Learning From Data Lecture 3: Generalized Linear Models

Yang Li yangli@sz.tsinghua.edu.cn

October 8, 2021

Ask me a question (1/2)

Ask me a question (2/2)

Why is the gradient update in logistic regression having $H + H$ sign?

Today's Lecture

Supervised Learning (Part III)

- \triangleright Review on linear and logistic regression \angle
- \blacktriangleright Multi-class classification \blacktriangleleft
- \blacktriangleright Review: exponential families
- \triangleright Generalized linear models (GLM) \bigcup

Written Assignment (WA1) is released. Due on Oct 22nd. (Start early!)

 \blacktriangleright Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$:

$$
h_{\theta}(x^{(i)}) = \underbrace{\theta^{T} x^{(i)}}_{\text{max}}, \text{ where } \underbrace{\theta}_{\text{max}} = \begin{bmatrix} \theta_{0} \\ \overline{\theta_{1}} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} \underbrace{1}_{x_{1}^{(i)}} \\ \vdots \\ \underbrace{1}_{x_{n}^{(i)}} \end{bmatrix}
$$

 \blacktriangleright Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$.

$$
h_{\theta}(x^{(i)}) = \underset{=}{\theta}^{T} x^{(i)}, \text{ where } \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}
$$

 \triangleright Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$.

$$
J(\theta) = \left(\frac{i}{2}\right)\sum_{i=1}^{m} \left(\frac{y^{i/2}}{2} \theta^{T} x^{(i)}\right)^2
$$

 \blacktriangleright Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$:

$$
h_{\theta}(x^{(i)}) = \theta^{\mathsf{T}} x^{(i)}, \text{ where } \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}
$$

 \triangleright Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$.

$$
J(\theta) =
$$

Also known as ordinary least square regression model.

 \blacktriangleright Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$:

$$
h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)}, \text{ where } \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}
$$

 \triangleright Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$.

$$
J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)} \right)^2
$$

Also known as ordinary least square regression model.

 \blacktriangleright Gradient descent:

update rule (batch)

update rule (stochastic)

 \blacktriangleright Newton's method

 \triangleright Normal equation

 \blacktriangleright Gradient descent:

update rule (batch)
$$
\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}
$$

update rule (stochastic)

 \blacktriangleright Newton's method

 \blacktriangleright Normal equation

Gradient descent:

update rule (batch)
$$
\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}
$$

update rule (stochastic) $\theta_j \leftarrow \theta_j + \alpha (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$

 \blacktriangleright Newton's method

 \blacktriangleright Normal equation

 \blacktriangleright Gradient descent:

update rule (batch)
$$
\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}) x_j^{(i)}
$$

update rule (stochastic) $\left(y^{(i)} - h_\theta(x^{(i)})\right)$ $\left(\begin{array}{c} x_j^{(i)} \end{array} \right)$

 \blacktriangleright Normal equation

$$
X^T X \theta = X^T y
$$

Maximum likelihood estimation

In Log-likelihood function:

$$
\ell(\theta) = \log \left(\prod_{i=1}^{m} p(y^{(i)} | x^{(i)} \widehat{\theta}) \right) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

where *p* is a probability density function.

$$
\theta_{MLE} = \operatornamewithlimits{argmax}_\theta \ell(\theta)
$$

Maximum likelihood estimation

 \blacktriangleright Log-likelihood function:

$$
\ell(\theta) = \log \left(\prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) \right) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

where *p* is a probability density function.

$$
\theta_{MLE} = \underset{\theta}{\text{argmax}} \, \ell(\theta)
$$

(True or False?) Ordinary least square regression is equivalent to the $m\overline{\text{aximum}}$ likelihood estimation of θ .

Maximum likelihood estimation

 \blacktriangleright Log-likelihood function:

$$
\ell(\theta) = \log \left(\prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) \right) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

where *p* is a probability density function.

$$
\theta_{MLE} = \underset{\theta}{\text{argmax}} \, \ell(\theta)
$$

(True or False?) Ordinary least square regression is equivalent to the maximum likelihood estimation of θ .

