Learning From Data Lecture 4: Generative Learning Algorithms

Yang Li yangli@sz.tsinghua.edu.cn

October 9, 2021

Introduction

Today's Lecture

Supervised Learning (Part III)

- **Discriminative & Generative Models Lecture**

Vised Learning (Part III)

Viscriminative & Generative Model

Viscriminative & Generative Model

Visual Discriminant Analysis
- \triangleright Gaussian Discriminant Analysis

 ϵ

Discriminative & Generative Models

Two Learning Approaches

Discriminate between

Model the underlying distribution of the data

 $\overline{P(\kappa,y)}$ Joint distribution

Discriminative Learning Algorithms

A class of learning algorithms that try to learn the **conditional probability** $p(y|x)$ directly or learn mappings directly from *X* to *Y*. x

ative Learning Algo

learning algorithms t

al probability $p(y|x)$

directly from $\mathcal X$ to $\mathcal Y$

! e.g. linear regression, logistic regression, k-Nearest Neighbors ...

Generative Learning Algorithms

A class of learning algorithms that model the **joint** A class of learning alg
probability $p(x, y)$. Algorithms
prithms that model the **joir**
p(xlg)P(y)

-
- \blacktriangleright Equivalently, generative algorithms model $p(x|y)$ and $p(y)$ $p(x|y)$ and $p(y)$
- \blacktriangleright $p(y)$ is called the **class prior**
- Eearned models are transformed to $p(y|x)$ later to classify data
using Bayes' rule using Bayes' rule

Bayes Rule

Make predictions in a generative model:

$$
\arg\max_{y} \frac{y}{\sqrt{y(x)}} = \arg\max_{y} \frac{p(x|y)p(y)}{p(x)} = \arg\max_{y} p(x|y)p(y)
$$
\n
$$
\arg\max_{y} p(x|y)p(y)
$$
\n
$$
\arg\max_{y} p(x|y)p(y)
$$
\n
$$
\arg\max_{y} p(x|y)p(y)
$$

No need to calculate *p*(*x*).

Generative Models

Generative classification algorithms:

 \blacktriangleright Continuous input: Gaussian Discriminant Analysis

 $(\underline{\mathcal{G}}\underline{\mathsf{PA}})$

Discrete input: Naïve Bayes Exercistive Models

Internative Models

Continuous input: Gaussia

Biscrete input: Maïve Baye

Gaussian Discriminant Analysis

2. Estimate model parameters ϕ , μ_0 , μ_1 and Σ from training data. 3. For any new sample *x*! , predict its label by computing $p(y|x = x'; \phi, \mu_0, \mu_1, \Sigma)$ 2. Estimate model parameters ϕ , μ_0 , μ_1 and Σ from training data. $P(x, y)$

3. For any new sample x', predict its label by computing

 $N \times 1$

Multivariate Normal Distribution

Multivariate normal (or multivariate Gaussian) distribution *N*(*µ,* Σ)

- \blacktriangleright $\mu \in \mathbb{R}^n$ is the mean vector,
- $\blacktriangleright \Sigma \in \mathbb{R}^{n \times n}$ is the covariance matrix. Σ is symmetric and SPD. $r(x) = \frac{r(x) - \frac{r(x)}{2}}{x^2 + \frac{r(x)}{2}}$

Density function:

Multivariate Normal Distribution

Let *X* ∈ \mathbb{R}^n be a random vector. If *X* ∼ *N*(μ , Σ),

$$
\mathbb{E}[X] = \int_{x} p(x; \mu, \Sigma) dx = \mu
$$

Cov(X) = $\mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{T}] = \Sigma$

Gaussian Discriminative Analysis tsian Discriminative Analysis

Diagonal entries of Σ controls the "spread" of the distribution \sim 0.6I; and in the rightmost figure shows one with \sim

Gaussian Discriminative Analysis

The distribution is no longer oriented along the axes when off-diagonal entries of Σ are non-zero.

