Learning From Data Lecture 3: Generalized Linear Models

Yang Li yangli@sz.tsinghua.edu.cn

October 8, 2021

Ask me a question (1/2)

Ask me a question (2/2)

Why is the gradient update in logistic regression having "+" sign ?

Today's Lecture

Supervised Learning (Part III)

- Review on linear and logistic regression
- Multi-class classification <--
- Review: exponential families
- ► Generalized linear models (GLM) →

Written Assignment (WA1) is released. Due on Oct 22nd. (Start early!)

► Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$: intercept / bias

$$h_{\theta}(x^{(i)}) = \underbrace{\theta^{T} x^{(i)}}_{\underbrace{i}}, \text{ where } \underline{\theta} = \begin{bmatrix} \theta_{0} \\ \overline{\theta_{1}} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$$

▶ Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$:

$$h_{\theta}(x^{(i)}) = \underset{\smile}{\theta}^{T} x^{(i)}, \text{ where } \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$$

• Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, ..., m$:

$$\underbrace{\mathcal{D}\mathcal{L}\mathcal{S}}_{J(\theta)} = \underbrace{\begin{pmatrix} i \\ 2 \end{pmatrix}}_{j=1}^{m} \underbrace{\left(y^{i} - \theta^{\mathsf{T}} x^{(i)} \right)^{2}}_{j=1}$$

▶ Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$:

$$h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)}, \text{ where } \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$$

• Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, ..., m$:

$$J(\theta) =$$

Also known as ordinary least square regression model.

▶ Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$:

$$h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)}, \text{ where } \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$$

• Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, ..., m$:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \theta^{T} x^{(i)} \right)^{2}$$

Also known as ordinary least square regression model.

Gradient descent:

update rule (batch)

update rule (stochastic)

Newton's method

Gradient descent:

update rule (batch)
$$\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

update rule (stochastic)

Newton's method

Gradient descent:

update rule (batch)
$$\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

update rule (stochastic) $\theta_j \leftarrow \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$

Newton's method

Gradient descent:

update rule (batch)
$$\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

update rule (stochastic) $\theta_j \leftarrow \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$

$$X^T X \theta = X^T y$$

Maximum likelihood estimation

Log-likelihood function:

$$\ell(\theta) = \log\left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)\right) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

where p is a probability density function.

$$heta_{\textit{MLE}} = rgmax_{ heta} \ell(heta)$$

Maximum likelihood estimation

Log-likelihood function:

$$\ell(\theta) = \log\left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)\right) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

where p is a probability density function.

$$heta_{\textit{MLE}} = \operatorname*{argmax}_{ heta} \ell(heta)$$

(True or False?) Ordinary least square regression is equivalent to the maximum likelihood estimation of θ .

Maximum likelihood estimation

Log-likelihood function:

$$\ell(\theta) = \log\left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)\right) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

where p is a probability density function.

$$\theta_{\textit{MLE}} = \operatorname*{argmax}_{\theta} \ell(\theta)$$

(True or False?) Ordinary least square regression is equivalent to the maximum likelihood estimation of θ .

True under the assumptions:

- $\blacktriangleright y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$
- $\epsilon^{(i)}$ are i.i.d. according to $\mathcal{N}(0, \sigma^2)$

Review of Lecture 2: Logistic regression

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), \ g(z) = \frac{1}{1 + e^{-\varepsilon}}$$
 is the sigmoid function.

р

Review of Lecture 2: Logistic regression

Hypothesis function:

$$h_{\theta}(x) = g(\theta^{T}x), \ g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

• Assuming $y|x; \theta$ is distributed according to $\underline{\text{Bernoulli}(h_{\theta}(x))} \phi$

$$(y|x;\theta) = = h_{\mathcal{O}}(x)$$

Review of Lecture 2: Logistic regression

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), \ g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

• Assuming $y|x; \theta$ is distributed according to Bernoulli $(h_{\theta}(x))$

$$p(y|x;\theta) = \underbrace{h_{\theta}(x)^{y}}_{-} \underbrace{(1-h_{\theta}(x))^{1-y}}_{-}$$

Review of Lecture 2: Logistic regression

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), \ g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

• Assuming $y|x; \theta$ is distributed according to Bernoulli $(h_{\theta}(x))$

$$p(y|x;\theta) = h_{\theta}(x)^{y} \left(1 - h_{\theta}(x)\right)^{1-y}$$

Log-likelihood function for *m* training examples:

$$\ell(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Multi-Class Classification

Multi-class classification

Each data sample belong to one of k > 2 different classes.

