Learning From Data Lecture 6: Deep Neural Networks

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

October 29, 2021

Today's Lecture

 \triangleright Training a deep feedforward neural network

- \blacktriangleright Forward pass
- \blacktriangleright Backward propagation

Introduction

Biological motivation

The XOR example

connectionism

Schematic of a single neuron:

Each neuron takes information from other neurons, processes them, and then produces an output.

How does a neuron process its input? (a *coarse* model)

If Takes the weighted average of *l* inputs, e.g. $z = \sum_{i=0}^{l} w_i(x_i)$ Fraining a Dee

or process its input? (a coarse model)

veighted average of *l* inputs, e.g. $\underline{z} = \sum_{i=0}^{l} w_i(x_i)$

is if *z* is above some threshold

 \triangleright Neuron fires if z is above some threshold

How does a neuron process its input? (a *coarse* model)

- ▶ Takes the weighted average of *l* inputs, e.g. $z = \sum_{i=0}^{l} w_i(x_i)$
- ▶ Neuron fires if *z* is above some threshold

We call the threshold function activation function.

An artificial neuron with inputs x_1 , x_2 and activation function f

An artificial neuron with inputs x_1 , x_2 and activation function *f*

A single neuron is a (linear) binary classifier:

- \triangleright When *f* is the sigmoid function, equivalent to binary softmax
- \blacktriangleright When *f* is the sign function, equivalent to the perceptron -

Neural networks

- **►** The goal of a neural network is to approximate some function f^* such that $y = f^*(x)$ such that $y = f^*(x)$.
- I The goal of a neural network is to approximate some function.

Such that $y = f^*(x)$.

The neural network defines a mapping $y = f(x; \underline{\theta})$ and learns the

value of parameters θ through training value of parameters θ through training.

Neural networks

- The goal of a neural network is to approximate some function f^* such that $y = f^*(x)$.
- **Figure 1** The neural network defines a mapping $y = f(x; \theta)$ and learns the value of parameters θ through training.
- \triangleright Define **error function** that measures prediction error of f : e.g. a common error function used in classification is the **logarithmic loss** a.k.a. cross-entropy loss: $L = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$ $\hat{y} = f(x; \theta)$ is the predicted output \blacktriangleright *y* is the true output or of *f*: e.g. a
logarithmic loss
 $log²$ Given P , Q , distributions of H $H(p,q) = \mathbb{E}_{p}(\log q_{(q)})$ Five P, Q. distributions of $y = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$
 $\frac{1}{\sqrt{2}} \log(1 - \hat{y}) = \frac{1}{\sqrt{2}} \log(1 - \hat{y})$
 $\frac{1}{\sqrt{2}} \log(1 - \hat{y}) = \frac{1}{\sqrt{2}} \log(1 - \hat{y})$
 $\frac{1}{\sqrt{2}} \log(1 - \hat{y}) = \frac{1}{\sqrt{2}} \log(1 - \hat{y})$
 $\frac{1}{\sqrt{2}} \log(1 - \hat{y}) = \frac{1}{\$

A single layer of neurons are unable to approximate complex functions. Example to approximate
C₂ L.
C₂ JO
C₂ JO

$$
\begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \begin{matrix} 0 \\ 0 \end{matrix}
$$

A feed forward neural network

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all units of one layer is connected to all of the next layer.

- \blacktriangleright number of layers are called **depth** of the neural network
- number of units in a layer is called width of a layer

The XOR problem

Universal approximation theorem (Cybenko,1989; Hornik et al., 1991) A feed-forward network with a single hidden layer containing a finite number of neurons can approximate any continuous functions on compact subsets of R*ⁿ*, under mild assumptions on the activation function. Cybenko,1989

single hidden la

ate any continumptions on the

discrepance of the sumptions on the discrepance of the sum of the

discrepance of the sum of the sum of the sum of

Universal approximation theorem (Cybenko,1989; Hornik et al., 1991) A feed-forward network with a single hidden layer containing a finite number of neurons can approximate any continuous functions on compact subsets of R*ⁿ*, under mild assumptions on the activation function. **1989; Hornik e**
en layer contain
ntinuous function
the activation
sigmoid activation

 \blacktriangleright First proved by George Cybenko in 1989 for sigmoid activation function;

Universal approximation theorem (Cybenko,1989; Hornik et al., 1991) A feed-forward network with a single hidden layer containing a finite number of neurons can approximate any continuous functions on compact subsets of R*ⁿ*, under mild assumptions on the activation function. proximation theorem
 approximation theorem (Cybenko,1989; Hornik et

ed-forward network with a single hidden layer containin

er of neurons can approximate any continuous function

bsets of \mathbb{R}^n , under mild assump

- \triangleright First proved by George Cybenko in 1989 for sigmoid activation function;
- ▶ With one hidden layer, layer width of an *universal approximator* has to be exponentially large *More e*ff*ective to increase the* depth *of neural networks*

Universal approximation theorem (Cybenko,1989; Hornik et al., 1991) A feed-forward network with a single hidden layer containing a finite number of neurons can approximate any continuous functions on compact subsets of R*ⁿ*, under mild assumptions on the activation function.