True under the assumptions:

 $\blacktriangleright \ \ y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$

 \blacktriangleright $\epsilon^{(i)}$ are i.i.d. according to $\mathcal{N}(0, \sigma^2)$

 \blacktriangleright Hypothesis function:

$$
h_{\theta}(x) = g(\underline{\theta}^T x), g(z) = \frac{1}{1 + e^{-\underline{\theta}}}
$$
 is the sigmoid function.

 \blacktriangleright Hypothesis function:

$$
h_{\theta}(x) = g(\theta^T x), g(z) = \frac{1}{1 + e^{-z}}
$$
 is the sigmoid function.

► Assuming $y|x; \theta$ is distributed according to Bernoulli $(h_\theta(x))$ ϕ
= $h_{\rho}(x)$

$$
p(y|x; \theta) =
$$

 \blacktriangleright Hypothesis function:

$$
h_{\theta}(x) = g(\theta^T x), g(z) = \frac{1}{1 + e^{-z}}
$$
 is the sigmoid function.

► Assuming $y|x; \theta$ is distributed according to Bernoulli($h_{\theta}(x)$)

$$
p(y|x; \theta) = \underbrace{h_{\theta}(x)^{\underline{y}}}\left(\underline{1-h_{\theta}(x)}\right)^{1-y}
$$

 \blacktriangleright Hypothesis function:

$$
h_{\theta}(x) = g(\theta^T x), g(z) = \frac{1}{1 + e^{-z}}
$$
 is the sigmoid function.

► Assuming $y|x; \theta$ is distributed according to Bernoulli($h_{\theta}(x)$)

$$
p(y|x; \theta) = h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y}
$$

► Log-likelihood function for *m* training examples:

$$
\ell(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))
$$

Multi-Class Classification

Multi-class classification

Each data sample belong to one of *k >* 2 different classes.

 $\underline{y} = \{1, ..., k\}$

 $k = 10$

Given new sample $x \in \mathbb{R}^k$, predict which class it belongs.

Naive Approach: Convert to binary classification

One-Vs-Rest

Drawbacks of One-Vs-Rest:

Extend logistic regression: Softmax Regression

Assume $p(y|x)$ is **multinomial distributed**, $k = |\mathcal{Y}|$

 χ

Extend logistic regression: Softmax Regression

Assume $p(y|x)$ is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

$$
h_{\theta}(x) = \begin{bmatrix} p(y = 1 | x; \theta) \\ \vdots \\ p(y = k | x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x_{j}}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix} = \text{softmax}(\theta^{T} x)
$$

$$
c \mathcal{R}^{h}
$$

Parameters:
$$
\underbrace{\bigoplus_{i=1}^{k} e^{\theta_{i}^{T}}}_{\text{if } i \neq j} = \frac{\begin{bmatrix} -\theta_{1}^{T} \\ \vdots \\ -\theta_{k}^{T} \end{bmatrix}}_{\text{if } i \neq j}
$$

Parameters:
$$
\underbrace{\bigoplus_{i=1}^{k} e^{\theta_{i}^{T} x_{i}}}_{\text{if } i \neq j}
$$

Softmax Regression $y \in \{0, 1\}$ Given $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$, the log-likelihood of the Softmax model is $139' = 25 = 19' = 1$ $f(\theta_1, \ldots, \theta_K)$ *m* $\ell(\theta) = \sum$ $\log p(y^{(i)}|x^{(i)};\theta)$ *i*=1 Multinomial (*m k* $=$ \sum $\log \prod$ $p(y^{(i)} = 1 | x^{(i)}) \frac{1\{y^{(i)} = 1\}}{2}$ *i*=1 *l*=1 = $\begin{cases} \n\begin{cases} \n\frac{1}{2} & \text{if } y = 1.2 \\ \n\frac{1}{2} & \text{if } y = 2.2 \n\end{cases} \\
\begin{cases} \n\frac{1}{2} & \text{if } y = 1.2 \\ \n\frac{1}{2} & \text{if } y = 2.2 \n\end{cases}$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$, the log-likelihood of the Softmax model is

$$
\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

=
$$
\sum_{i=1}^{m} \log \prod_{j=1}^{k} p(y^{(i)} = 1 | x^{(i)})^{\frac{1}{2}y^{(i)} = 1}
$$

