
Introduction Model selection Regularization Learning Theory

Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite H?

Example
I Suppose H is parameterized by d real numbers. e.g.

✓ = [✓1, ✓2, . . . , ✓d ] 2 Rd in linear regression with d � 1 unknowns.

I In a 64-bit floating point representation, size of hypothesis class:
|H| = 264d

I How many samples do we need to guarantee ✏(ĥ)  ✏(h⇤) + 2� to
hold with probability at least 1� �?

m � O

✓
1
�2 log

264d

�

◆
= O

✓
d

�2 log
1
�

◆
= O�,�(d)

To learn well, the number of samples has to be linear in d
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Introduction Model selection Regularization Learning Theory

Infinite hypothesis class: Challenges

Size of H depends on the choice of parameterization

Example
2n + 2 parameters:

hu,v = 1{(u2
0 � v2

0 ) + (u2
1 � v2

1 )x1 + . . .+ (u2
n � v2

n )xn � 0}

is equivalent the hypothesis with n + 1 parameters:

h✓(x) = 1{✓0 + ✓1x1 + . . .+ ✓nxn � 0}

We need a complexity measure of a hypothesis class invariant to

parameterization choice
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Introduction Model selection Regularization Learning Theory

Infinite hypothesis class: Vapnik-Chervonenkis theory

A computational learning theory developed during 1960-1990 explaining
the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian mathemati-
cian

Vladimir Vapnik (Facebook AI Research, Vencore Labs)
Most known for his contribution in statistical learning
theory
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Introduction Model selection Regularization Learning Theory

Shattering a point set

I Given d points x (i) 2 X , i = 1, . . . , d , H shatters S if H can realize
any labeling on S .

Example: S = {x (1), x (2), x (3)
} where x (i)

2 R2
.

9

“well” using a hypothesis class that has d parameters, generally we’re going
to need on the order of a linear number of training examples in d.

(At this point, it’s worth noting that these results were proved for an al-
gorithm that uses empirical risk minimization. Thus, while the linear depen-
dence of sample complexity on d does generally hold for most discriminative
learning algorithms that try to minimize training error or some approxima-
tion to training error, these conclusions do not always apply as readily to
discriminative learning algorithms. Giving good theoretical guarantees on
many non-ERM learning algorithms is still an area of active research.)

The other part of our previous argument that’s slightly unsatisfying is
that it relies on the parameterization of H. Intuitively, this doesn’t seem like
it should matter: We had written the class of linear classifiers as hθ(x) =
1{θ0 + θ1x1 + · · · θnxn ≥ 0}, with n + 1 parameters θ0, . . . , θn. But it could
also be written hu,v(x) = 1{(u2

0 − v2
0) + (u2

1 − v2
1)x1 + · · · (u2

n − v2
n)xn ≥ 0}

with 2n + 2 parameters ui, vi. Yet, both of these are just defining the same
H: The set of linear classifiers in n dimensions.

To derive a more satisfying argument, lets define a few more things.
Given a set S = {x(i), . . . , x(d)} (no relation to the training set) of points

x(i) ∈ X , we say that H shatters S if H can realize any labeling on S.
I.e., if for any set of labels {y(1), . . . , y(d)}, there exists some h ∈ H so that
h(x(i)) = y(i) for all i = 1, . . . d.

Given a hypothesis class H, we then define its Vapnik-Chervonenkis
dimension, written VC(H), to be the size of the largest set that is shattered
by H. (If H can shatter arbitrarily large sets, then VC(H) = ∞.)

For instance, consider the following set of three points:

x

x1

2

Can the set H of linear classifiers in two dimensions (h(x) = 1{θ0+θ1x1+
θ2x2 ≥ 0}) can shatter the set above? The answer is yes. Specifically, we

Suppose y (i)
2 {0, 1}, how many possible labelings does S have?
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Introduction Model selection Regularization Learning Theory

Shattering a point set
I Example: Let HLTF ,2 be the linear threshold function in R2 (e.g. in

the perceptron algorithm)

h(x) =

⇢
1 w1x1 + w2x2 � b

0 otherwise

10

see that, for any of the eight possible labelings of these points, we can find a
linear classifier that obtains “zero training error” on them:

x

x1

2 x

x1

2 x

x1

2 x

x1

2

x

x1

2 x

x1

2 x

x1

2 x

x1

2

Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter. Thus, the largest set that H can shatter is of
size 3, and hence VC(H) = 3.

Note that the VC dimension of H here is 3 even though there may be
sets of size 3 that it cannot shatter. For instance, if we had a set of three
points lying in a straight line (left figure), then there is no way to find a linear
separator for the labeling of the three points shown below (right figure):

x

x1

2x

x1

2

In order words, under the definition of the VC dimension, in order to
prove that VC(H) is at least d, we need to show only that there’s at least
one set of size d that H can shatter.

The following theorem, due to Vapnik, can then be shown. (This is, many
would argue, the most important theorem in all of learning theory.)

HLTF ,2 shatters S = {x (1), x (2), x (3)
}
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Introduction Model selection Regularization Learning Theory

VC Dimension

The Vapnik-Chervonenkis dimension of H, or VC (H), is the cardinality
of the largest set shattered by H.

