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Today’s Lecture

Supervised Learning (Part III)
! Discriminative & Generative Models
! Gaussian Discriminant Analysis
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Discriminative & Generative Models
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Two Learning Approaches

Classify input data x into two classes y ∈ {0, 1}

Discriminate between
classes of data points

Model the underlying distribu-
tion of the data
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Discriminative Learning Algorithms
A class of learning algorithms that try to learn the
conditional probability p(y |x) directly or learn
mappings directly from X to Y.

! e.g. linear regression, logistic regression, k-Nearest Neighbors ...
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Generative Learning Algorithms
A class of learning algorithms that model the joint
probability p(x , y).

! Equivalently, generative algorithms model p(x |y) and p(y)

! p(y) is called the class prior
! Learned models are transformed to p(y |x) later to classify data

using Bayes’ rule

Bayes Rule
The posterior distribution on y given x :

p(y |x) = p(x |y)p(y)
p(x)

7 / 28

① = paly)PCy)
-

:-#
nm

c-

y c- 30,13 .

00
① R pl✗|y=o)plo)tP=P

)



Introduction Discriminative & Generative Models Gaussian Discriminant Analysis Naïve Bayes

Bayes Rule
The posterior distribution on y given x :

p(y |x) = p(x |y)p(y)
p(x)

Make predictions in a generative model:

argmax
y

p(y |x) = argmax
y

p(x |y)p(y)
p(x)

= argmax
y

p(x |y)p(y)

No need to calculate p(x).
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Generative Models

Generative classification algorithms:
! Continuous input: Gaussian Discriminant Analysis
! Discrete input: Naïve Bayes
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Gaussian Discriminant Analysis
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Gaussian Discriminant Analysis: Overview

Goal
Binary classification with input in X = Rn and label in Y = {0, 1}

Main steps
1. Select a data generating distribution .

y ∼ Bernoulli(φ)

x |y = 0 ∼ N(µ0,Σ), x |y = 1 ∼ N(µ1,Σ)

2. Estimate model parameters φ, µ0 ,µ1 and Σ from training data.
3. For any new sample x ′, predict its label by computing

p(y |x = x ′;φ, µ0, µ1,Σ)
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Multivariate Normal Distribution

Multivariate normal (or multivariate Gaussian) distribution N(µ,Σ)

! µ ∈ Rn is the mean vector,
! Σ ∈ Rn×n is the covariance matrix. Σ is symmetric and SPD.

Density function:

p(x ;µ,Σ) =
1

(2π)n/2 |Σ|1/2
e(−

1
2 (x−µ)TΣ−1(x−µ))

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:
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Multivariate Normal Distribution

Let X ∈ Rn be a random vector. If X ∼ N(µ,Σ),

E[X ] =

∫

x
p(x ;µ,Σ)dx = µ

Cov(X ) = E
[
(X − E[X ])(X − E[X ])T

]
= Σ
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Gaussian Discriminative Analysis

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Σ =

[
1 0
0 1

]
Σ =

[
0.6 0
0 0.6

]
Σ =

[
2 0
0 2

]

Diagonal entries of Σ controls the “spread” of the distribution
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Gaussian Discriminative Analysis

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Σ =

[
1 0
0 1

]
Σ =

[
1 0.5

0.5 1

]
Σ =

[
1 0.8

0.8 1

]

The distribution is no longer oriented along the axes when off-diagonal
entries of Σ are non-zero.
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Gaussian Discriminant Analysis (GDA) Model

Given parameters φ, µ0, µ1,Σ,

y ∼ Bernoulli(φ)
x |y = 0 ∼ N (µ0,Σ)

x |y = 1 ∼ N (µ1,Σ)

Probability density functions:

p(y) = φy (1 − φ)1−y

p(x |y = 0) =
1

(2π)n/2 |Σ|1/2
e(−

1
2 (x−µ0)

TΣ−1(x−µ0))

p(x |y = 1) =
1

(2π)n/2 |Σ|1/2
e(−

1
2 (x−µ1)

TΣ−1(x−µ1))
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Log likelihood of the data:

l(φ, µ0, µ1,Σ) = log
m∏

i=1

p(x (i), y (i);φ, µ0, µ1,Σ)

= log
m∏

i=1

p(x (i)|y (i);µ0, µ1,Σ)p(y
(i);φ)

Maximum likelihood estimate of the parameters:

φ =
1
m

m∑

i=1

1{y (i) = 1}

µb =

∑m
i=1 1{y (i) = b}x (i)∑m

i=1 1{y (i) = b}
for b = 0, 1

Σ =
1
m

m∑

i=1

(x (i) − µy (i))(x (i) − µy (i))T
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Log likelihood of the data:

l(φ, µ0, µ1,Σ) = log
m∏

i=1

p(x (i), y (i);φ, µ0, µ1,Σ)

