Introduction	Model selection		Regularization	Learning Theory
Infinite laurable at		Challeman		

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

Suppose $\underline{\mathcal{H}}$ is parameterized by <u>d real numbers</u>. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.

Introduction	Wodel selection	 Regularization	Learning Theory
In finite here a the set			

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

 Suppose *H* is parameterized by *d* real numbers. e.g. *θ* = [*θ*₁, *θ*₂, ..., *θ*₂] ∈ ℝ^d in linear regression with *d* − 1 unknowns.

 In a <u>64-bit</u> floating point representation, size of hypothesis class: |*H*| = 2^{64d} 2⁶⁴
 2⁶⁴

Introduction	Model selection	Regularization	Learning Theory
1. (1. 1			

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

- Suppose \mathcal{H} is parameterized by d real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{64d}$
- ► How many samples do we need to guarantee $\epsilon(\hat{h}) \leq \epsilon(h^*) + 2\gamma$ to hold with probability at least 1δ ?

$$m \ge O\left(\frac{1}{\gamma^2}\log\frac{2^{64d}}{\delta}\right) \stackrel{\mathbf{k} \in \mathcal{O}}{=} O\left(\frac{d}{\gamma^2}\log\frac{1}{\delta}\right) = O_{\gamma,\delta}(d)$$

Introduction	Model selection	Regularization	Learning Theory
1. (1. 1			

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

- Suppose \mathcal{H} is parameterized by d real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{64d}$
- ► How many samples do we need to guarantee $\epsilon(\hat{h}) \leq \epsilon(h^*) + 2\gamma$ to hold with probability at least 1δ ?

$$m \geq O\left(rac{1}{\gamma^2}\lograc{2^{64d}}{\delta}
ight) = O\left(rac{d}{\gamma^2}\lograc{1}{\delta}
ight) = O_{\gamma,\delta}(d)$$

Introduction	Model selection		Regularization	Learning Theory
Infinite hypothesis	s class:	Challenges		

Size of $\widehat{\mathcal{H}}$ depends on the choice of parameterization

Example

2n+2 parameters:

$$h_{u,v} = \mathbf{1}\{(u_0^2 - v_0^2) + (u_1^2 - v_1^2)x_1 + \ldots + (u_n^2 - v_n^2)x_n \ge 0\}$$

is equivalent the hypothesis with n + 1 parameters:

$$h_{\theta}(x) = \mathbf{1} \{ \theta_0 + \beta_1 x_1 + \ldots + \theta_n x_n \ge 0 \}$$

$$\mathsf{M}_i \qquad \mathsf{N}_i \quad \mathsf{Perameters}$$

$$\mathsf{M}_i \quad \mathsf{V}_i$$

Introduction	Model selection	Regularization	Learning Theory

Size of $\ensuremath{\mathcal{H}}$ depends on the choice of parameterization

Example

2n + 2 parameters:

$$h_{u,v} = \mathbf{1}\{(u_0^2 - v_0^2) + (u_1^2 - v_1^2)x_1 + \ldots + (u_n^2 - v_n^2)x_n \ge 0\}$$

is equivalent the hypothesis with n + 1 parameters:

$$h_{\theta}(x) = \mathbf{1}\{\theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n \ge 0\}$$

We need a complexity measure of a hypothesis class invariant to parameterization choice

Infinite hypothesis class: Vapnik-Chervonenkis theory VC - dimension

A computational learning theory developed during 1960-1990 explaining the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian mathematician

Vladimir Vapnik (Facebook AI Research, Vencore Labs) Most known for his contribution in statistical learning theory

Shattering a point set

▶ Given *d* points $x^{(i)} \in \mathcal{X}$, i = 1, ..., d, \mathcal{H} shatters *S* if \mathcal{H} can realize any labeling on *S*.

Suppose $y^{(i)} \in \{0,1\}$, how many possible labelings does <u>S</u> have?

Learning From Data

Learning Theory

Yang Li yangli@sz.tsinghua.edu.cn

Learning From Data

The Vapnik-Chervonenkis dimension of \mathcal{H} , or $VC(\mathcal{H})$, is the cardinality of the largest set shattered by \mathcal{H} . Example: $VC(\mathcal{H}_{LTF, 2}) = 3$. $YC(\mathcal{H}_{LTF, 2}) \ge 3$.

 \mathcal{H}_{LTF} can not shatter 4 points: for any 4 points, label points on the diagonal as '+'. (See Radon's theorem)

oduction	Model selection	Regularization	Learning Theory
<u></u>			

VC Dimension

The **Vapnik-Chervonenkis** dimension of \mathcal{H} , or $VC(\mathcal{H})$, is the cardinality of the largest set shattered by \mathcal{H} .

