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Review of Lecture 2 Multi-Class Classification Review: Exponential Family Generalized Linear Models

Ask me a question (1/2)

Can linear regression overfit ill-posed data?
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Ask me a question (2/2)

Why is the gradient update in logistic regression having "+" sign ?
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Review of Lecture 2 Multi-Class Classification Review: Exponential Family Generalized Linear Models

Today’s Lecture

Supervised Learning (Part III)
I Review on linear and logistic regression
I Multi-class classification
I Review: exponential families
I Generalized linear models (GLM)

Written Assignment (WA1) is released. Due on Oct 22nd. (Start early!)
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Review of Lecture 2
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Review of Lecture 2 Multi-Class Classification Review: Exponential Family Generalized Linear Models

Review of Lecture 2: Linear least square

I Hypothesis function for input feature x
(i) 2 Rn:

h✓(x
(i)) = ✓T x (i), where ✓ =

2

6664

✓0
✓1
...
✓n

3

7775
, x

(i) =

2

6664

1
x
(i)
1
...

x
(i)
n

3

7775

I Cost function for m training examples (x (i), y (i)), i = 1, . . . ,m:

J(✓) =

1
2

mX

i=1

⇣
y
(i) � ✓T x (i)

⌘2

Also known as ordinary least square regression model.
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How to minimize J(✓)?
I Gradient descent:

update rule (batch)

✓j  ✓j + ↵ · 1
m

mX

i=1

⇣
y
(i) � h✓(x

(i))
⌘
x
(i)
j

update rule (stochastic)

✓j  ✓j + ↵
⇣
y
(i) � h✓(x

(i))
⌘
x
(i)
j

I Newton’s method

✓  ✓ � H
�1rJ(✓)

I Normal equation

X
T
X✓ = X

T
y
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Review of Lecture 2

Maximum likelihood estimation

I Log-likelihood function:

`(✓) = log

 
mY

i=1

p(y (i)|x (i); ✓)
!

=
mX

i=1

log p(y (i)|x (i); ✓)

where p is a probability density function.

✓MLE = argmax
✓

`(✓)

(True or False?) Ordinary least square regression is equivalent to the
maximum likelihood estimation of ✓.
True under the assumptions:

I y
(i) = ✓T x (i) + ✏(i)

I ✏(i) are i.i.d. according to N (0,�2)
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Review of Lecture 2: Linear Regression Exercise

The normal equation for solving ordinary least square is:

X
T
X✓ = X

T
y

When X
T
X is invertible, we have ✓ = (XT

X )�1
X

T
y Now, suppose

X
T
X is singular. Does the solution exist?
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Review of Lecture 2: Logistic regression

I Hypothesis function:

h✓(x) = g(✓T x), g(z) =
1

1 + e�z
is the sigmoid function.

I Assuming y |x ; ✓ is distributed according to Bernoulli(h✓(x))

p(y |x ; ✓) = h✓(x)
y (1� h✓(x))

1�y

I Log-likelihood function for m training examples:

`(✓) =
mX

i=1

y
(i) log h✓(x (i)) + (1� y

(i)) log(1� h✓(x
(i)))
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Multi-Class Classification
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Multi-class classification

Each data sample belong to one of k > 2 different classes.

Y = {1, . . . , k}

Given new sample x 2 Rk , predict which
class it belongs.
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Naive Approach: Convert to binary classification

One-Vs-Rest

Learn k classifiers h1, . . . , hk . Each hi classify one class against the rest
of the classes.
Given a new data sample x , its predicted label ŷ :

ŷ = argmax
i

hi (x)
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Drawbacks of One-Vs-Rest:
I Class imbalance: more negative samples than positive samples when

k is large

Learn one model for all classes!
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Review: Multinomial Distribution

Models the probability of counts for each side of a k-sided
die rolled m times, each side with independent probability
�i

�1 + . . .+ �k = 1

x2
x1

k = 3, n = 10 ϕ = [ 1
2 , 1

3 , 1
6 ]
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Extend logistic regression: Softmax Regression

Assume p(y |x) is multinomial distributed, k = |Y|

Hypothesis function for sample x :

h✓(x) =

2

64
p(y = 1|x ; ✓)

...
p(y = k |x ; ✓)

3

75 =
1

Pk
j=1 e

✓T
j xj

2

64
e
✓T
1
x

...
e
✓T
k x

3

75 = softmax(✓T x)

softmax(zi ) =
e
zi

Pk
j=1 e

(zj )