=
$$
\sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1}_{\{y^{(i)} = l\}} \log p(y^{(i)} = 1 | x^{(i)})^{\frac{1}{2} \cdot \frac{1}{2}}
$$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$, the log-likelihood of the Softmax model is $\ell(\theta) = \sum$ $LR - m$ *i*=1 $\log p(y^{(i)} | x^{(i)}; \theta)$ $=$ \sum *m i*=1 $\log \prod$ *k l*=1 $p(y^{(i)} = 1 | x^{(i)})^{\mathbf{1} \{y^{(i)} = 1\}}$ $=$ \sum *m i*=1 \sum *k l*=1 $\mathbf{1}{y^{(i)} = I}$ log $p(y^{(i)} = I | x^{(i)})$ $=$ \sum *m i*=1 \sum *k l*=1 $1\{y^{(i)} = 1\}$ log $\frac{(e^{\theta \int_{\mathcal{L}}^{T} x^{(i)}})}{\sum_{k}^{k} x^{(i)}}$ $\sum_{j=1}^k e^{\theta_L^T x^{(i)}}$

Softmax Regression

Derive the stochastic gradient descent update:

\nFind
$$
\frac{\overline{C}_{\theta_i} e^{i\theta_i}}{\sqrt{\theta_i}}
$$
 and the probability function θ_i and θ_i and θ_i and θ_i are θ_i and <math display="inline</p>

Property of Softmax Regression

► Parameters
$$
\theta_1, ... \theta_k
$$
 are not independent:
\n
$$
\sum_{j} p(y = j | x) = \sum_{j} \phi_j = 1
$$
\n⇒ Knowing $k - 1$ parameters completely determines model.
\nInvariant to scalar addition
\n
$$
p(y | x; \theta) = p(y | x; \theta - \theta)
$$
\nProof. β θ θ

When $K = 2$,

Relationship with Logistic Regression

When to use Softmax?

- \triangleright When classes are mutually exclusive: use Softmax
- \blacktriangleright Not mutually exclusive (a.k.a. multi-label classification): multiple binary classifiers may be better

Summary: Linear models

What we've learned so far:

Can we generalize the linear model to other distributions?

Summary: Linear models

What we've learned so far:

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x; \theta$ is from an exponential family.

Review: Exponential Family

Exponential Family

A class of distributions is in the exponential family if it can be written in the *canonical form*: $P.$ U

$$
p(y; \eta) = \underbrace{b(y) e^{\eta^T T(y) - a(\eta)}}_{\text{max}}
$$

 \blacktriangleright y: random variable

sufficient statistic

- \blacktriangleright η : natural/canonical parameter (that depends on distribution parameter(s))
- \blacktriangleright $T(y)$: sufficient statistic of the distribution
- \blacktriangleright *b*(*y*): a function of *y*
- \blacktriangleright *a*(η) : log partition function (or "cumulant function")

42 / 48

Exponential Family

Log partition function $a(\eta)$ is the log of a normalizing constant. i.e. $p(y; \eta) = b(y)e^{\eta^T T(y)} \frac{c}{c^{\eta}} = \frac{b(y)e^{\eta^T T(y)}}{c^{\eta^T}}$ $e^{a(\eta)}$ Function $a(\eta)$ is chosen such that $\sum_{y} p(y; \eta) = 1$ (or $\int_{y} p(y; \eta) dy = 1$). $a(\eta) = \log \left(\sum_{i=1}^{n} \right)$ \setminus *b*(*y*)*e*^{η ^{*T*} τ (*y*)} *y* $\frac{1}{e^{\alpha(\eta)}}$ $\sum_{d} b(q) e^{\eta^{\eta}T(y)} = 1$
 $e^{\alpha(\eta)} = \sum_{d} b(y) e^{\eta^{\eta}T(y)} \implies \frac{\alpha(\eta)}{\eta} \ge \log \sum_{d} b(y) e^{\eta^{\eta}T(y)}$