Gaussian Discriminant Analysis (GDA) Model

Given parameters $\phi, \mu_0, \mu_1, \Sigma$,

$$
\begin{aligned}\n\text{parameters } \phi, \mu_0, \mu_1, \Sigma, \\
\frac{y \sim \text{Bernoulli}(\phi)}{x|y = 0 \sim \mathcal{N}(\mu_0, \Sigma)} \\
x|y = 1 \sim \mathcal{N}(\mu_1, \Sigma)\n\end{aligned}
$$

Probability density functions:

eters
$$
\phi
$$
, μ_0 , μ_1 , Σ ,
\n
$$
\frac{\partial}{\partial \phi} = 0 \sim \mathcal{N}(\mu_0, \Sigma)
$$
\n
$$
= 1 \sim \mathcal{N}(\mu_1, \Sigma)
$$
\n
$$
\rho(y) = \frac{\phi^{y}(1-\phi)^{1-y}}{2\pi y^{1/2}} = \frac{\rho(y) \cdot \phi^{(1-\phi)}(1-\phi)}{2\pi y^{1/2}} = \frac{\rho(y) \cdot \phi^{(1-\phi)}(1-\phi)}{2\pi y^{1/2}} = \frac{\rho(y) \cdot \phi^{(1-\phi)}(1-\phi)}{2\pi y^{1/2}} = \frac{\rho(y) \cdot \phi^{(1-\phi)}(1-\phi)}{\pi y^{1/2}} = \frac{\rho(y) \cdot \phi^{(1-\phi)}(1-\phi)}{\pi y^{1/2}} = \frac{\rho(y) \cdot \phi^{(1-\phi)}(1-\phi)}{\pi y^{1/2}}
$$

 0.15 0.1 0.05

 $L=\sum_{i=1}^{M}log \frac{1}{(\ln \frac{1}{2})^{2}|\frac{1}{2}|^{2}}+\frac{(-\frac{1}{2}(x^{2}-\mu_{y}))^{2} \sum_{i}(x^{2}-\mu_{y})}{n}$ $+\sum_{i=1}^{m}y^{i}log\phi +((-y^{i})log(1-\phi))$