I Example: VC (HLTF ,2) = 3

HLTF can not shatter 4 points: for any 4 points, label points on the diagonal as

’+’. (See Radon’s theorem)

I To show VC (H) � d , it’s sufficient to find one set of d points
shattered by H

I To show VC (H) < d , need to prove H doesn’t shatter any set of d
points

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

VCCHLTF,2) 23 .

-

-

=
VCTHue.at < 4

.



Introduction Model selection Regularization Learning Theory

VC Dimension

The Vapnik-Chervonenkis dimension of H, or VC (H), is the cardinality
of the largest set shattered by H.

I Example: VC (HLTF ,2) = 3

HLTF can not shatter 4 points: for any 4 points, label points on the diagonal as

’+’. (See Radon’s theorem)

I To show VC (H) � d , it’s sufficient to find one set of d points
shattered by H

I To show VC (H) < d , need to prove H doesn’t shatter any set of d
points

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

-

F-
• +

+
,

I

T



Introduction Model selection Regularization Learning Theory

VC Dimension

I Example: VC (AxisAlignedRectangles) = 4

1.2 Determining VC-dimension

In the last section, we claimed VC-dim(Axis-aligned rectangles) = 4. Now we show how
to prove it. The proof involves two steps: first, we show the VC-dimension is at least 4
by showing that there exists a 4-point set shattered by the concept set (it’s worth noting
that not every 4-point configuration can be shattered, but we only need one to make the
statement). Then, we show that there is no 5-point set that can be shattered.

Proof (1) An example 4-point set is shown in Figure 1 with all typical labelings and the
corresponding realization. So we have VC-dim� 4.

(2) For any 5-point set, we can construct a data assignment in this way: pick the
topmost, bottommost, leftmost and rightmost points and give them the label “+”. Because
there are 5 points, there must be at least one point left to which we assign “�”. Any
rectangle that contains all the “+” points must contains the “�” point, which is a case
where shattering is not possible. This proves that VC-dim< 5.

In sum, VC-dim(axis aligned rectangle)= 4.

Figure 1: Proving that rectangle concept space shatters at least 4 points

2 Sauer’s Lemma

Sauer’s Lemma provides an upper bound for ⇧H(m) parameterized by d, the VC-dimension
of H. It also leads to the proof that the growth function is either O(md) or 2m. In this
section, we are going to use these definition and facts in binomial coe�cients:

✓
m

k

◆
= 0 if k < 0 or k > m (4)

✓
m

k

◆
=

✓
m� 1
k � 1

◆
+

✓
m� 1

k

◆
(5)

(a + b)m =
mX

k=0

✓
m

k

◆
a

k
b
m�k (6)

Lemma 2.1 (Sauer’s Lemma) Let H be a hypothesis set with VC-dim(H) = d. Then, for
all m 2 N , the following inequality holds

2

Axis-aligned rectangles can shatter 4 points. VC(AxisAlignedRectangles) � 4
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Introduction Model selection Regularization Learning Theory

VC Dimension

I Example: VC (AxisAlignedRectangles) = 4

For any 5 points, label topmost, bottommost, leftmost and rightmost points as

“+”.

VC(AxisAlignedRectangles) < 5
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Introduction Model selection Regularization Learning Theory

Discussion on VC Dimension
More VC results of common H:

I VC (ConstantFunctions) =

0
I VC (PositiveHalf -Lines) = 1,X = R

I VC (Intervals) = 2,X = R
I VC (LTF in Rn) = n + 1,X = Rn

 prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H:

VC (H)  log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then |H| � 2d
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Introduction Model selection Regularization Learning Theory

Discussion on VC Dimension
More VC results of common H:

I VC (ConstantFunctions) = 0
I VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

I VC (Intervals) = 2,X = R
I VC (LTF in Rn) = n + 1,X = Rn

 prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H:

VC (H)  log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then |H| � 2d
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Introduction Model selection Regularization Learning Theory

Learning bound for infinite H

Theorem 6
Given H, let d = VC (H).

I With probability at least 1� �, we have that for all h

|✏(h)� ✏̂(h)|  O

 r
d

m
log

m

d
+

1
m

log
1
�

!

I Thus, with probability at least 1� �, we also have

✏(ĥ)  ✏(h⇤) + O

 r
d

m
log

m

d
+

1
m

log
1
�

!
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Introduction Model selection Regularization Learning Theory

Learning bound for infinite H

Corollary 7
For |✏(h)� ✏̂(h)|  � to hold for all h 2 H with probability at least 1� �,
it suffices that m = Oy ,�(d).

Remarks
I Sample complexity using H is linear in VC (H)

I For “most”a hypothesis classes, the VC dimension is linear in terms
of parameters

I For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

aNot always true for deep neural networks
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Introduction Model selection Regularization Learning Theory

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)
Let N be an arbitrary feedforward neural net with w weights that

consists of linear threshold activations, then VC (N ) = O(w logw).

Recent progress

I For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and l be
the number of layers, VC (N ) = O(wl log(w)) [Bartlett et. al., 2017]

I Among all networks with the same size (number of weights), more

layers have larger VC dimension , thus more training samples are
needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets
Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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