= log
m∏

i=1

p(x (i)|y (i);µ0, µ1,Σ)p(y
(i);φ)

Maximum likelihood estimate of the parameters:

φ =
1
m

m∑

i=1

1{y (i) = 1}

µb =

∑m
i=1 1{y (i) = b}x (i)∑m

i=1 1{y (i) = b}
for b = 0, 1

Σ =
1
m

m∑

i=1

(x (i) − µy (i))(x (i) − µy (i))T
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Log likelihood of the data:

l(φ, µ0, µ1,Σ) = log
m∏

i=1

p(x (i), y (i);φ, µ0, µ1,Σ)

= log
m∏

i=1

p(x (i)|y (i);µ0, µ1,Σ)p(y
(i);φ)

Maximum likelihood estimate of the parameters:

φ =
1
m

m∑

i=1

1{y (i) = 1}

µb =

∑m
i=1 1{y (i) = b}x (i)∑m

i=1 1{y (i) = b}
for b = 0, 1

Σ =
1
m

m∑

i=1

(x (i) − µy (i))(x (i) − µy (i))T
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Maximum likelihood estimation of GDA
GDA finds a linear decision boundary at which
p(y = 1|x) = p(y = 0|x) = 0.5
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GDA and Logistic Regression

Proposition
p(y = 1|x ;φ, µ0, µ1,Σ) can be written in the form:

p(y = 1|x ;φ,Σ, µ0, µ1) =
1

1 + e−θT x

θ =

[
θ1
θ2

]
=

[
Σ−1(µ1 − µ0)

1
2 (µ

T
0 Σ

−1µ0 − µT
1 Σ

−1µ1)− log 1−φ
φ

]
, x =





x1
...
xn
1





Similarly,

p(y = 0|x ;φ,Σ, µ0, µ1) =
1

1 + eθT x

If p(x |y) ∼ N (µ,Σ), p(y |x) is a logistic function.
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GDA and Logistic Regression

Proposition
p(y = 1|x ;φ, µ0, µ1,Σ) can be written in the form:

p(y = 1|x ;φ,Σ, µ0, µ1) =
1

1 + e−θT x

θ =

[
θ1
θ2

]
=

[
Σ−1(µ1 − µ0)

1
2 (µ

T
0 Σ

−1µ0 − µT
1 Σ

−1µ1)− log 1−φ
φ

]
, x =





x1
...
xn
1





Similarly,

p(y = 0|x ;φ,Σ, µ0, µ1) =
1

1 + eθT x

If p(x |y) ∼ N (µ,Σ), p(y |x) is a logistic function.
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GDA and Logistic Regression

Proposition
p(y = 1|x ;φ, µ0, µ1,Σ) can be written in the form:

p(y = 1|x ;φ,Σ, µ0, µ1) =
1

1 + e−θT x

θ =

[
θ1
θ2

]
=

[
Σ−1(µ1 − µ0)

1
2 (µ

T
0 Σ

−1µ0 − µT
1 Σ

−1µ1)− log 1−φ
φ

]
, x =





x1
...
xn
1





Similarly,

p(y = 0|x ;φ,Σ, µ0, µ1) =
1

1 + eθT x

If p(x |y) ∼ N (µ,Σ), p(y |x) is a logistic function.
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GDA and Logistic Regression

GDA
! Maximizes the joint likelihood

∏m
i=1 p(x

(i), y (i))

! Modeling assumptions: x |y=b ∼ N (µb,Σ), y ∼ Bernoulli(φ)
! When modeling assumptions are correct, GDA is asymptotically

efficient and data efficient

Logistic Regression
! Maximizes the conditional likelihood

∏m
i=1 p(y

(i)|x (i))
! Modeling assumptions: p(y |x) is a logistic function; no restriction

on p(x)

! More robust and less sensitive to incorrect modeling assumptions.
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Naïve Bayes
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Naïve Bayes: Motivating Example

A simple generative learning algorithm for discrete input variables

Example: Spam filter (document classification)
Classify email messages x to spam (y = 1) and non-spam (y = 0) classes.

A sample spam email
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Example: Spam Filter

Binary text features
Given a dictionary of size n, represent a
message composed of dictionary words as
x ∈ {0, 1}n:

xi =

{
1 i-th dictionary word is in message
0 otherwise

x =





0
0
...
1
...
1
...
0





a
aardvark
...
casino
...
payout
...
zyzzyva

27 / 28

:-|
.