- \triangleright First proved by George Cybenko in 1989 for sigmoid activation function;
- ▶ With one hidden layer, layer width of an *universal approximator* has to be exponentially large \leftarrow More effective to increase the **depth** of *neural networks*
- ReLU networks with width $n+1$ is sufficient to approximate any continuous function of n-dimensional input variables if depth is allowed to grow. (Lu et. al, 2017; Hanin 2018) First proved
Function;
With one hide
to be exponential netwo
ReLU netwo
continuous for
allowed to g $\frac{n+1}{n+1}$ is sufficient to approximate a
dimensional input variables if <u>depth</u>
al, 2017; Hanin 2018)

width 㱺 depth, deeter.

Overfitting

Increase the size and number of layers in a neural network,

- \triangleright the capacity, i.e. representation power of the network increases. the size and number of layers in a neural network,
 capacity, i.e. representation power of the network increas

overfitting can occur: fits the noise in the data instead of
- \triangleright but overfitting can occur: fits the noise in the data instead of the (assumed) underlying relationship. power
noise

Regularization

One way to control overfitting in training neural networks

A common regularization approach is **parameter norm p**
 $\tilde{L}(w; X, y) = L(w; X, y) + \frac{\lambda \Omega(w)}{\lambda}$ A common regularization approach is parameter norm penalties $\begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Training a} \end{array} \end{array} \end{array} \end{array} \end{array}$

$$
\tilde{L}(w; X, y) = \underbrace{L(w; X, y)} + \underbrace{\lambda \Omega(w)}
$$

Regularization

One way to control overfitting in training neural networks A common regularization approach is parameter norm penalties

$$
\tilde{L}(w;X,y)=L(w;X,y)+\underbrace{\delta\Omega(w)}\blacktriangleright
$$

 $\frac{\tilde{L}(w;X)}{\tilde{L}(w;X)}$

ster regulari:

oser to the explored and the exponential of the state of the exponential of the state of the state of the state ► L2 parameter regularization: $\Omega(w) = \frac{1}{2} ||w||_2^2 = \frac{1}{2} w^T w$ drives the weights closer to the origin $\lambda = 0.001$. $\lambda = 0.01$ $\lambda = 0.1$

Regularization

One way to control overfitting in training neural networks A common regularization approach is parameter norm penalties

$$
\tilde{L}(w;X,y)=L(w;X,y)+\lambda\Omega(w)
$$

► L2 parameter regularization: $\Omega(w) = \frac{1}{2} ||w||_2^2 = \frac{1}{2} w^T w$ drives the weights closer to the origin $\lambda = 0.001$

► L1 parameter regularization: $\Omega(w) = ||w||_1 = \sum_{i=1}^k |w_i|$ drives solutions more sparse.

Training a Deep Feedforward Network

Forward pass and Backpropagation

Forward pass and Backpropagation

See Powerpoint slides.

Practical issues

Which activation function to use?

 \triangleright *sigmoid* function $\sigma(z)$: gradient $\nabla f(z)$ **saturates** when *z* is highly positive or highly negative. Not suitable for hidden unit activation. **Il issues
chactivation fun
sigmoid function of**
positive or highly

Practical issues

Which activation function to use?

- igmoid function $σ(z)$: gradient $∇f(z)$ **saturates** when *z* is highly positive or highly negative. Not suitable for hidden unit activation.
 $tanh(z)$: similar to identity function near 0, resembles a linear model when act positive or highly negative. Not suitable for hidden unit activation.
- \triangleright *tanh*(*z*): similar to identity function near 0, resembles a linear model when activation is small, performs better than sigmoid. $(tanh(0) = 0, \space \sigma(0) = \frac{1}{2}).$

Practical issues

Which activation function to use?

- \triangleright *sigmoid* function $\sigma(z)$: gradient $\nabla f(z)$ **saturates** when *z* is highly positive or highly negative. Not suitable for hidden unit activation.
- \triangleright *tanh*(*z*): similar to identity function near 0, resembles a linear model when activation is small, performs better than sigmoid. $(tanh(0) = 0, \space \sigma(0) = \frac{1}{2}).$ *tanh*(*z*): similar to identity function nea
model when activation is small, perform
(*tanh*(0) = 0, σ (0) = $\frac{1}{2}$).
ReLu(*z*): easy to optimize (6 times fast
with affine transformation $g(W^Tx + b)$ sigmold function $\partial(z)$. gradient $\forall r(z)$ saturates when
positive or highly negative. Not suitable for hidden uni
tanh(z): similar to identity function near 0, resembles
model when activation is small, performs better tha
- \triangleright ReLu(*z*): easy to optimize (6 times faster than sigmoid), often used

Additional resources

Deep neural network is a relative young field with lots of empirical results. Read more on the practical things to do for building and training neural networks:

- **I** Stanford Class on Convolutional Neural Networks: http://cs231n.github.io
- ► Ian Goodfellow, Yoshua Bengio and Aaron Courville, *Deep Learning*,

MIT Press, 2016

 http://vision.stanford.edu/teaching/cs231n-demos/

linear-classify/ MIT Press, 2016

Demos:

 \blacktriangleright http://vision.stanford.edu/teaching/cs231n-demos/ linear-classify/

```
\blacktriangleright https://playground.tensorflow.org/
```