Bernoulli Distribution Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that $p(y; \phi) = \underline{\phi^{y}}(1-\phi)^{1-y}$ *How to write it in the form of* $p(y; \eta) = b(y)e^{i\eta \tau} \frac{T(y)-a(\eta)}{N}$ *?* e^{η} e^{η} $\phi = \frac{e^{\eta}}{1+e^{\eta}}$ $= \frac{log(1+e^{\eta})}{1+e^{\eta}}$
 $= \frac{1}{1+e^{\eta}}$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that

$$
\rho(y;\phi)=\phi^y(1-\phi)^{1-y}
$$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that

$$
p(y; \phi) = \phi^{y} (1 - \phi)^{1 - y}
$$

$$
\begin{array}{c} \bullet \quad \eta = \log\left(\frac{\phi}{1-\phi}\right) \\ \bullet \quad b(y) = 1 \\ \bullet \quad \tau(y) = y \end{array}
$$

$$
\blacktriangleright \; a(\eta) = \, \log(1 + e^{\eta})
$$

Gaussian Distribution (unit variance) Y , η \approx γ \sim . Probability density of a Gaussian distribution $\mathcal{N}(\mu, 1)$ over $y \in \mathbb{R}$: $\exp\left(\frac{(\sqrt{y}-\mu)^2}{2}\right)$ ◆ $p(y;\theta) = \frac{1}{\sqrt{2}}$ 2π = $\frac{1}{\sqrt{27}}$ exp(- $\frac{1}{2}$ (y²+ μ^2 -2yM)) = $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^{2}}e^{-\frac{1}{2}(\mu^{2}-2y\mu)}$
= $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^{2}}e^{\frac{(\mu y^{2}-2y\mu)}{2}}e^{\frac{(\mu y^{2}-2y\mu)}{2}}$
biy) $\frac{y-\mu}{2}$

 Δ .

Exponential Family Examples

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution $\mathcal{N}(\mu, 1)$ over $y \in \mathbb{R}$:

$$
p(y; \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2}\right)
$$

►
$$
\eta = \mu
$$

\n► $b(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$
\n► $T(y) = y$
\n► $a(\eta) = \frac{1}{2}\eta^2$

Two parameter example:

Gaussian Distribution Y Probability density of a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ over $y \in \mathbb{R}$: $rac{1}{2\pi\sigma^2}$ exp $\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$ ◆ $p(y;\theta) = \frac{1}{\sqrt{2\pi}}$ $\sqrt{2}$ 3 *µ* \blacktriangleright $\tau(y) = \begin{bmatrix} y \\ y \end{bmatrix}$ $\overline{}$ }
}
} σ^2 \blacktriangleright $\eta =$ 4 $\mathbf{1}$ $-\frac{1}{2\sigma^2}$ *y* 2 \bullet $\widehat{a(\eta)} = \frac{\mu^2}{2\sigma^2} + \log \sigma$ \blacktriangleright *b*(*y*) = $\frac{1}{\sqrt{2}}$ 2π

Poisson distribution: Poisson(λ)

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, *assuming events occur independently at a constant rate*

Poisson distribution: Poisson(λ)

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, *assuming events occur independently at a constant rate*

Probability density function of Poisson (λ) over $y \in \mathcal{Y}$:

$$
p(y; \lambda) = \frac{\lambda^y e^{-\lambda}}{y!}
$$

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

Poisson distribution $Poisson(\lambda)$

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$
p(y; \lambda) = \frac{\lambda^y e^{-\lambda}}{y!}
$$

$$
\begin{aligned}\n\blacktriangleright \quad & \eta = \log \lambda \\
\blacktriangleright \quad & b(y) = \frac{1}{y!} \\
\blacktriangleright \quad & \mathcal{T}(y) = y \\
\blacktriangleright \quad & a(\eta) = e^{\eta}\n\end{aligned}
$$

Generalized Linear Models

Generalized Linear Models: Intuition

Example 1: Award Prediction

Predict *y*, the number of school awards a student gets given *x*, the math exam score.

