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Introduction [

Biological motivation Conn ectio nismne

Schematic of a single neuron:

impulses carried
toward cell body

¥ branches
of axon

dendrites

axon

nucleus terminals
—_—

impulses carried

away from cell body
cell body

Each neuron takes information from other neurons, processes them, and
——
then produces an output.
_—
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Biological motivation

How does a neuron process its input? (a coarse model)

» Takes the weighted average of | inputs, e.g. z = Z;IO w;(x;)

» Neuron fires if z is above some threshold
A
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Introduction

Biological motivation

How does a neuron process its input? (a coarse model)
» Takes the weighted average of / inputs, e.g. z = Z;:o w;(x;)

» Neuron fires if z is above some threshold I

We call the threshold function activation function.

“10 -5 5 10

10 -10 -5 ' 5 10

tanh(z) = S5 ReLu(z) = max{0, z}
= 2(sigmoid(2z)) — 1
Rectifying linear unit
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Biological motivation
An artificial neuron with inputs xi, xo and activation function f
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Biological motivation

An artificial neuron with inputs xi, xo and activation function f
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activation
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A single neuron is a (linear) binary classifier:

» When f is the sigmoid function, equivalent to binary softmax

> When f is the sign function, equivalent to the perceptron
R i ot 4b
sign (i‘w X )
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Neural networks

» The goal of a neural network is to approximate some function f*
such that y = f*(x).

> The neural network defines a mapping y :(:]X_H) and learns the
value of parameters 6 through training.
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Introduction [

Neural networks

» The goal of a neural network is to approximate some function f*
such that y = f*(x).

> The neural network defines a mapping y = f(x; 6) and learns the
value of parameters 6 through training.

» Define error function that measures prediction error of f: e.g. a
common error function used in classification is the logarithmic loss

“ogantimic J0s:
ak.a. cross-entropy loss: loq-lexs
Given P, A, distrhwtions u1- g.

p-l(&ﬂ—_fp((ogqmﬂ L = log(y) + (;l - :)’|0g(1‘ L,{)fy
B i_f(‘o)\"g(‘t‘jo_‘) P(yz - rec| lebel probe ot
>y =T1(x,0) is the predictgd output aLL‘j)—a FNJRM label PAL&L‘ y
> y is the true output 5‘,\_&

A single layer of neurons are unable to approximate complex functions.
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A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer. 7“"“3 (onnected
networe
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input layer
hidden layer 1 hidden layer 2
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Introduction

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.
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4 Y
» number of layers are called depth of the neural network

» number of units in a layer is called width of a layer
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The XOR problem

,Qf-p.;l\\k"\b AD-"'O-
XOR : the exclusive or
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Ny
o L

O |
O‘I—llb—lo

input layer

h(x) = B(WTf(Wix + by) + b)
activition function: f,(z), &(z)

) W W
network weights: W; = 0.2 0’4}
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by = | 27|, wo = by =wip
Wo,1 W11

hidden layer | output layer

output
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The XOR problem g, . j.(‘z‘- D) ( )
aL fC%L)
Wi, by, wa, by) é(szfl(Wlirb])erz) = sign(2)
S f 1{21>0} —1{z>0%. 0 | :sl tZo
uppose fi( 1—{7;—0} =1{z }+. One solution: _/]-01 2?::}

Sign f""“i input layer \ hidden layer \ output layer

output
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Introduction

The XOR problem

h(x; WA, by, wa, by) = fa(wy f(Wix + by) + bo)

Suppose fi(z) = [EZ i gﬂ ,f2(z) = 1{z > 0}. One solution:

input layer | hidden layer | output layer

output

Wo,1 + Wo3X + Wos%p =0

0 0 0 1
—

0 1 1 1

1 0 1 14
1 1 1 0
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The XOR problem

h(x; WA, by, wa, by) = fa(wy f(Wix + by) + bo)

Suppose fi(z) = Eg; i gﬂ ,f2(z) = 1{z > 0}. One solution:

.1 1D _ x) input layer | hidden layer | output layer
) @ (3.

a, WL

0,0 (1,0) outputy
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Introduction L

Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a

finite number of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation

function.
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a

finite number of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation

function.

» First proved by George Cybenko in 1989 for sigmoid activation
function;
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a

finite number of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation

function.

» First proved by George Cybenko in 1989 for sigmoid activation
function;

» With one hidden layer, layer width of an universal approximator has
to be exponentially large <~ More effective to increase the depth of

neural networks
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation
function.

» First proved by George Cybenko in 1989 for sigmoid activation
function;

» With one hidden layer, layer width of an universal approximator has
to be exponentially large <~ More effective to increase the depth of
neural networks

» RelLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)
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Introduction I

Overfitting

Increase the size and number of layers in a neural network,
> the capacity , i.e. representation power of the network increases.

» but overfitting can occur: fits the noise in the data instead of the
(assumed) underlying relationship’

3 hidden neurons 6 hidden neurons 20 hidden neurons
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Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L(w; X,y) = L(w; X,y) + AQ(w)

——
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Introduction I

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L(w; X,y) = L(w; X, y) —HCE(W) \l

> L2 parameter regularization: Q(w) = 1||w||3 = ww drives the
weights closer to the origin T

A =0.001 A=001 A=01

23/17



'
Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L(w; X,y) = L(w; X, y) + A\Q(w)

> L2 parameter regularization: Q(w) = ||w||3 = Jww drives the
weights closer to the origin
A =0.001 A=0.01 A=01

» L1 parameter regularization: Q(w) = ||w||; = Ele |w;| drives
solutions more sparse.
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: ITraining a Deep Feedforward Networkl

[Training a Deep Feedforward Network|
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: ITraining a Deep Feedforward Networkl
Forward pass and Backpropagation

See Powerpoint slides.
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E [Training a Deep Feedforward Net.work]
Practical issues s 1= 1@
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Which activation function to use?

» sigmoid function o(z): gradient_Vf(z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.
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Practical issues

[Training a Deep Feedforward Net.work]

— o ()

Which activation function to use?

» sigmoid function o(z): gradient Vf(z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

> tanh!z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.

(tanh(0) =0, o(0) = 3).
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E [Training a Deep Feedforward Net.work]
Practical issues

Which activation function to use?

» sigmoid function o(z): gradient Vf(z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

> tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) =0, o(0) = 3).
» Relu(z): easy to optimize (6 times faster than sigmoid), often used

with affine transformation g(W T x + b)
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E [Training a Deep Feedforward Net.workl
Additional resources

Deep neural network is a relative young field with lots of empirical results.
Read more on the practical things to do for building and training neural
networks:

» Stanford Class on Convolutional Neural Networks:
http://cs231n.github.io

» lan Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016

Demos:

» http://vision.stanford.edu/teaching/cs231n-demos/
linear-classify/

» https://playground.tensorflow.org/
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