E-

-

=

0

I



Introduction Discriminative & Generative Models Gaussian Discriminant Analysis Naïve Bayes

Naïve Bayes Model

Probability of observing email x1, . . . , xn given spam class y :

p(x1, . . . , xn|y) = p(x1|y)p(x2|y , x1), . . . , p(xn|y , x1, . . . , xn−1)

Naïve Bayes (NB) assumption
xi ’s are conditionally independent given y :

p(xi |y , x1, . . . , xi−1) = p(xi |y)

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y) =
n∏

i=1

p(xi |y)

28 / 28
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Naïve Bayes Parameters

Multi-variate Bernoulli event model
x |y generated from n independent Bernoulli trials

p(x , y) = p(y)p(x |y) = p(y)
n∏

i=1

p(xi |y)

! y ∼ Bernoulli(φy ) : assume email class (spam vs no-spam) is
randomly generated with prior p(y) = φy

y (1 − φy )1−y

! xi |y = b ∼ Bernoulli(φi|y=b), b = 1, 2 : given y = b, each word xi is
included in the message independently with
p(xi = 1|y = b) = φi|y=b. i.e.

p(xi |y = b) = φxi
i|y=b(1 − φi|y=b)

1−xi

Model parameters:
! φy

! φi|y=1,φi|y=0 for i = 1, . . . , n
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Naïve Bayes Parameter Learning

Likelihood of training data (x (1), y (1)), . . . , (x (m), y (m)):

L(φy ,φj|y=0,φj|y=1) =
m∏

i=1

p(x (i), y (i))

Maximum likelihood estimation of parameters:

φy =
1
m

m∑

i=1

1{y (i) = 1} % of spam emails

φj|y=b =

∑m
i=1 1{x (i)j = 1, y (i) = b}
∑m

i=1 1{y (i) = b}
for b = 1, 0

% of spam(non-spam) emails containing jth dictionary word
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Naïve Bayes Prediction

Given new example with feature x , compute the posterior probability

p(y = 1|x) = p(x |y = 1)p(y = 1)
p(x)

=
p(x |y = 1)p(y = 1)

p(x |y = 1)p(y = 1) + p(x |y = 0)p(y = 0)

=

∏n
i=1 p(xi |y = 1)p(y = 1)∏n

i=1 p(xi |y = 1)p(y = 1) +
∏n

i=1 p(xi |y = 0)p(y = 0)

Choose label y = 1 (spam) if p(y = 1|x) > T where T ∈ [0, 1] is a
threshold .. e.g. T = 0.5
T tradeoff between wrongly blocked non-spam (FPs) vs. wrongly blocked
spams (FNs).
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Laplace smoothing

Issue with Naïve Bayes prediction:
! Suppose word xj hasn’t been seen in the training data,

φj|y=1 =

φj|y=0 = 0
! Can not compute class posterior p(y = 1|x) = 0

0 .

Laplace smoothing
Let z ∈ {1, . . . , k} be a multinomial random variable. Given m
independent observations z (1) . . . z (m), maximum likelihood estimation of
φj = p(z = j) with Laplace smoothing is

φj =

∑m
i=1 1{z (i) = j}+ 1

m + k

! φj $= 0 for all j
!

∑k
j=1 φj = 1
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Laplace smoothing

Issue with Naïve Bayes prediction:
! Suppose word xj hasn’t been seen in the training data,

φj|y=1 = φj|y=0 = 0
! Can not compute class posterior p(y = 1|x) = 0

0 .

Laplace smoothing
Let z ∈ {1, . . . , k} be a multinomial random variable. Given m
independent observations z (1) . . . z (m), maximum likelihood estimation of
φj = p(z = j) with Laplace smoothing is

φj =

∑m
i=1 1{z (i) = j}+ 1

m + k

! φj $= 0 for all j
!

∑k
j=1 φj = 1
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Laplace smoothing

Issue with Naïve Bayes prediction:
! Suppose word xj hasn’t been seen in the training data,

φj|y=1 = φj|y=0 = 0
! Can not compute class posterior p(y = 1|x) = 0

0 .

Laplace smoothing
Let z ∈ {1, . . . , k} be a multinomial random variable. Given m
independent observations z (1) . . . z (m), maximum likelihood estimation of
φj = p(z = j) with Laplace smoothing is

φj =

∑m
i=1 1{z (i) = j}+ 1

m + k

! φj $= 0 for all j
!

∑k
j=1 φj = 1
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Naïve Bayes with Laplace smoothing

Apply Laplace smoothing to φj|y=b for b ∈ {0, 1}

φj|y=b =

∑m
i=1 1{x (i)j = 1, y (i) = b}+ 1

∑m
i=1 1{y i = b}+ 2

In practice we don’t apply Laplace smoothing to φy = p(y = 1), which is
greater than 0.
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Naïve Bayes Summary

Naïve Bayes (NB) assumption
xi ’s are conditionally independent given y :

p(x1, . . . , xn|y) =
n∏

i=1

p(xi |y)

Different event models
! Multi-variate Bernoulli model: represent document of vocab size

n as n independent Bernoulli trails
! Multinomial event model: represent document of N words as

x = {x1, . . . , xn} where xi ∈ {1, . . . ,K}. (not covered)
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Homework

! Programming Assignment 1 late submission.
! TA sessions
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