- ► To show $VC(H) \ge d$, it's sufficient to find **one** set of *d* points shattered by H
- ► To show VC(H) < d, need to prove H doesn't shatter any set of d points</p>

Introduction	Mode	l selection	Regula	arization		Learning The	ory
VC Dimen	ision						
► Exa	ample: VC(Ax	isAlignedRecta	angles) = 4	0	00	2	
	© 0 0 0	O 0 − 1 ⊕ 0 ●	+1. O ⊕ 2	⊕ ⊕ ⊕	O 3		
	0 ⊕ 0	0 0 1 ⊕	O ⊕ 2'	⊕ ⊕ ⊕	⊕ 4		
Axis-alig	ned rectangles	can shatter 4 p	oints. $VC(A)$	xisAlignedRect	angles)	2 4 🗸	

Introduction	
meroduction	

VC Dimension

Example: VC(AxisAlignedRectangles) = 4

For any 5 points, label topmost, bottommost, leftmost and rightmost points as "+".

VC(AxisAlignedRectangles) < 5

Proposition 2

If \mathcal{H} is finite, VC dimension is related to the cardinality of \mathcal{H} :

$$VC(\mathcal{H}) \leq \log |\mathcal{H}|$$

Model selection

Discussion on VC Dimension

More VC results of common \mathcal{H} :

- VC(ConstantFunctions) = 0
- $VC(PositiveHalf-Lines) = 1, \mathcal{X} = \mathbb{R}$

•
$$VC(Intervals) = 2, \mathcal{X} = \mathbb{R}$$

▶ $VC(LTF \text{ in } \mathbb{R}^n) = n + 1, \mathcal{X} = \mathbb{R}^n \leftarrow \text{ prove this at home!}$

Proposition 2

If \mathcal{H} is finite, VC dimension is related to the cardinality of \mathcal{H} :

100

$$VC(\mathcal{H}) \leq \log |\mathcal{H}|$$

Proof. Let $d = VC|\mathcal{H}|$. There must exists a shattered set of size(*d*) on which H ealizes all possible labelings. Every labeling must have a corresponding hypothesis, then $|\mathcal{H}| \ge 2^d$

HIZ J = VCH

Introduction	Model selection	Regularization	Learning Theor	у
				-

Theorem 6

Given \mathcal{H} , let $d = VC(\mathcal{H})$.

• With probability at least $1 - \delta$, we have that for all h

$$|\epsilon(h) - \hat{\epsilon}(h)| \le O\left(\sqrt{\frac{d}{m}\log \frac{m}{d}} + \frac{1}{m}\log \frac{1}{\delta}\right)$$

Introduction	Model selection	F	Regularization	Learning Theory	/

Theorem 6

Given \mathcal{H} , let $d = VC(\mathcal{H})$.

• With probability at least $1 - \delta$, we have that for all h

$$|\epsilon(h) - \hat{\epsilon}(h)| \leq O\left(\sqrt{rac{d}{m}\lograc{m}{d} + rac{1}{m}\lograc{1}{\delta}}
ight)$$

Thus, with probability at least $1 - \delta$, we also have $\frac{\mathsf{E}\mathcal{R}\mathsf{M}}{\epsilon(\hat{h})} \leq \epsilon(h^*) + O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$

Introduction	Model selection	Regularization	Learning Theory

Corollary 7

For $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ with probability at least $1 - \delta$, it suffices that $m = O_{V,\delta}(d)$.

Introduction	Model selection	Regularization	Learning TI	neory

Corollary 7

For $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ with probability at least $1 - \delta$, it suffices that $m = O_{y,\delta}(d)$.

Remarks

- Sample complexity using \mathcal{H} is linear in $VC(\mathcal{H})$
- ► For "most"^a hypothesis classes, the VC dimension is linear in terms of parameters
- ► For algorithms minimizing training error, # training examples needed is roughly linear in number of parameters in H.

^aNot always true for deep neural networks

Introduction	Model selection	Regularization	Learning Theory

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let \mathcal{N} be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(\mathcal{N}) = O(w \log w)$. $\mathcal{R}e Lu$.

Introduction	Model selection		Regularization	Learning	Theory
	 Deen M	annal Nation			

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(N) = O(w \log w)$.

Recent progress

For feed-forward neural networks with piecewise-linear activation functions (e.g. ReLU), let w be the number of parameters and l be the number of layers, $VC(\mathcal{N}) = O(wl \log(w))$ [Bartlett et. al., 2017]

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks.

ntroduction	Model selection	Regularization	Learning Theory

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let \mathcal{N} be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(\mathcal{N}) = O(w \log w)$.

Recent progress

- ► For feed-forward neural networks with piecewise-linear activation functions (e.g. ReLU), let w be the number of parameters and / be the number of layers, VC(N) = O(w/log(w)) [Bartlett et. al., 2017]
- Among all networks with the same size (number of weights), more layers have larger VC dimension, thus more training samples are needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks.