
Learning From Data
Lecture 6: Deep Neural Networks

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

October 29, 2021

1 / 17

Introduction Training a Deep Feedforward Network

Today’s Lecture

I Introduction to neural networks
I Biological motivations
I A case study

I Training a deep feedforward neural network
I Forward pass
I Backward propagation

2 / 17

-10A Is ca÷÷itiw
the same as

hyp-i-ii-a-mo.ly#-FeEfT(yyx] µ = 94).=¥n .
sigmoid.

FanconicaF § ⇒ how = gcott)link

ANI
n = g-

'

gu > = log¥µ
.

=

-

I 1¥
.

Introduction Training a Deep Feedforward Network

Introduction

Biological motivation
The XOR example

3 / 17

Introduction Training a Deep Feedforward Network

Biological motivation

Schematic of a single neuron:

Each neuron takes information from other neurons, processes them, and
then produces an output.

4 / 17

connection is in

00& I
-

i

0 →
"
M
"

→

←

Introduction Training a Deep Feedforward Network

Biological motivation

How does a neuron process its input? (a coarse model)
I Takes the weighted average of l inputs, e.g. z =

Pl
i=0 wi (xi)

I Neuron fires if z is above some threshold

We call the threshold function activation function.

sigmoid(z) = 1
1+e�z tanh(z) = ez�e�z

ez+e�z ReLu(z) = max{0, z}
= 2(sigmoid(2z))� 1

Rectifying linear unit

5 / 17

÷

Introduction Training a Deep Feedforward Network

Biological motivation

How does a neuron process its input? (a coarse model)
I Takes the weighted average of l inputs, e.g. z =

Pl
i=0 wi (xi)

I Neuron fires if z is above some threshold
We call the threshold function activation function.

sigmoid(z) = 1
1+e�z tanh(z) = ez�e�z

ez+e�z ReLu(z) = max{0, z}
= 2(sigmoid(2z))� 1

Rectifying linear unit

6 / 17

"

y

.-0

Introduction Training a Deep Feedforward Network

Biological motivation

An artificial neuron with inputs x1, x2 and activation function f

A single neuron is a (linear) binary classifier:
I When f is the sigmoid function, equivalent to binary softmax
I When f is the sign function, equivalent to the perceptron

7 / 17

÷
-

o

-
0

HE
~

nonlinear

Introduction Training a Deep Feedforward Network

Biological motivation

An artificial neuron with inputs x1, x2 and activation function f

A single neuron is a (linear) binary classifier:
I When f is the sigmoid function, equivalent to binary softmax
I When f is the sign function, equivalent to the perceptron

8 / 17

-

- -

-

I sign (F.wi✗itbT

Introduction Training a Deep Feedforward Network

Neural networks

I The goal of a neural network is to approximate some function f ⇤

such that y = f ⇤(x).
I The neural network defines a mapping y = f (x ; ✓) and learns the

value of parameters ✓ through training.

I Define error function that measures prediction error of f : e.g. a
common error function used in classification is the logarithmic loss

a.k.a. cross-entropy loss:

L = y log(ŷ) + (1� y) log(1� ŷ)

I ŷ = f (x ; ✓) is the predicted output
I y is the true output

A single layer of neurons are unable to approximate complex functions.

9 / 17

-

-0.

-

Introduction Training a Deep Feedforward Network

Neural networks

I The goal of a neural network is to approximate some function f ⇤

such that y = f ⇤(x).
I The neural network defines a mapping y = f (x ; ✓) and learns the

value of parameters ✓ through training.
I Define error function that measures prediction error of f : e.g. a

common error function used in classification is the logarithmic loss

a.k.a. cross-entropy loss:

L = y log(ŷ) + (1� y) log(1� ŷ)

I ŷ = f (x ; ✓) is the predicted output
I y is the true output

A single layer of neurons are unable to approximate complex functions.

10 / 17

Ñs
Given P , Q . distributions
Hcp, g) = E- (logqcy))
- yup

= Ipiylogcqly# ⇒→ real.la#abicity
g--

- P qcy>→ predicted label probability.

F-a.EE.io'

Introduction Training a Deep Feedforward Network

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

f = f (3)(f (2)(f (1)(x)))

I number of layers are called depth of the neural network
I number of units in a layer is called width of a layer

11 / 17

fully connected
- network

-
-
-

W
Zo

✗ o Zi

Ki Zi

✗2 Z >
.

Introduction Training a Deep Feedforward Network

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

f = f (3)(f (2)(f (1)(x)))

I number of layers are called depth of the neural network
I number of units in a layer is called width of a layer

12 / 17

- - -

f
" f

' "

yes> Is
.Ko

y c- IR .

÷
I

3 .

4 4

-

Introduction Training a Deep Feedforward Network

The XOR problem

XOR : the exclusive or
x1 x2 y = x1 � x2
0 0 0
0 1 1
1 0 1
1 1 0

h(x) = f2(wT
2 f1(W1x + b1) + b2)

activition function: f1(z), f2(z)

network weights: W1 =


w0,2 w0,4
w0,3 w0,5

�
,

b1 =


w0,0
w0,1

�
,w2 =


w1,2
w1,1

�
, b2 = w1,0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

13 / 17

÷- -4

:oÑ• 1 q
O

b,
b2

Introduction Training a Deep Feedforward Network

The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =


1{z1 � 0}
1{z2 � 0}

�
, f2(z) = 1{z � 0}. One solution:

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1 x2 a1
0 0 0

0 1 1

1 0 1

1 1 1

14 / 17

a, __ -112-1) z= (Wixtbi)=(¥2)aL=f&Z2)
-

IO 0 a- signlz)

=/ I 2- 7- o

O - OIW .
.

nation 712-20}

ZIT

\-ÉÉw+Eo⇒±o .

⑧
2-1

- jor .

Introduction Training a Deep Feedforward Network

The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =


1{z1 � 0}
1{z2 � 0}

�
, f2(z) = 1{z � 0}. One solution:x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1 x2 a1 a2
0 0 0 1

0 1 1 1

1 0 1 1

1 1 1 0

15 / 17

0

E 11
.

Introduction Training a Deep Feedforward Network

The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =


1{z1 � 0}
1{z2 � 0}

�
, f2(z) = 1{z � 0}. One solution:

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1

w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

a1

a2

(0,0)

(0,1) (1,1)

(1,0)

w1,0 + w1,1a1 + w1,2a2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1

w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

a1

a2

(0,0)

(0,1) (1,1)

(1,0)

w1,0 + w1,1a1 + w1,2a2 = 0
x1 x2 a1 a2 y
0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

16 / 17

(1)
-

\ "} })
.

-ywz
.

(4) .

Tbz
.

hidden layer¥ .

"
'" yeatwee✗tra

Introduction Training a Deep Feedforward Network

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,

1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

I First proved by George Cybenko in 1989 for sigmoid activation
function;

I With one hidden layer, layer width of an universal approximator has
to be exponentially large More effective to increase the depth of
neural networks

I ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

17 / 17

-

Introduction Training a Deep Feedforward Network

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,

1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

I First proved by George Cybenko in 1989 for sigmoid activation
function;

I With one hidden layer, layer width of an universal approximator has
to be exponentially large More effective to increase the depth of
neural networks

I ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

18 / 17

-

Introduction Training a Deep Feedforward Network

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,

1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

I First proved by George Cybenko in 1989 for sigmoid activation
function;

I With one hidden layer, layer width of an universal approximator has
to be exponentially large More effective to increase the depth of
neural networks

I ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

19 / 17

=
-

Introduction Training a Deep Feedforward Network

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,

1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

I First proved by George Cybenko in 1989 for sigmoid activation
function;

I With one hidden layer, layer width of an universal approximator has
to be exponentially large More effective to increase the depth of
neural networks

I ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

20 / 17

-

=
.

-

width ⇒ depth , deeter.

Introduction Training a Deep Feedforward Network

Overfitting

Increase the size and number of layers in a neural network,
I the capacity , i.e. representation power of the network increases.
I but overfitting can occur: fits the noise in the data instead of the

(assumed) underlying relationship.

21 / 17

=
-

=

&

,

:

Introduction Training a Deep Feedforward Network

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + �⌦(w)

I L2 parameter regularization: ⌦(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

I L1 parameter regularization: ⌦(w) = ||w ||1 =
Pk

i=1 |wi | drives
solutions more sparse.

22 / 17

-

=

Introduction Training a Deep Feedforward Network

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + �⌦(w)

I L2 parameter regularization: ⌦(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

I L1 parameter regularization: ⌦(w) = ||w ||1 =
Pk

i=1 |wi | drives
solutions more sparse.

23 / 17

=

Introduction Training a Deep Feedforward Network

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + �⌦(w)

I L2 parameter regularization: ⌦(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

I L1 parameter regularization: ⌦(w) = ||w ||1 =
Pk

i=1 |wi | drives
solutions more sparse.

24 / 17

-

Introduction Training a Deep Feedforward Network

Training a Deep Feedforward Network

Forward pass and Backpropagation

25 / 17

Introduction Training a Deep Feedforward Network

Forward pass and Backpropagation

See Powerpoint slides.

26 / 17

Introduction Training a Deep Feedforward Network

Practical issues

Which activation function to use?

I sigmoid function �(z): gradient rf (z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

I tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, �(0) = 1

2).
I ReLu(z): easy to optimize (6 times faster than sigmoid), often used

with affine transformation g(W T x + b)

27 / 17

-

""
"⇒= .
when 2- is

very large
or

very small .

Introduction Training a Deep Feedforward Network

Practical issues

Which activation function to use?

I sigmoid function �(z): gradient rf (z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

I tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, �(0) = 1

2).

I ReLu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W T x + b)

28 / 17

-

⇒

Introduction Training a Deep Feedforward Network

Practical issues

Which activation function to use?

I sigmoid function �(z): gradient rf (z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

I tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, �(0) = 1

2).
I ReLu(z): easy to optimize (6 times faster than sigmoid), often used

with affine transformation g(W T x + b)

29 / 17

-

#
max(o# }

1
.

✗ Zo
.

0 . ✗CO

- -

$¥$#§¥←
sigmoid

7 I
Relu

-

Introduction Training a Deep Feedforward Network

Additional resources

Deep neural network is a relative young field with lots of empirical results.
Read more on the practical things to do for building and training neural
networks:

I Stanford Class on Convolutional Neural Networks:
http://cs231n.github.io

I Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016

Demos:
I http://vision.stanford.edu/teaching/cs231n-demos/

linear-classify/
I https://playground.tensorflow.org/

30 / 17

-