 $\underbrace{\mathcal{Y}}_{}=\{1,\ldots,k\}$

k=10-

Given new sample $x \in \mathbb{R}^k$, predict which class it belongs.

Naive Approach: Convert to binary classification

One-Vs-Rest

Drawbacks of One-Vs-Rest:

Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $k = |\mathcal{Y}|$

X

Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

$$h_{\theta}(x) = \begin{bmatrix} p(y = 1 | x; \theta) \\ \vdots \\ p(y = k | x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x_{j}}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix} = \operatorname{softmax}(\theta^{T} x)$$
softmax $(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{(z_{j})}}$
Parameters:
$$\bigoplus = \begin{bmatrix} -\theta_{1}^{T} & -\\ \vdots \\ -\theta_{k}^{T} & - \end{bmatrix}$$

Softmax Regression ye10,13 ho(x) - (1-ho(x)) - y Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is $1^{3}y^{i} = \ell_{j}^{2} = \frac{1}{0} \quad y^{i} = \ell_{j}^{2}$ f(0, ..., 0k) $\underbrace{\ell(\theta)}_{i=1} = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$ $\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l | x^{(i)}) \frac{1}{y^{(i)} = l}$ $= \prod_{i=1}^{k} \log \prod_{l=1}^{k} p(y^{(i)} = l | x^{(i)}) \frac{1}{y^{(i)} = l}$ = $\begin{cases} P(y'=1|x') & if y'=1. \\ P(y'=2|x') & if y'=2. \\ \vdots & \vdots \end{cases}$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

= $\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l|x^{(i)})^{1\{y^{(i)}=l\}}$
= $\sum_{i=1}^{m} \sum_{l=1}^{k} 1\{y^{(i)} = l\} \log p(y^{(i)} = l|x^{(i)})^{13\%}$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is ER-m $\ell(\theta) = \sum_{i=1}^{n} \log p(y^{(i)}|x^{(i)};\theta)$ $= \sum^{m} \log \prod^{k} p(y^{(i)} = I | x^{(i)})^{\mathbf{1} \{ y^{(i)} = I \}}$ $= \sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1}\{y^{(i)} = l\} \log p(y^{(i)} = l|x^{(i)})$ $= \sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1}\{y^{(i)} = l\} \log \frac{e^{\theta_{\perp}^{T} x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_{\perp}^{T} x^{(i)}}}$ If $Y^{(i)} = l\} \log \frac{e^{\theta_{\perp}^{T} x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_{\perp}^{T} x^{(i)}}}$

Softmax Regression

Derive the stochastic gradient descent update: Find $\nabla_{\theta_l} \ell(\theta)$ not to be contured with the ℓ in the previous page. $\nabla_{\underline{\theta}_{l}}\ell(\theta) = \sum_{i=1}^{m} \left[\left(\mathbf{1}\{y^{(i)} = l\} - P\left(y^{(i)} = l|x^{(i)}; \theta\right) \right) x^{(i)} \right]$ ty His at home OLER"*1