r

 $\frac{\partial L}{\partial \phi} = \sum_{i=1}^{m} y^{(i)} \frac{\partial}{\partial \phi} \left(\frac{\partial}{\partial y} \phi + (1 - y^{i}) \frac{\partial}{\partial \phi} \left(\frac{\partial}{\partial y} \left(1 - \phi \right) \right)$ $\frac{26}{10}$ $+\frac{(1-9^{63})}{1-9}(1)$ $=\frac{1}{\phi}\sum_{i=1}^{\infty}y^{(i)}=-\frac{1}{1-\phi}\sum_{i=1}^{\infty}(1-y)^{i}$ $\frac{\sum_{i=1}^{n} (1 - y_i^{(i)})}{y_i^{(i)}}$ $C = \left[\frac{\# of 1^{1/3} \text{ in}}{\# oning data} \right] = \sum_{i=1}^{m} 1 \{ 3^{(i)} = 1 \}$ $m - c$ $\mathbb{O}_{\mathbb{V}_{\mathsf{X}}(\mathsf{X}^{\mathsf{T}}\mathsf{A}\mathsf{x})}$ Facts ⁼ $rac{c}{\phi}$ - $-39 + 1$
 $+(-9)$ $= 0$ $c(1-p) = p(m-c)$
= Ax + Atx - $= A \star + A^{\dagger} \times$ $c - c \not\!\!\!> - \not\!\!\!> (m-c) = 0$. A is symmetric $c - \phi(c+m-c) = 0$ $= 2Ax$. $\cancel{p} = \frac{c}{m} = \frac{1}{m} \sum_{i=1}^{m} (y^{i} - 1)$ $\frac{\partial L}{\partial u} = \sum_{n=0}^{m} \nabla_{\mu_{0}} - \frac{1}{2} (x^{(1)} - \mu_{0})^{T} \sum_{n=0}^{T-1} (x^{(2)} - \mu_{0})$ θ ^{to} $\frac{1}{4}$ $= \sum_{r=1}^{9^{(1)}-9} -\frac{1}{2} \cdot 2 \sum_{r} (x^{(1)}-1) (-1)$ $=\sum_{i=1}^{m} \sum_{i=1}^{n} (x^{i}-\mu_{i}) = 0$ $(\frac{1}{2})$ (-1) $\frac{\sum_{i=1}^{m} x^{i} - \sum_{i=1}^{m} \mu_{i}=0}{\sqrt{\frac{x^{i}}{2}} \sqrt{\frac{x^{i}}{2}}}$
 $\Rightarrow \frac{\sum_{i=1}^{m} (x^{i} - \mu_{i})}{\sqrt{\frac{x^{i}}{2}} \sqrt{\frac{x^{i}}{2}} \sqrt{\frac{x^{i}}{2}}}}$ $\sum_{i=1}^{m} -\frac{1}{2} \cdot 2 \sum_{i} (x^{i} - \mu_{\bullet}) (-1) \underbrace{\frac{1}{\sqrt{2}} \cdot 2}_{\frac{1}{\sqrt{2}} \cdot 2} \underbrace{\frac{1}{\sqrt{2}} \cdot 2}_{\frac{1}{\sqrt{2}} \cdot 2}$
 $\sum_{i=1}^{m} (x^{i} - \mu_{\bullet}) = 0 \Rightarrow \sum_{i=1}^{m} (x^{i} - \mu_{\bullet}) = 0$
 $\sum_{i=1}^{m} (x^{i} - \mu_{\bullet}) = 0$
 $\sum_{i=1}^{m} (x^{i} - \mu_{\bullet}) =$ m $\sum_{i=1}^{n} \frac{1}{1} \frac{1}{1} \frac{1}{1} = o \frac{1}{1} \times \frac{1}{1} = \sum_{i=1}^{n} \frac{1}{1} \frac{1}{1} \frac{1}{1} = o \frac{1}{1} \times \frac{1}{1} = o$ $\mu_{0} = \sum_{i=1}^{m} \frac{1}{3} y_{i=0}^{i} x_{i}^{i}$
 $\sum_{i=1}^{m} \frac{1}{3} y_{i=0}^{i}$ $\sum_{i=1}^{m} \frac{1}{3} y_{i}=0$ $\sum_{i=1}^{n} 1! 4i = 0$ class 0 . $\frac{\partial L}{\partial \mu_1} = 0 \implies \mu_1 = \frac{\sum_{i=1}^{m} H_i y^2 = 1}{\sum_{i=1}^{m} H_i y^2 = 1} \times \frac{1}{2}$

$$
L = \underbrace{\int_{\frac{\zeta}{\zeta}}^{\infty} \int_{\frac{\zeta}{\zeta}} \frac{\sin \pi x}{\sqrt{2} \int_{\frac{\zeta}{\zeta}}^{\infty} \int_{\frac{\zeta}{\zeta}}^{\infty} \frac{\sin \pi x}{\sqrt{2} \int_{\frac{\zeta}{\
$$

Log likelihood of the data:

$$
I(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)
$$

=
$$
\log \prod_{i=1}^{m} p(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi)
$$

Log likelihood of the data:

$$
I(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)
$$

=
$$
\log \prod_{i=1}^{m} p(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi)
$$

Maximum likelihood estimate of the parameters:

$$
\phi = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} \{ y^{(i)} = 1 \}
$$
\n
$$
\mu_b = \frac{\sum_{i=1}^{m} \mathbf{1} \{ y^{(i)} = b \} x^{(i)}}{\sum_{i=1}^{m} \mathbf{1} \{ y^{(i)} = b \}} \text{ for } b = 0, 1
$$
\n
$$
\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^T
$$

Maximum likelihood estimation of GDA

GDA finds a linear decision boundary at which $p(y = 1|x) = p(y = 0|x) = 0.5$

GDA and Logistic Regression A and Logistic
Proposition
 $p(y = 1 | x; \phi, \mu_0, \mu_1)$

Proposition

 $p(y = 1 | x; \phi, \mu_0, \mu_1, \Sigma)$ can be written in the form:

$$
\mu_1, \Sigma
$$
 can be written in the form:

$$
p(y = 1 | x; \phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + e^{-\theta^T x}}
$$