Parameters: ✓ =

2

64
� ✓T1 �

...
� ✓Tk �

3

75
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Softmax Regression

Given (x (i), y (i)), i = 1, . . . ,m, the log-likelihood of the Softmax model is

`(✓) =
mX

i=1

log p(y (i)|x (i); ✓)

=
mX

i=1

log
kY

l=1

p(y (i) = l |x (i))1{y
(i)=l}

=
mX

i=1

kX

l=1

1{y (i) = l} log p(y (i) = l |x (i))

=
mX

i=1

kX

l=1

1{y (i) = l} log
e
✓T
l x (i)

Pk
j=1 e

✓T
j x (i)
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Softmax Regression

Derive the stochastic gradient descent update:
I Find r✓l `(✓)

r✓l `(✓) =
mX

i=1

h⇣
1{y (i) = l}� P

⇣
y
(i) = l |x (i); ✓

⌘⌘
x
(i)
i
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Property of Softmax Regression

I Parameters ✓1, . . . ✓k are not independent:P
j p(y = j |x) =

P
j �j = 1

I Knowning k � 1 parameters completely determines model.

Invariant to scalar addition

p(y |x ; ✓) = p(y |x ; ✓ �  )

Proof.
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Relationship with Logistic Regression

When K = 2,

h✓(x) =
1

e✓
T
1
x + e✓

T
2
x

"
e
✓T
1
x

e
✓T
2
x

#

Replace ✓ =

✓1
✓2

�
with ✓⇤ = ✓ �


✓2
✓2

�
=


✓1 � ✓2

0

�
,

h✓(x) =
1

e✓
T
1
x�✓T

2
x + e0x

"
e
(✓1�✓2)

T x

e
0T x

#

=

"
e(✓1�✓2)T x

1+e(✓1�✓2)T x

1
1+e(✓1�✓2)T x

#

=

"
1

1+e�(✓1�✓2)T x

1� 1
1+e�(✓1�✓2)T x

#
=


g(✓ ⇤T x)

1� g(✓⇤T x)

�
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�
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1

e✓
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1
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2
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"
e
(✓1�✓2)

T x

e
0T x

#
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"
e(✓1�✓2)T x

1+e(✓1�✓2)T x
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#
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"
1
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1� 1
1+e�(✓1�✓2)T x
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g(✓ ⇤T x)

1� g(✓⇤T x)

�
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When to use Softmax?

I When classes are mutually exclusive: use Softmax
I Not mutually exclusive (a.k.a. multi-label classification): multiple

binary classifiers may be better
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Summary: Linear models

What we’ve learned so far:

Learning task Model p(y |x ; ✓)
regression Linear regression N (h✓(x) ,�2)
binary classification Logistic regression Bernoulli( h✓(x) )
multi-class classification Softmax regression Multinomial([h✓(x)] )

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear
models in which y |x ; ✓ is from an exponential family.
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Review: Exponential Family
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Exponential Family

A class of distributions is in the exponential family if it can be written
in the canonical form:

p(y ; ⌘) = b(y)e⌘
TT (y)�a(⌘)

I y : random variable
I ⌘ : natural/canonical parameter (that depends on distribution

parameter(s))
I T (y): sufficient statistic of the distribution
I b(y): a function of y
I a(⌘) : log partition function (or “cumulant function”)
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Exponential Family

Log partition function a(⌘) is the log of a normalizing constant.
i.e.

p(y ; ⌘) = b(y)e⌘
TT (y)�a(⌘) =

b(y)e⌘
TT (y)

ea(⌘)

Function a(⌘) is chosen such that
P

y p(y ; ⌘) = 1
(or
R
y p(y ; ⌘)dy = 1).

a(⌘) = log

 
X

y

b(y)e⌘
TT (y)

!
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Exponential Family Examples

Bernoulli Distribution

Bernoulli(�): a distribution over y 2 {0, 1}, such that

p(y ;�) = �y (1� �)1�y

y

ϕ

1 − ϕ

0 1

PY(y)
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Bernoulli Distribution

Bernoulli(�): a distribution over y 2 {0, 1}, such that

p(y ;�) = �y (1� �)1�y

How to write it in the form of p(y ; ⌘) = b(y)e⌘
TT (y)�a(⌘)

?
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Exponential Family Examples

