterization choice
-—’_’_—_
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Infinite hypothesis class: Vapnik-Chervonenkis theory

VC - dimengion

A computational learning theory developed during 1960-1990 explaining
the learning process from a statistical point of view.
Alexey Chervonenkis (1938-2014), Russian mathemati-
cian

Vladimir Vapnik (Facebook Al Research, Vencore Labs)
Most known for his contribution in statistical learning
theory
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e
Shattering a point set

» Given d points x() e X, i=1,...,

any labeling on S.

JEE—

Example: S = {x(l),x(

3;5 fU/l} -
H recle o lﬂ_\ﬂ’tl'é “ﬁ‘,'})j}
Lé}/\ h anflj

peedicts L A X2

NSl

e ]

a_u (

Learning Theoryj

d, H shatters S if H can realize
\ AN N

2 x®1 where x() € R,

_V_ (.,\LA.«CS on S
=1 ké)“, kre&lzm
8

Suppose y ) € {0,1}, how many possible labelings does 5 have?
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Shattering a point set

[Regularization]

Learning Theory

» Example: Let H,7F > be the linear threshold function in&2 (e.g. in

the perceptron algorithm)

wixy + wexz > b
A B

M
H « linear -Pme h(x) = otherwise
LYF/L j—wl\d’"w
X
X @]
X X X3 X2
X
X X X X
O
X O
X, X X X,
X
X, X X, X,

1
HLTF,z {X(l)  x(

2 x3)
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VC Dimension

The Vapnik-Chervonenkis dimension of #, or VC(H), is the cardinality
of the largest set shattered by .
VC(He0) 23,

> Example: VC(Hirr2) =3
— VC(Hue) <4

N

+ -

H.rr can not shatter 4 points: for any 4 points, label points on the diagonal as
'+'. (See Radon's theorem)
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VC Dimension

The Vapnik-Chervonenkis dimension of #, or VC(H), is the cardinality
of the largest set shattered by #.

» Example: VC(Hirr2) =3

H.rr can not shatter 4 points: for any 4 points, label points on the diagonal as
'+'. (See Radon's theorem)

S
» To show VC(#) > d , it's sufficient to find one set of d points
shattered by H 7
» To show VC(#H) < d, need to prove H doesn't shatter any set of d
points —
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VC Dimension
» Example: VC(AxisAlignedRectangles) = 4
® &
() -
O °lo | ° °
0] @) ® D
° 0 2 g 3
(@] o) %)
® ° © N
o1|[® g >|P ® 4

Axis-aligned rectangles can shatter 4 points. VC(AxisAlignedRectangles)|> 4

S (se+ S| st APR shatters S,
VC(AAR) < S
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VC Dimension

» Example: VC(AxisAlignedRectangles) = 4

D

For any 5 points, label topmost, bottommost, leftmost and rightmost points as

. — —_— [ —
+

VC(AxisAlignedRectangles) < 5
VvCAAR) =4
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Discussion on VC Dimension _
ho =0o.| E ,
More VC results of common H: o o
> VC(ConstantFunctions);o : _
‘ W~ ¢ i b
Ve (<0 = —_—

j'ar o\l SQ‘(‘ S) K doesnd shettrr S )
3 seme laJx(-S Hrot H won 4

r-ea.(| .
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Discussion on VC Dimension ({)<o- for >y S, H Con¥

shotlr i€,
More VC results of common H: hQ=1. /N
» VC(ConstantFunctions) = 0 , '
— ]\ 1 % 2
» VC(PositiveHalf-Lines) = 1, X = . h&x) «5
(&)

VC(H)z4 .
veH)I< 2.

<<

> VC(Intervals) =2, X =R 0

» VC(LTF inR")=n+1,X =R" & prove this at home!
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Discussion on VC Dimension

Learning Theory

1,—-\—; _

More VC results of common #:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) =1, X =R

9

+ o+

|
» VC(Intervals) =2,X =R
» VC(LTF in R") = n+1,X = R" < prove this at home!

Proposition 2

If H is finite, VC dimension is related to the cardinality of H.:

VC(H) < log|H|
fogltl
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[introduction] [Model selection] [ | [Learning Theory
Discussion on VC Dimension

More VC results of common #:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) =1, X =R

+ o+

|
» VC(Intervals) =2, X =R
» VC(LTF inR")=n+1,X =R" « prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H.:

VC(H) < log|H|

Proof. Let d = VC|H|. There must exists a shattered set of sizﬁm
which(H Vealizes all possible labelings. Every labeling must have a
corresponding hypothesis, then || >(2¢

legTH = d = vC\Hl_ -
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Learning bound for infinite H

Theorem 6
Given H, let d = VC(H).
0
» With probability at least 1 — 6, we have that for all h

(h) — ) < 0 <\/ og 7 + glogg)
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Learning Theory

Learning bound for infinite H

Theorem 6
Given H, let d = VC(H).
» With probability at least 1 — &, we have that for all h

le(h) — é(h |<O(\/—Iogd Iog(S)

» Thus, with probability at least 1 — ¢, we also have

ERM
e(h) < e(h* +0 <\/" Iog d Iog ;)
o V= Y
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Learning bound for infinite H

Corollary 7

For |e(h) — €(h)| < v to hold for all h € H with probability at least 1 — 4,
it sutfices that =
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Learning bound for infinite H

Corollary 7

For |e(h) — €(h)| < v to hold for all h € H with probability at least 1 — 0,
it suffices that m = O, 5(d).

Remarks

» Sample complexity using # is linear in VC(H)
— ——————
» For “most”? hypothesis classes, the VC dimension is linear in terms
of parameters
A |PEIEIISEE
» For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

?Not always true for deep neural networks
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that

consists of linear threshgldLactivations, then VC(N') = O(
[Celw . —
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\_/E_Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).

Recent progress

> For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and / be
the number of layers, VC(N) = O(wl log(w)) [Bartlett et. al., 2017]

S

1;,” e N wth W Fara.rv\kﬁnf‘_r) the lerger Ahe {)
the gt velN)
—_—

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets

Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).

Recent progress

» For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and / be
the number of layers, VC(N) = O(w/log(w)) [Bartlett et. al., 2017]

> Among all networks with the same size (number of weights), more
layers have larger VC dimension , thus more training samples are
needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets

Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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