GDA and Logistic Regression -

Proposition

$$
p(y = 1 | x; \phi, \mu_0, \mu_1, \Sigma) \text{ can be written in the form:}
$$
\n
$$
p(y = 1 | x; \phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + e^{(\phi/\phi)}}
$$
\n
$$
\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \begin{bmatrix} \theta_2 \\ \theta_3 \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} (\mu_1 - \mu_0) \\ \sum_{i=1}^{n} (\mu_0 - \mu_1^T \Sigma^{-1} \mu_1) - \log \frac{1 - \phi}{\phi} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ x_n \end{bmatrix}
$$
\n
$$
p(y = 1 | x; H) = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1; H)}{P(x | y = 1; H) P(y = 1; H)} = \frac{p(x | y = 1; H) P(y = 1
$$

GDA and Logistic Regression

Proposition

 $p(y = 1 | x; \phi, \mu_0, \mu_1, \Sigma)$ can be written in the form:

$$
p(y = 1 | x; \phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + e^{-\theta^T x}}
$$

$$
\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \Sigma^{-1}(\mu_1 - \mu_0) \\ \frac{1}{2}(\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1) - \log \frac{1-\phi}{\phi} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ x_1 \end{bmatrix}
$$

\nSimilarly,
\n
$$
p(y = 0 | x; \phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + e^{\theta^T x}}
$$

\nIf $p(x | y) \sim \mathcal{N}(\mu, \Sigma)$, $p(y | x)$ is a logistic function.

Similarly,

$$
p(y = 0 | x; \phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + e^{\theta^T x}}
$$

$$
\Sigma
$$
, $p(y | x)$ is a logistic function.

If *p*(*x|y*) ∼ *N* (*µ,* Σ), *p*(*y|x*) is a logistic function.

GDA and Logistic Regression

- Maximizes the **joint likelihood** $\prod_{i=1}^{m} p(x^{(i)}, y^{(i)})$
- ! Modeling assumptions: *x|y*=*b* ∼ *N* (*µb,* Σ), *y* ∼ Bernoulli(φ) pcg) .
- ▶ When modeling assumptions are correct, GDA is asymptotically efficient and data efficient $\text{Bernoulli}(\phi)$
asymptotic: $\sqrt{21 - 21}$
Aaximizes the **joint likelih**
Aodeling assumptions: x/y
Vhen modeling assumption
fricient and **data efficien** GDA is as
 $\lim_{i=1}^{m} p(y^{(i)})$;
ic function;

Logistic Regression

- \blacktriangleright Maximizes the **conditional likelihood** $\prod_{i=1}^{m} p(y^{(i)} | x^{(i)})$
- \triangleright Modeling assumptions: $p(y|x)$ is a logistic function; no restriction $\text{on}(p(x))$ nal lik
 $\frac{p(y|x)}{y(x)}$
- \triangleright More robust and less sensitive to incorrect modeling assumptions.

Naïve Bayes: Motivating Example

A simple generative learning algorithm for discrete input variables

Example: Spam filter (document classification)

Classify email messages x to spam $(y = 1)$ and non-spam $(y = 0)$ classes. (document classification)
 \times to spam $(y = 1)$ and non-spam $(y = 0)$

A simple generative learning algorithm for disc

Example: Spam filter (document classifica

Classify email messages \times to spam $(y = 1)$ and

We need to confirm your info...

(1) FINAL MESSAGE: Payout Verification - \$3000

A sample spam email

Example: Spam Filter

Binary text features

Given a dictionary of size *n*, represent a
Given a dictionary of size *n*, represent a message composed of dictionary words as *^x* [∈] *{*0*,* ¹*}ⁿ*:

 x_i $\sqrt{ }$ $\overbrace{(\begin{smallmatrix} x_i \\ y_i \end{smallmatrix})}^{\wedge} = \begin{cases} 1 \\ 0 \end{cases}$

i-th dictionary word is in message 0 otherwise

Naïve Bayes Model $P(Y)$

Probability of observing email *x*1*,..., xⁿ* given spam class *y* :