Bernoulli Distribution

Bernoulli(�): a distribution over y 2 {0, 1}, such that

p(y ;�) = �y (1� �)1�y

I ⌘ =

log
⇣

�
1��

⌘

I b(y) =

1

I T (y) =

y

I a(⌘) =

log(1 + e
⌘)
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Exponential Family Examples
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p(y ;�) = �y (1� �)1�y

I ⌘ = log
⇣

�
1��

⌘
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Exponential Family Examples

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution N (µ, 1) over y 2 R:

p(y ; ✓) =
1p
2⇡

exp
✓
� (y � µ)2

2

◆

I ⌘ =

µ

I b(y) =

1p
2⇡

exp(�y2/2)

I T (y) =

y

I a(⌘) =

1
2⌘

2
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Exponential Family Examples

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution N (µ, 1) over y 2 R:

p(y ; ✓) =
1p
2⇡

exp
✓
� (y � µ)2

2

◆

I ⌘ = µ

I b(y) = 1p
2⇡

exp(�y2/2)
I T (y) = y

I a(⌘) = 1
2⌘

2
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Exponential Family Examples

Two parameter example:

Gaussian Distribution

Probability density of a Gaussian distribution N (µ,�2) over y 2 R:

p(y ; ✓) =
1p

2⇡�2
exp

✓
� (y � µ)2

2�2

◆

I ⌘ =

2

4
µ
�2

� 1
2�2

3

5

I b(y) = 1p
2⇡

I T (y) =


y

y
2

�

I a(⌘) = µ2

2�2 + log �
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Exponential Family Examples

Poisson distribution: Poisson(�)

Models the probability that an event occurring y 2 N times in a fixed
interval of time, assuming events occur independently at a constant rate

Probability density
function of Poisson(�)
over y 2 Y:

p(y ;�) =
�ye��

y !
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Exponential Family Examples

Poisson distribution: Poisson(�)

Models the probability that an event occurring y 2 N times in a fixed
interval of time, assuming events occur independently at a constant rate

Probability density
function of Poisson(�)
over y 2 Y:

p(y ;�) =
�ye��

y !

51 / 48



Review of Lecture 2 Multi-Class Classification Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Poisson distribution Poisson(�)

Probability density function of Poisson(�) over y 2 Y:

p(y ;�) =
�ye��

y !

I ⌘ =

log �

I b(y) =

1
y !

I T (y) =

y

I a(⌘) =

e
⌘
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Exponential Family Examples

Poisson distribution Poisson(�)

Probability density function of Poisson(�) over y 2 Y:

p(y ;�) =
�ye��

y !

I ⌘ = log �
I b(y) = 1

y !

I T (y) = y

I a(⌘) = e
⌘
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Generalized Linear Models
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Generalized Linear Models: Intuition

Example 1: Award Prediction

Predict y , the number of school awards a student gets given x , the
math exam score.
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Generalized Linear Models: Intuition

Problems with linear regression:
I Assumes y |x ; ✓ has a

Normal distribution.

I Assumes change in x is
proportional to change in y
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Generalized Linear Models: Intuition

Problems with linear regression:
I Assumes y |x ; ✓ has a

Normal distribution.
Poisson distribution is

better for modeling

occurrences

I Assumes change in x is
proportional to change in y

More realistic to be

proportional to the rate of

increase in y (e.g.
doubling or halving y)

57 / 48



Review of Lecture 2 Multi-Class Classification Review: Exponential Family Generalized Linear Models

Generalized Linear Models : Intuition

Generalized Linear Model (GLM): a recipe for constructing linear
models in which y |x ; ✓ is from an exponential family.

Design motivation of GLM
I Response variables y can have arbitrary distributions
I Allow arbitrary function of y (the link function) to vary linearly

with the input values x
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Generalized Linear Models: Construction

Formal GLM assumptions & design decisions:
1. y |x ; ✓ ⇠ ExponentialFamily(⌘)

e.g. Gaussian, Poisson, Bernoulli, Multinomial, Beta ...
2. The hypothesis function h(x) is E [T (y)|x ]

e.g. When T (y) = y , h(x) = E [y |x ]
3. The natural parameter ⌘ and the inputs x are related linearly:

⌘ is a number:

⌘ = ✓T x

⌘ is a vector:

⌘i = ✓Ti x 8i = 1, . . . , n or ⌘ = ⇥T
x
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Generalized Linear Models: Construction

Relate natural parameter ⌘ to distribution mean E [T (y); ⌘] :
I Canonical response function g gives the mean of the distribution

g(⌘) = E [T (y); ⌘]

a.k.a. the “mean function”