Property of Softmax Regression

Parameters
$$\theta_1, \ldots, \theta_k$$
 are not independent:
$$\sum_j p(y=j|x) = \sum_j \phi_j = 1$$
Knowning $k-1$ parameters completely determines model.
Invariant to scalar addition
$$\begin{pmatrix} \theta_1 \\ \psi_1 \\ \psi_1 \end{pmatrix} \psi_{1,n}$$

$$p(y|x;\theta) = p(y|x;\theta-\psi)$$

$$P(y=\ell|x;\theta-\psi) = e^{(\theta_1-\psi_1)T_x} = e^{\theta_1 T_x} e^{-\psi_1 T_x}$$

$$\sum_{j=1}^{k} e^{(\theta_j-\psi_1)T_y} = e^{(\theta_1-\psi_1)T_y}$$

$$P(y=\ell|x;\theta) = p(y=\ell|x;\theta)$$

When K = 2,

Relationship with Logistic Regression

Relationship with Logistic Regression
For any $p(y x; \theta) = p(y x; \theta-\psi)$
When K = 2, $1 \begin{bmatrix} 2\theta_1^T \\ 0 \end{bmatrix} \begin{bmatrix} 100 & 5 \\ 1 & 2 \end{bmatrix}$
When K = 2, $h_{\theta}(x) = \frac{1}{e^{\theta_1^T x} + e^{\theta_2^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ e^{\theta_2^T x} \end{bmatrix} \begin{bmatrix} 100 & 5 & 5 \\ 1 & 2 & 3 \end{bmatrix}$ $p(g)$
Replace $\theta = \begin{vmatrix} \theta_1 \\ \infty \end{vmatrix}$ with $\theta_* = \theta - \begin{vmatrix} \theta_2 \\ \theta_2 \end{vmatrix} = \begin{vmatrix} \theta_1 - \theta_2 \\ 0 \end{vmatrix}$.
Let $\psi: \varphi_1$ $\begin{bmatrix} (\theta_1 - \theta_2)^T \\ \end{bmatrix}$
$h_{\theta}(x) = \frac{1}{\underbrace{e^{\theta_1^T x - \theta_2^T x} + e^{0x}}_{e^{0^T x}}} \begin{bmatrix} \underbrace{e^{(\theta_1 - \theta_2)^T x}}_{e^{0^T x}} \end{bmatrix} \underbrace{e^{\theta_1^T - \theta_1^T x}}_{e^{0^T x}} \underbrace{e^{\theta_1^T x}}_{e^{0^T x}} \end{bmatrix} \underbrace{e^{\theta_1^T - \theta_1^T x}}_{e^{0^T x}} \underbrace{e^{\theta_1^T x}}_{e^{0^T x}} e^{\theta_$
$= \begin{bmatrix} \frac{e^{(\theta_1 - \theta_2)^T \times}}{1 + e^{(\theta_1 - \theta_2)^T \times}} \end{bmatrix} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1}$
$ \begin{bmatrix} \frac{1}{1+e^{(\theta_1-\theta_2)^T x}} \end{bmatrix} I - e^{-\theta_1 x} $
$\begin{aligned} ut \ \psi: \theta_{1} \\ h_{\theta}(x) &= \frac{1}{e^{\theta_{1}^{T} x - \theta_{2}^{T} x} + e^{0x}} \begin{bmatrix} e^{(\theta_{1} - \theta_{2})^{T} x} \\ e^{0^{T} x} \end{bmatrix} e^{\theta_{1}^{T} x - \theta_{2}^{T} x} + e^{0x} \begin{bmatrix} e^{(\theta_{1} - \theta_{2})^{T} x} \\ e^{0^{T} x} \end{bmatrix} e^{\theta_{1}^{T} - \theta_{1}^{T} x} \\ &= \begin{bmatrix} \frac{e^{(\theta_{1} - \theta_{2})^{T} x}}{1 + e^{(\theta_{1} - \theta_{2})^{T} x}} \end{bmatrix} \frac{1}{1 - e^{-\theta_{1}^{T} x}} \\ &= \begin{bmatrix} \frac{1}{1 + e^{-(\theta_{1} - \theta_{2})^{T} x}} \\ 1 - \frac{1}{1 + e^{-(\theta_{1} - \theta_{2})^{T} x}} \end{bmatrix} = \begin{bmatrix} g(\theta * T x) \\ 1 - g(\theta * T x) \end{bmatrix} - e^{-\theta_{1}^{T} x} \\ e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} \end{bmatrix} = \begin{bmatrix} g(\theta * T x) \\ 1 - g(\theta * T x) \end{bmatrix} - e^{-\theta_{1}^{T} x} \\ e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{1 + e^{-(\theta_{1} - \theta_{2})^{T} x}} \\ 1 - \frac{1}{1 + e^{-(\theta_{1} - \theta_{2})^{T} x}} \end{bmatrix} = \begin{bmatrix} g(\theta * T x) \\ 1 - g(\theta * T x) \end{bmatrix} - e^{\theta_{1}^{T} x} \\ e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} + e^{\theta_{1}^{T} x} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{1 + e^{-(\theta_{1} - \theta_{2})^{T} x}} \\ 1 - \frac{1}{1 + e^{-(\theta_{1} - \theta_{2})^{T} x}} \end{bmatrix} = \begin{bmatrix} g(\theta * T x) \\ 1 - g(\theta * T x) \end{bmatrix} \\ &= \begin{bmatrix} 1 - g(\theta * T x) \\ 1 - g(\theta * T x) \end{bmatrix} + e^{\theta_{1}^{T} x} + e^{\theta$