Generalized Linear Models: Intuition

Problems with linear regression:

Assumes $y|x; \theta$ has a Normal distribution.

▶ Assumes change in *x* is proportional to change in *y*

Generalized Linear Models: Intuition

Problems with linear regression:

- Assumes $y|x; \theta$ has a Normal distribution. Poisson *distribution is better for modeling occurrences*
- ^I Assumes change in *x* is proportional to change in *y More realistic to be proportional to the* rate *of increase in y* (e.g. doubling or halving *y*)

Generalized Linear Models : Intuition

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x; \theta$ is from an exponential family.

Design motivation of GLM

- **Response variables** *y* can have arbitrary distributions
- ▶ Allow arbitrary function of *y* (the **link function**) to vary linearly with the input values *x*

$$
y = \theta^T x.
$$

g(y) = $\theta^T x$

a.k.a. the "mean function"

Generalized Linear Models: Construction

Relate natural parameter η to distribution mean $\mathbb{E}[T(y); \eta]$:

Canonical response function g gives the mean of the distribution

$$
\underline{g}(\eta) = \mathbb{E}\left[\mathcal{T}(y); \eta\right]
$$

a.k.a. the "mean function"

 \blacktriangleright g^{-1} is called the **canonical link function**

function
$$
g
$$
 gives the m
\n
$$
g(\eta) = \mathbb{E}[T(y); \eta]
$$
\n
$$
\text{inial link function}
$$
\n
$$
\eta = g^{-1}(\mathbb{E}[T(y); \eta])
$$

Apply GLM construction rules:

Example: **Oramay**
$$
\text{Res}
$$

\napply GLM construction rules:

\n1. Let $y | x; \theta \sim N(\mu, \mathbf{1})$

\n η

Review: Exponent

\n**35 Square**

\n
$$
\vdots
$$

\n
$$
\eta = \mu, \ \mathcal{T}(y) = y
$$

1. Let
$$
y|x; \theta \sim N(\mu, 1)
$$

\n
$$
\boxed{\eta = \mu} \quad T(y) = y
$$

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E}\left[\underbrace{T(y)}_{x;\theta}\middle|x;\theta\right]
$$
\n
$$
= \underbrace{\mathbb{E}\left[\underbrace{y}{x};\theta\right]}_{=\underline{\mu} = \eta} \implies h_{\theta}(x) = \underbrace{\eta}_{=}
$$

Apply GLM construction rules:

1. Let
$$
y|x; \theta \sim N(\mu, 1)
$$

$$
\eta=\mu,\ \mathcal{T}(y)=y
$$

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E}\left[\mathcal{T}(y)|x;\theta\right] \\
= \mathbb{E}\left[y|x;\theta\right] \\
= \mu = \eta
$$

```
\n\n\n\n    pply GLM construction rules:\n    \n- 1. Let y|x; θ ∼ N(μ, 1)   
\n
$$
η = μ, T(y) = y
$$
\n
\n\n\n\n    2. Derive hypothesis function:\n    \n- $$
h_{\theta}(x) = \mathbb{E}[T(y)|x; \theta]
$$
\n
$$
= \mathbb{E}[y|x; \theta]
$$
\n
$$
= μ = η
$$
\n

\n\n\n    3. Adopt linear model 
$$
η = θ^T x:
$$
\n
$$
h_{\theta}(x) = η = θ^T x
$$
\n

```

Apply GLM construction rules:

1. Let
$$
y|x; \theta \sim N(\mu, 1)
$$

$$
\eta=\mu,\ \mathcal{T}(y)=y
$$

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E}\left[\mathcal{T}(y)|x;\theta\right] \\
= \mathbb{E}\left[y|x;\theta\right] \\
= \mu = \eta
$$

3. Adopt linear model $\eta = \theta^T x$:

$$
h_{\theta}(x) = \eta = \theta^{\mathsf{T}} x
$$

Canonical response function: $\mu = g(\eta) = \eta$ (identity) Canonical link function: $\eta = g^{-1}(\mu) = \mu$ (identity) Find the model η -
response function: η = $\frac{\mu}{\varrho^{-1}}$ $\begin{aligned} \kappa) &= \eta = \theta^T x \ g(\eta) &= \eta \text{ (identity)} \ \mu) &= \mu \text{ (identity)} \end{aligned}$ $\frac{1}{\eta} = \log \frac{1}{\eta}$