Answer	
ayes Model	$(k! y)$
blility of observing email x_1, \ldots, x_n given spam class y :\n $p(x_1, \ldots, x_n y) = p(x_1 y) p(x_2 y, x_1), \ldots, p(x_n y, x_1, \ldots, x_{n-1})$ \n	
Bayes (NB) assumption	

Naïve Bayes (NB) assumption
\n
$$
x_i
$$
's are conditionally independent given y:
\n
$$
p(x_i|y, x_1,...,x_{i-1}) = p(x_i|y)
$$
\n
$$
p(x | y) = p(x_1, ..., x_n|y) = p(x_1|y)p(x_2|y)...p(x_n|y) = \prod_{i=1}^{n} p(x_i|y)
$$
\n
$$
p(x_i | y)
$$
\n
$$
p(x_i | y) = p(x_i | y)p(x_2|y)...p(x_n|y) = \prod_{i=1}^{n} p(x_i|y)
$$

Naïve Bayes Parameters

Naïve Bayes Parameter Learning

We Bayes Parameter Learning

\nLikelihood of training data
$$
(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})
$$
: $(x \cdot d)$

\n $L(\phi_y, \phi_{j|y=0}, \phi_{j|y=1}) = \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}) \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}) p(y^{(i)})$

\nMaximum likelihood estimation of parameters:

Maximum likelihood estimation of parameters:

$$
L(\theta)
$$
\n
$$
L(\phi_y, \phi_{j|y=0}, \phi_{j|y=1}) = \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}) \prod_{i=1}^{n} p(\hat{x}) y^{(i)}) p(y^{(i)})
$$
\n
$$
L(\phi_y, \phi_{j|y=0}, \phi_{j|y=1}) = \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}) \prod_{i=1}^{n} p(\hat{x}) y^{(i)}) p(y^{(i)})
$$
\n
$$
L(\phi_y, \phi_{j|y=0}, \phi_{j|y=1}) = \prod_{i=1}^{m} \sum_{j=1}^{n} 1 \{y^{(i)} = 1\}
$$
\n
$$
\phi_y \dots, \phi_{n} \in \underbrace{\sum_{i=1}^{m} 1 \{y^{(i)} = 1, y^{(i)} = b\}}_{\text{sum } j \neq j} \sum_{j=1}^{n} \underbrace{\sum_{j=1}^{n} 1 \{y^{(i)} = b\}}_{\text{sum } j \neq j} \text{ for } b = 1, 0 \text{ if } y = 1, 0, \text{ and } y =
$$

Naïve Bayes Prediction

$$
\text{span}\{x_1,\ldots,x_n\}
$$

Given new example with feature x, compute the posterior probability
\n
$$
p(y = 1|x) = \frac{p(x|y = 1)p(y = 1)}{p(x)}
$$
\n
$$
B_0 + \ln \frac{N}{2} + \ln \frac{N}{2}
$$
\n
$$
= \frac{p(x|y = 1)p(y = 1)}{p(x|y = 1)p(y = 1)} + \frac{p(x|y = 0)p(y = 0)}{p(x|y = 1)p(y = 1) + \frac{p(x|y = 0)p(y = 0)}{p(x|y = 1)p(y = 1) + \frac{p(x|y = 1)p(y = 1)}{p(x|y = 1)p(y = 1) + \frac{p(x|y = 0)p(y = 0)}{p(x|y = 1)p(y = 1) + \frac{p(x|y = 0)p(y = 0)}{p(x|y = 0)p(y = 0)}}
$$
\nChoose label y = 1 (spam) if p(y = 1|x) > T where T \in [0, 1] is a threshold ... e.g. T = 0.5
\nT tradeoff between wrongly blocked non-spam (FBs) vs. wrongly blocked

Choose label *y* = 1 (spam) if $p(y = 1|x) > T$ where $T \in [0, 1]$ is a threshold \therefore e.g. $T = 0.5$ *T tradeo*ff *between wrongly blocked non-spam (FPs) vs. wrongly blocked spams (FNs).* . $\underline{T} \in [0, 1]$ tradeoff between wrongly blocked non-spam (FPs) vs. wrongly
ams (FNs).
false negatives .