When to use Softmax?

- When classes are mutually exclusive: use Softmax
- Not mutually exclusive (a.k.a. multi-label classification): multiple binary classifiers may be better

Summary: Linear models

What we've learned so far:

		$\epsilon \sim$	
	Learning task	Model	$p(y x;\theta)$
-	regression	Linear regression	$\mathcal{N}(h_{\theta}(x), \sigma^2)$
~	binary classification	Logistic regression	Bernoulli($h_{\theta}(x)$)
~	multi-class classification	Softmax regression	$Multinomial([h_{\theta}(x)])$

Can we generalize the linear model to other distributions?

Summary: Linear models

What we've learned so far:

Learning task	Model	$p(y x;\theta)$
regression	Linear regression	$\mathcal{N}(h_{\theta}(x),\sigma^2)$
binary classification	Logistic regression	Bernoulli($h_{\theta}(x)$)
multi-class classification	Softmax regression	Multinomial($[h_{\theta}(x)]$)

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x; \theta$ is from an **exponential family**.

Review: Exponential Family

sufficient statistic

Exponential Family

A class of distributions is in the **exponential family** if it can be written in the *canonical form*: $\beta \cdot V$

$$p(y;\eta) = \underline{b(y)}e^{\eta^T T(y) - a(\eta)}$$

- ► *y*: random variable
- η : natural/canonical parameter (that depends on distribution parameter(s))
- T(y): sufficient statistic of the distribution
- b(y): a function of y
- $a(\eta)$: log partition function (or "cumulant function")

42 / 48

Exponential Family

Log partition function $a(\eta)$ is the log of a normalizing constant. $p(y;\eta) = \underline{b(y)}e^{\eta^{T}T(y)-a(\eta)} = \frac{b(y)e^{\eta^{T}T(y)}}{(e^{a(\eta)})}$ i.e. Function $a(\eta)$ is chosen such that $\sum_{y} p(y; \eta) = 1$ y is discrete (or $\int_{V} p(y; \eta) dy = 1$). y is cont. $\underline{a(\eta)} = \log \left(\sum_{y} b(y) e^{\eta^T T(y)} \right)$ $\sum_{y} \frac{p(y;n)}{y} = \frac{b(y)e^{\eta T(y)}}{e^{\alpha(\eta)}} = 1$ $\frac{1}{e^{\alpha(\eta)}} \sum_{y} b(y) e^{\eta^{T}(y)} = 1.$ $e^{\alpha(\eta)} = \sum_{y} b(y) e^{\eta^{T}(y)} = \sum_{x} \alpha(\eta) = \log \frac{1}{2} b(y) e^{\eta^{T}(y)}$