GLM example: logistic regression

- Apply GLM construction rules:
	- 1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

 $1-\phi$ \setminus $= y$ $\phi = \frac{\partial(\eta)}{\sqrt{\eta}} = \frac{1}{1+e^{-\eta}}$ 9^{-1} $r = \frac{1}{1+e^{-\eta}}$ on
 $\phi = \frac{\partial(\eta)}{\partial x}$
 $\frac{\left(\frac{\phi}{\rho}\right)}{\frac{\left(\frac{\phi}{\rho}\right)}{\rho}}$, $T(y) = y$

Apply GLM construction rules:

etaed the
$$
z
$$
 and z and z are the z and z and z are the z and z and z

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E}\left[\underbrace{T(y)}_{x}; \theta\right] = \mathbb{E}\left[\underbrace{y|x; \theta}_{1+e^{-\eta}}\right] \quad \text{and} \quad \mathbb{E}\left[\underbrace{\mathcal{F}(y)}_{1+e^{-\eta}}\right] \quad \text{and} \quad \mathbb{E}\left[\under
$$

- Apply GLM construction rules:
	- 1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$
\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y
$$

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E}\left[\mathcal{T}(y)|x;\theta\right] \\
= \mathbb{E}\left[y|x;\theta\right] \\
= \phi = \frac{1}{1 + e^{-\eta}}
$$

3. Adolf linear model
$$
\eta = \frac{\theta^T x}{h_{\theta}(x)} = \frac{1}{1 + e^{-\frac{\theta^T x}{\eta}}}
$$
 $\int e^{\frac{1}{9} i \pi i c} f(x) e^{i \pi i \theta} dx$

- Apply GLM construction rules:
	- 1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$
\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y
$$

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E} \left[\underbrace{T(y)}_{x}; \theta \right]
$$

$$
= \mathbb{E} \left[\underbrace{y}{x}; \theta \right]
$$

$$
= \phi = \frac{1}{1 + e^{-\eta}}
$$

$$
\theta^T x:
$$

$$
h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}
$$

$$
\therefore \phi = \alpha(n) = \text{sigmoid}(n)
$$

3. Adopt linear model $\eta = \theta^T x$.

$$
h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}
$$

Canonical response function: $\phi = g(\eta) =$ sigmoid (η)

- Apply GLM construction rules:
	- 1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

regression

\nules:

\n
$$
i(\phi)
$$

\n
$$
\eta = \log\left(\frac{\phi}{1-\phi}\right), \quad T(y) = y
$$

\nction:

2. Derive hypothesis function:

$$
h_{\theta}(x) = \mathbb{E}\left[\mathcal{T}(y)|x;\theta\right] \\
= \mathbb{E}\left[y|x;\theta\right] \\
= \phi = \frac{1}{1+e^{-\eta}}
$$

3. Adopt linear model $\eta = \theta^T x$.

$$
h_\theta(\mathsf{x}) = \frac{1}{1+e^{-\theta^\mathsf{T}\mathsf{x}}}
$$

Canonical response function: $\phi = \textit{g}(\eta) = \text{sigmoid}(\eta)$ Canonical link function : $\eta = g^{-1}(\phi) = \text{logit}(\phi)$ = sigmoid(η)
logit(ϕ) ($\circ \theta$)

GLM example: Poisson regression

Example 1: Award Prediction

Predict *y*, the number of school awards a student gets given *x*, the math exam score.