Laplace smoothing

Issue with Naïve Bayes prediction:

► Suppose word x_j hasn't been seen in the training data, $\phi_{j|y=1} =$ $F_{0}r$ all $\frac{1}{r}$ = y ... , m, $\frac{1}{r}$ + y = 1 $\frac{1}{r}$ = 0 %iy=÷. -É÷¥¥;÷¥ " " $= 0$ $\begin{cases} \n\langle \phi_j | \mathbf{y} = 0 \rangle & \text{if } p(x_L | \mathbf{y} = 0) \text{ if } L = j \n\end{cases}$

Laplace smoothing

Issue with Naïve Bayes prediction:

- Suppose word x_j hasn't been seen in the training data, $\phi_{i|y=1} = \phi_{i|y=0} = 0$ in the tra
 $p(y = 1|x)$
- ▶ Can not compute class posterior $p(y = 1|x) = \frac{0}{0}$.

Laplace smoothing

Issue with Naïve Bayes prediction:

 \triangleright Suppose word x_i hasn't been seen in the training data, $\phi_{i|y=1} = \phi_{i|y=0} = 0$

► Can not compute class posterior $p(y = 1|x) = \frac{0}{0}$.

 $\phi_j \Rightarrow$

Laplace smoothing

Let $z \in \{1, \ldots, k\}$ be a multinomial random variable. Given *m* independent observations $z^{(1)} \dots z^{(m)}$, maximum likelihood estimation of $\phi_j = p(z = j)$ with Laplace smoothing is $\phi_j = \frac{\left(\sum_{i=1}^m 1\{z^{(i)} = j\}\right) + \left(1\right)}{\sqrt{m+k}}$ $\sum_{i=1}^{m}$ Can not compute class posterior $p(y = 1|x) = \frac{0}{0}$.
 $\phi_j = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{2} \sum_{i=1}^{k} \frac{1}{2} \sum_{j=1}^{k} \frac{1}{2} \$ $\Sigma \phi$ j = 1.

 $\binom{m}{i=1} 1\{z^{(i)}=j\}+1$ $m + k$

 \sum_{τ} $\frac{t}{\epsilon}$

$$
\blacktriangleright \phi_j \neq 0 \text{ for all } j
$$

$$
\blacktriangleright \sum_{j=1}^k \phi_j = 1
$$

Naïve Bayes with Laplace smoothing

Apply Laplace smoothing to $\phi_{j|y=b}$ for $b \in \{0,1\}$

$$
\phi_{j|y=b} = \frac{\sum_{i=1}^{m} \mathbf{1}\{x_j^{(i)} = 1, y^{(i)} = b\} \oplus \mathbf{1}}{\sum_{i=1}^{m} \mathbf{1}\{y^i = b\} \oplus \mathbf{2}}
$$

In practice we don't apply Laplace smoothing to $\phi_y = p(y = 1)$, which is greater than 0.

Naïve Bayes Summary

Naïve Bayes (NB) assumption

xi's are conditionally independent given *y*:

$$
p(x_1,\ldots,x_n|y)=\prod_{i=1}^n p(x_i|y)
$$

Different event models

Oifferent event models
 B Multi-variate Bernoulli model: represent document of vocab size

a a a independent Bernoulli trails *n* as *n* independent Bernoulli trails Bayes Summary

Sayes Summary

Sare conditionally independent given y:
 $p(x_1,...,x_n|y) = \prod_{i=1}^n p(x_i|y)$

fferent event models

Multi-variate Bernoulli model: represent down

Multi-variate Bernoulli model: represent down

Mul

▶ **Multinomial event model**: represent document of *N* words as $x = \{x_1, \ldots, x_n\}$ where $x_i \in \{1, \ldots, K\}$. (not covered) **-variate Bernoulli model**: repre

i independent Bernoulli trails
 nomial event model: represent
 $x_1, ..., x_n$ where $x_i \in \{1, ..., K\}$

Homework

- \blacktriangleright Programming Assignment 1 late submission. 1 late submissi
- \blacktriangleright TA sessions