Bernoulli Distribution Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that $p(y;\phi) = \frac{\phi^{y}(1-\phi)^{1-y}}{f}$ How to write it in the form of $p(y;\eta) = \underbrace{b(y)e^{\eta^{T}T(y)-a(\eta)}}_{f}$? $P(y;\phi) = e^{\log \frac{\phi}{2}(1-\phi)^{-\phi}} \qquad natural parameter.$ $= e^{y\log\phi} + (1-y)\log(1-\phi) \qquad a(y) = -\log(1-\phi)$ $= e^{y\log\phi} + \log(1-\phi) = y\log(1-\phi) \qquad a(y) = -\log(1-\phi)$ $= e^{y\log\phi} + \log(1-\phi) \qquad \eta = \frac{\log\phi}{1-\phi} \qquad = -\log(1-\phi)$ $= e^{y\log\phi} + \log(1-\phi) \qquad \eta = \frac{\log\phi}{1-\phi} \qquad = -\log(1-\phi)$ $= e^{y\log\phi} - (-\log(1-\phi)) \qquad e^{\eta} = \frac{\phi}{1-\phi} \qquad = \log(1+e^{\eta})$ $= \log(1+e^{\eta}) \qquad e^{\eta} - e^{\eta}\phi = \phi$ $\phi = e^{\eta} = \frac{1}{1+e^{\eta}}$ $e^{\eta} - e^{\eta} \phi = \mu$ $\phi = e^{\eta} - \frac{1}{1 + e^{\eta}} = \frac{1}{1 + e^{-\eta}}$ sigmoid.

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that

$$p(y;\phi)=\phi^y(1-\phi)^{1-y}$$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that

$$p(y;\phi)=\phi^y(1-\phi)^{1-y}$$

•
$$\eta = \log\left(\frac{\phi}{1-\phi}\right)$$

• $b(y) = 1$
• $T(y) = y$

$$\blacktriangleright a(\eta) = \log(1 + e^{\eta})$$

Gaussian Distribution (unit variance) Y NEM. Probability density of a Gaussian distribution $\mathcal{N}(\mu, 1)$ over $y \in \mathbb{R}$: $b(y) \cdot e^{\eta^{\intercal} T(y) - \alpha(y)} \quad p(y; \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2}\right)$ $= \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}(y^{2}+\mu^{2}-2y\mu))$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{-\frac{1}{2}(\mu^{2}-2yM)}.$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{M^{2}}{2} = \frac{\eta^{2}}{2},$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} e^{\frac{My}{2} - \frac{M^{2}}{2}} \alpha(y) = \frac{1}{2} e^{\frac{My}{2}} e^{\frac{My}{2}$

6.

Exponential Family Examples

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution $\mathcal{N}(\mu, \underline{1})$ over $y \in \mathbb{R}$:

$$p(y; \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2}\right)$$

$$\eta = \mu$$

$$b(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$$

$$T(y) = y$$

$$a(\eta) = \frac{1}{2}\eta^2$$

Two parameter example:

Gaussian Distribution Ŷ Probability density of a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ over $y \in \mathbb{R}$: $p(y;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$ • $T(y) = \begin{bmatrix} y \\ y^2 \end{bmatrix} \int$ • $\widehat{a(\eta) = \frac{\mu^2}{2\sigma^2} + \log \sigma}$ • $b(y) = \frac{1}{\sqrt{2\pi}}$

Poisson distribution: $Poisson(\lambda)$

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, assuming events occur independently at a constant rate

Poisson distribution: $Poisson(\lambda)$

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, assuming events occur independently at a constant rate

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$p(y;\lambda) = \frac{\lambda^{y} e^{-\lambda}}{y!}$$

Poisson distribution $Poisson(\lambda)$

Probability density function of $Poisson(\lambda)$ over $y \in \mathcal{Y}$:

Poisson distribution $Poisson(\lambda)$

Probability density function of $Poisson(\lambda)$ over $y \in \mathcal{Y}$:

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$

$$\eta = \log \lambda$$
 $b(y) = \frac{1}{y!}$
 $T(y) = y$
 $a(\eta) = e^{\eta}$

Generalized Linear Models

Generalized Linear Models: Intuition

Example 1: Award Prediction

Predict *y*, **the number of school awards** a student gets given *x*, the math exam score.