Use GLM to find the hypothesis function... -

GLM example: Poisson regression

Apply GLM construction rules:

Canonical response function: $\lambda = g(\eta) = e^{\eta}$ Canonical link function : $\eta = g^{-1}(\lambda) = \log(\lambda)$
GLM example: Poisson regression

Poisson regression successfully captures the long tail of *P*(*y*)

 $x - y = x + y$

Probability mass function of a Multinomial distribution over k outcomes

$$
\mu(y) = \frac{1}{2} \int_{\frac{y}{2}}^{1} \frac{y}{y} \cdot \frac{1}{2} \cdot \frac{1}{2
$$

Probability mass function of a Multinomial distribution over k outcomes

$$
p(y; \phi) = \prod_{i=1}^k \phi_i^{1\{y=i\}}
$$

Probability mass function of a Multinomial distribution over *k* outcomes

$$
p(y; \phi) = \prod_{i=1}^{k} \phi_i^{1\{y=i\}}
$$

Derive the exponential family form of Multinomial $(\phi_1, ..., \phi_k)$: Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

GLM example: Softmax regression Review of L
GLM

Probability mass function of a Multinomial distribution over *k* outcomes

$$
p(y; \phi) = \prod_{i=1}^{k} \phi_i^{1\{y=i\}}
$$

Derive the exponential family form of Multinomial $(\phi_1, ..., \phi_k)$: Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

$$
\mathcal{T}(y) = \begin{bmatrix} 1\{y=1\} \\ \vdots \\ 1\{y=k-1\} \end{bmatrix}
$$

$$
\mathcal{T}(y)_i = 1\{y=i\} = \begin{cases} 0 & y \neq i \\ 1 & y=i \\ 1 & y=i \end{cases}
$$

$$
\mathcal{A}(\eta) = -\log(\phi_k) = \begin{cases} \log(\phi_k) & \log(\frac{k}{\sqrt{2}}) \\ \log(\frac{k}{\sqrt{2}}) & \log(\frac{k}{\sqrt{2}}) \end{cases}
$$

$$
\begin{aligned}\n\bullet \quad & \eta = \left[\begin{array}{c} \log \left(\frac{\phi_1}{\phi_k} \right) \\ \vdots \\ \log \left(\frac{\phi_{k-1}}{\phi_k} \right) \end{array} \right] \\
\bullet \quad & b(y) = 1\n\end{aligned}
$$

Apply GLM construction rules:

feature 2	Multi-Class Classification	Review: Exponential Family	Ge
example: Softmax regression			
apply GLM construction rules:			
1. Let $y x; \theta \sim \text{Multinomial}(\phi_1, \ldots, \phi_k)$ for all $i = 1 \ldots k - 1$			
$\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ \text{I}(y) = \begin{bmatrix} 1\{y = 1\} \\ \vdots \\ 1\{y = k - 1\} \end{bmatrix}$			

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Multinomial}(\phi_1, \ldots, \phi_k)$, for all $i = 1 \ldots k - 1$

$$
\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ \mathcal{T}(y) = \begin{bmatrix} 1\{y=1\} \\ \vdots \\ 1\{y=k-1\} \end{bmatrix}
$$

Compute inverse: $\phi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$ *canonical response function*

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Multinomial}(\phi_1, \ldots, \phi_k)$, for all $i = 1 \ldots k - 1$

Example: **SOLUTION**

\napply GLM construction rules:

\n1. Let
$$
y|x; \theta \sim \text{Multinomial}(\phi_1, \ldots, \phi_k)
$$
, for all $i = 1 \ldots k - 1$

\n $\text{real} \setminus \{e^{i\theta}\} \text{ with } \phi_k = \text{real} \left(\frac{\phi_i}{\phi_k}\right), \quad T(y) = \begin{bmatrix} 1\{y = 1\} \\ \vdots \\ 1\{y = k - 1\} \end{bmatrix}$

\nCompute inverse:

\n $\phi_i = \frac{e^{\phi_i}}{\sum_{j=1}^k e^{\phi_j}} \leftarrow \text{canonical response function}$

\n2. Derive hypothesis function:

\n
$$
f(y)
$$

\n
$$
h_{\theta}(x) = \mathbb{E} \begin{bmatrix} \frac{1\{y = 1\}}{\vdots} \\ \frac{1\{y = k - 1\}}{\vdots} \end{bmatrix} \text{ with } x; \theta = \begin{bmatrix} \frac{\phi_1}{\vdots} \\ \frac{\phi_k}{\vdots} \end{bmatrix}
$$