Generalized Linear Models: Intuition

Problems with linear regression:

 Assumes y | x; θ has a Normal distribution.

 Assumes change in x is proportional to change in y

Generalized Linear Models: Intuition

Problems with linear regression:

- Assumes y|x; θ has a Normal distribution.
 Poisson distribution is better for modeling occurrences
- Assumes change in x is proportional to change in y More realistic to be proportional to the rate of increase in y (e.g. doubling or halving y)

Generalized Linear Models : Intuition

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x; \theta$ is from an exponential family.

Design motivation of GLM

- Response variables y can have arbitrary distributions
- Allow arbitrary function of y (the link function) to vary linearly with the input values x

$$y = \theta^T x.$$

 $g(y) = \theta^T x$

a.k.a. the "mean function"

Generalized Linear Models: Construction

Relate natural parameter η to distribution mean $\mathbb{E}[T(y); \eta]$:

Canonical response function g gives the mean of the distribution

$$g(\eta) = \mathbb{E}\left[T(y);\eta\right]$$

a.k.a. the "mean function"

• g^{-1} is called the **canonical link function**

$$\eta = g^{-1}(\mathbb{E}\left[T(y);\eta\right])$$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim N(\mu, 1)$$

$$\eta = \mu, T(y) = y$$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim N(\mu, 1)$$

 $\eta = \mu T(y) = y$
2. Derive hypothesis function:

$$g = Identity$$

$$M = \frac{1}{g^{-1}} \left[\frac{f(y) | x}{g^{-1}} \right]$$

$$h_{\theta}(x) = \mathbb{E}\left[T(y)|x;\theta\right]$$
$$= \mathbb{E}\left[y|x;\theta\right]$$
$$= \mu = \eta \implies h_{\theta}(x) = \eta$$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim N(\mu, 1)$$

$$\eta = \mu$$
, $T(y) = y$

2. Derive hypothesis function:

$$egin{aligned} h_{ heta}(x) &= \mathbb{E}\left[\mathcal{T}(y)|x; heta
ight] \ &= \mathbb{E}\left[y|x; heta
ight] \ &= \mu = \eta \end{aligned}$$

3. Adopt linear model
$$\eta = \theta^T x$$
:
 $h_{\theta}(x) = \eta = \theta^T x$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim N(\mu, 1)$$

$$\eta = \mu$$
, $T(y) = y$

2. Derive hypothesis function:

$$egin{aligned} h_{ heta}(x) &= \mathbb{E}\left[T(y) | x; heta
ight] \ &= \mathbb{E}\left[y | x; heta
ight] \ &= \mu = \eta \end{aligned}$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = \eta = \theta^{\mathsf{T}} x$$

Canonical response function: $\mu = g(\eta) = \eta$ (identity) Canonical link function: $\eta = g^{-1}(\mu) = \mu$ (identity) $\overline{\eta} = \log\left(\frac{1}{2}\right)$

GLM example: logistic regression

- Apply GLM construction rules:
 - **1.** Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

 $\varphi = \mathcal{J}(\eta) = \frac{1}{1+e^{-\eta}}$ $\int_{1-\phi}^{0} T(y) = y$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim \text{Bernoulli}(\phi)$$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E}\left[\frac{T(y)|x;\theta}{\theta}\right]$$
$$= \underbrace{\left[y|x;\theta\right]}_{1+e^{-\eta}} \quad \text{sigmaich}$$

- Apply GLM construction rules:
 - **1.** Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(rac{\phi}{1-\phi}
ight), \ T(y) = y$$

2. Derive hypothesis function:

$$egin{aligned} h_{ heta}(x) &= \mathbb{E}\left[T(y)|x; heta
ight] \ &= \mathbb{E}\left[y|x; heta
ight] \ &= \phi = rac{1}{1+e^{-\eta}} \end{aligned}$$

3. Adopt linear model $\eta = \underline{\theta^T x}$: $h_{\theta}(x) = \frac{1}{1 + e^{-\underline{\theta^T x}}} \int_{1}^{1 = \theta^T x} \int_{1}^{1 = \theta^T x} \frac{1}{\eta}$

- Apply GLM construction rules:
 - **1.** Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$egin{aligned} h_{ heta}(x) &= \mathbb{E}\left[T(y)|x; heta
ight] \ &= \mathbb{E}\left[y|x; heta
ight] \ &= \phi = rac{1}{1+e^{-\eta}} \end{aligned}$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T_{x}}}}$$

Canonical response function: $\phi = g(\eta) = \text{sigmoid}(\eta)$

- Apply GLM construction rules:
 - **1.** Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$egin{aligned} h_{ heta}(x) &= \mathbb{E}\left[T(y) | x; heta
ight] \ &= \mathbb{E}\left[y | x; heta
ight] \ &= \phi = rac{1}{1+e^{-\eta}} \end{aligned}$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_ heta(x) = rac{1}{1+e^{- heta^ au_x}}$$

Canonical response function: $\phi = g(\eta) = \text{sigmoid}(\eta)$ Canonical link function : $\eta = g^{-1}(\phi) = \underset{\smile}{\text{logit}(\phi)}$ (og $\frac{f}{1-g}$

GLM example: Poisson regression

Example 1: Award Prediction

Predict *y*, **the number of school awards** a student gets given *x*, the math exam score.

Use GLM to find the hypothesis function...

GLM example: Poisson regression

Apply GLM construction rules:

Canonical response function: $\lambda = g(\eta) = e^{\eta}$ Canonical link function : $\eta = g^{-1}(\lambda) = \log(\lambda)$

GLM example: Poisson regression

Poisson regression successfully captures the long tail of P(y)

 $x \cdot y = x^{T} y$

Probability mass function of a Multinomial distribution over k outcomes

$$\begin{array}{c} k \cdot i \\ \mathcal{J}(y)_{k} = i - \sum_{i=1}^{k} \mathcal{J}(y)_{i} \\ \text{Derive the exponential family form of Multinomial} (\phi_{1}, \dots, \phi_{k}): \text{Note:} \\ \phi_{k} = 1 - \sum_{i=1}^{k-1} \phi_{i} \text{ is not a parameter} \\ \mathcal{J}(y)_{i} = \frac{1}{1} \underbrace{y = i} \\ \mathcal{J}(y)_{i} = \frac{1}{1} \underbrace{y = i}$$

Probability mass function of a Multinomial distribution over k outcomes

$$p(y;\phi) = \prod_{i=1}^{k} \phi_i^{\mathbf{1}\{y=i\}}$$

Probability mass function of a Multinomial distribution over k outcomes

$$p(y;\phi) = \prod_{i=1}^{k} \phi_i^{\mathbf{1}\{y=i\}}$$

Derive the exponential family form of Multinomial($\phi_1, ..., \phi_k$): Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

Probability mass function of a Multinomial distribution over k outcomes

$$p(y;\phi) = \prod_{i=1}^{k} \phi_i^{\mathbf{1}\{y=i\}}$$

Derive the exponential family form of Multinomial($\phi_1, ..., \phi_k$): Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

$$T(y) = \begin{bmatrix} \mathbf{1}\{y = 1\} \\ \vdots \\ \mathbf{1}\{y = k - 1\} \end{bmatrix}$$
$$T(y)_i = \mathbf{1}\{y = i\} = \begin{cases} 0 & y \neq i \\ 1 & y = i \\ 1 & y = i \end{cases}$$
$$\mathbf{a}(\eta) = -\log(\phi_k) = \log(\phi_k) = \log(\phi_k)$$

$$\eta = \begin{bmatrix} \log\left(\frac{\phi_{1}}{\phi_{k}}\right) \\ \vdots \\ \log\left(\frac{\phi_{k-1}}{\phi_{k}}\right) \end{bmatrix}$$

$$b(y) = 1$$

Apply GLM construction rules:

1. Let
$$\underline{y|x; \theta} \sim \text{Multinomial}(\phi_1, \dots, \phi_k)$$
 for all $i = \underline{1 \dots k - 1}$
$$\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ \underline{T(y)} = \begin{bmatrix} \mathbf{1}\{y = 1\} \\ \vdots \\ \mathbf{1}\{y = k - 1\} \end{bmatrix}$$

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Multinomial}(\phi_1, \ldots, \phi_k)$, for all $i = 1 \ldots k - 1$

$$\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ T(y) = \begin{bmatrix} \mathbf{1}\{y=1\}\\ \vdots\\ \mathbf{1}\{y=k-1\} \end{bmatrix}$$

Compute inverse: $\phi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}} \leftarrow \text{ canonical response function}$

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Multinomial}(\phi_1, \dots, \phi_k)$, for all $i = 1 \dots k - 1$ $\begin{bmatrix} \mathbf{1}\{y = 1\} \end{bmatrix}$

$$e^{\alpha l \left(\frac{1}{\varphi_{k}}\right)}, T(y) = \begin{bmatrix} 1 \{y = 1\} \\ \vdots \\ 1 \{y = k - 1\} \end{bmatrix}$$
Compute inverse: $\phi_{i} = \frac{e^{\eta_{i}}}{\sum_{j=1}^{k} e^{\eta_{j}}} \leftarrow \text{ canonical response function}$
2. Derive hypothesis function:

$$T(y)$$

$$h_{\theta}(x) = \mathbb{E} \begin{bmatrix} \frac{1\{y = 1\}}{\vdots} \\ 1\{y = k - 1\} \end{bmatrix} | x; \theta \end{bmatrix} = \begin{bmatrix} \phi_{1} \\ \vdots \\ \phi_{k-1} \end{bmatrix}$$

$$\phi_{i} = \frac{e^{\eta_{i}k'}}{\sum_{j=1}^{k} e^{\eta_{j}}} \leftarrow$$

3. Adopt linear model $\eta_i = \theta_i^T x$:

$$\phi_i = \frac{e^{\theta_i^T \times \sqrt{k}}}{\sum_{j=1}^k e^{\theta_j^T \times}} \text{ for all } i = 1 \dots k - 1$$

$$h_{\theta}(x) = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k-1}^{T} x} \end{bmatrix} \leftarrow \text{softmax}.$$

3. Adopt linear model $\eta_i = \theta_i^T x$:

$$\phi_i = \frac{e^{\theta_i^T x}}{\sum_{j=1}^k e^{\theta_j^T x}} \text{ for all } i = 1 \dots k - 1$$

$$h_{\theta}(x) = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T}x}} \begin{bmatrix} e^{\theta_{1}^{T}x} \\ \vdots \\ e^{\theta_{k-1}^{T}x} \end{bmatrix}$$

Canonical response function: $\phi_i = g(\eta) = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$, with the provided of the second second

GLM Summary

Sufficient statistic T(y)**Response function** $g(\eta)$ Link function $g^{-1}(\mathbb{E}[T(y);\eta])$ 12 21 Exponential Family T(y) \mathcal{Y} (E[7 $g(\eta)$ g \mathbb{R} $\mathcal{N}(\mu, 1)$ V $Bernoulli(\phi)$ $\{0, 1\}$ У log $\overline{1+e^{-\eta}}$ $Poisson(\lambda)$ e^{η} \mathbb{N} log($\frac{e^{\eta_i}}{\sum_{i=1}^k e^{\eta_j}}$ $\mathsf{Multinomial}(\phi_1,\ldots,\phi_k) \quad \{1,\ldots,k\} \quad \mathbf{1}\{y=i\}$ $\eta_i = \log$

GLM is effective for modelling different types of distributions over y