\n
$$
\phi_i = \frac{e^{\phi_i} \mathbb{E} \math
$$

3. Adopt linear model $\eta_i = \theta_i^T x$: $\theta_i^T x$:

$$
\phi_i = \frac{e^{\theta_i^T x}}{\sum_{j=1}^k e^{\theta_j^T x}} \text{ for all } i = 1...k-1
$$

$$
h_{\theta}(x) = \frac{1}{\sum_{j=1}^{k} e^{\theta_j^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ \vdots \\ e^{\theta_{k-1}^T x} \end{bmatrix} \leftarrow \text{S} \text{gHm} \Delta x.
$$

3. Adopt linear model $\eta_i = \theta_i^T x$:

$$
\phi_i = \frac{e^{\theta_i^T x}}{\sum_{j=1}^k e^{\theta_j^T x}}
$$
 for all $i = 1...k-1$

$$
h_{\theta}(x) = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T}x}} \begin{bmatrix} e^{\theta_{1}^{T}x} \\ \vdots \\ e^{\theta_{k-1}^{T}x} \end{bmatrix}
$$

Canonical response function: $\phi_i = g(\eta) = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$ Canonical link function : $\eta_i = g^{-1}(\phi_i) = \log \left(\frac{\phi_i}{\phi_i} \right)$ $\phi_{\bm{k}}$ \setminus $\mathcal{L}(\eta) = \frac{e^{\eta_j}}{\sum_{j=1}^k e^{\eta_j}}$, where χ \int ϕ , \pm ' response
link func ' ' $\eta_i = g^{-1}(\phi_i) = \log\left(\frac{\phi_i}{\phi_k}\right) \quad \bigg\{\qquad \phi_i + \cdots + \phi_{k-1} \neq 0\}$ $\overline{\theta_{j}^{T}x}$ $\begin{bmatrix} \vdots \\ e^{\theta_{k-1}^{T}x} \end{bmatrix}$
= $\frac{e^{\eta_{j}}}{\sum_{j=1}^{k} e^{\eta_{j}}}$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ θ_{k}^{+}
= $\log\left(\frac{\phi_{i}}{\phi_{k}}\right)$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ θ_{k}^{+}
 θ_{k}^{+} \cdot - \int^{γ} |c - | are independent parameters

GLM Summary

Sufficient statistic *T*(*y*) Sufficient statistic 1(y)
Response function $g(\eta)$ Link function $g^{-1}(\mathbb{E}[T(y);\eta])$ $\begin{array}{ccc} \text{Exponential Family} & \mathcal{Y} & \mathcal{T}(y) & \mathcal{G}(\eta) & \mathcal{g}^{-1}(\mathbb{E}[T]) \ \mathcal{N}(\mu,1) & \mathbb{R} & \mathcal{Y} & \eta & \mathcal{Y} \end{array}$ $\mathcal{N}(\mu, 1)$ R *y* η μ β ernoulli (ϕ) {0,1} *y* $rac{1}{1+e^{-\eta}}$ $\qquad \qquad \frac{\log \frac{\phi}{1-e^{-\eta}}}{\log \frac{\phi}{1+e^{-\eta}}}$ $\frac{1-\phi}{\sqrt{2}}$ $Poisson(\lambda)$ N *y* e^{η} \longleftarrow $\frac{1}{M}$ $\frac{1}{\log(M)}$ $Multinomial(\phi_1, ..., \phi_k)$ {1,...,*k*} 1{*y* = *i*} $\frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$ $\eta_i = \log\left(\frac{\phi_i}{\phi_i}\right)$ ϕ_k \setminus ent statis

use funct

nk funct

V $\frac{\pi e}{\sqrt{g(\eta)}}$
 $\frac{\pi e}{g}$
 $\frac{\pi e}{g^{-1}(\mathbb{E}[T])}$ $g^{-1}(\mathbb{E}[T(y))$
 \overline{f} $\frac{11}{7}$

GLM is effective for modelling different types of distributions over *y*