I g
�1 is called the canonical link function

⌘ = g
�1(E [T (y); ⌘])
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Generalized Linear Models: Construction

Relate natural parameter ⌘ to distribution mean E [T (y); ⌘] :
I Canonical response function g gives the mean of the distribution

g(⌘) = E [T (y); ⌘]

a.k.a. the “mean function”
I g

�1 is called the canonical link function

⌘ = g
�1(E [T (y); ⌘])
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GLM example: ordinary least square

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ N(µ, 1)

⌘ = µ, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]
= µ = ⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) = ⌘ = ✓T x

Canonical response function: µ = g(⌘) = ⌘ (identity)
Canonical link function: ⌘ = g

�1(µ) = µ (identity)
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GLM example: ordinary least square

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ N(µ, 1)

⌘ = µ, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]
= µ = ⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) = ⌘ = ✓T x

Canonical response function: µ = g(⌘) = ⌘ (identity)
Canonical link function: ⌘ = g

�1(µ) = µ (identity)
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GLM example: ordinary least square

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ N(µ, 1)

⌘ = µ, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]
= µ = ⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) = ⌘ = ✓T x

Canonical response function: µ = g(⌘) = ⌘ (identity)
Canonical link function: ⌘ = g

�1(µ) = µ (identity)

64 / 48

I
-



Review of Lecture 2 Multi-Class Classification Review: Exponential Family Generalized Linear Models

GLM example: ordinary least square

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ N(µ, 1)

⌘ = µ, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]
= µ = ⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) = ⌘ = ✓T x

Canonical response function: µ = g(⌘) = ⌘ (identity)
Canonical link function: ⌘ = g

�1(µ) = µ (identity)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; ✓ ⇠ Bernoulli(�)

⌘ = log
⇣

�
1��

⌘
, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]

= � =
1

1 + e�⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) =
1

1 + e�✓T x

Canonical response function: � = g(⌘) = sigmoid(⌘)
Canonical link function : ⌘ = g

�1(�) = logit(�)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; ✓ ⇠ Bernoulli(�)

⌘ = log
⇣

�
1��

⌘
, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]

= � =
1

1 + e�⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) =
1

1 + e�✓T x

Canonical response function: � = g(⌘) = sigmoid(⌘)
Canonical link function : ⌘ = g

�1(�) = logit(�)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; ✓ ⇠ Bernoulli(�)

⌘ = log
⇣

�
1��

⌘
, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]

= � =
1

1 + e�⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) =
1

1 + e�✓T x

Canonical response function: � = g(⌘) = sigmoid(⌘)
Canonical link function : ⌘ = g

�1(�) = logit(�)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; ✓ ⇠ Bernoulli(�)

⌘ = log
⇣

�
1��

⌘
, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]

= � =
1

1 + e�⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) =
1

1 + e�✓T x

Canonical response function: � = g(⌘) = sigmoid(⌘)

Canonical link function : ⌘ = g
�1(�) = logit(�)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; ✓ ⇠ Bernoulli(�)

⌘ = log
⇣

�
1��

⌘
, T (y) = y

2. Derive hypothesis function:

h✓(x) = E [T (y)|x ; ✓]
= E [y |x ; ✓]

= � =
1

1 + e�⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) =
1

1 + e�✓T x

Canonical response function: � = g(⌘) = sigmoid(⌘)
Canonical link function : ⌘ = g

�1(�) = logit(�)
70 / 48
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GLM example: Poisson regression

Example 1: Award Prediction

Predict y , the number of school awards a student gets given x , the
math exam score.

Use GLM to find the hypothesis function...
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GLM example: Poisson regression

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ Poisson(�)

⌘ = log(�), T (y) = y

2. Derive hypothesis function:

h✓(x) = E [y |x ; ✓]
= � = e

⌘

3. Adopt linear model ⌘ = ✓T x :

h✓(x) = e
✓T x

Canonical response function: � = g(⌘) = e
⌘

Canonical link function : ⌘ = g
�1(�) = log(�)
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GLM example: Poisson regression

Distribution of the predicted number of awards (y)

Poisson regression successfully captures the long tail of P(y)
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;�) =
kY

i=1

�1{y=i}
i

Derive the exponential family form of Multinomial(�1, ..,�k): Note:
�k = 1�

Pk�1
i=1 �i is not a parameter

I T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

T (y)i = 1{y = i} =

(
0 y 6= i

1 y = i

I a(⌘) = � log(�k)

I ⌘ =

2

6664

log
⇣

�1

�k

⌘

...
log
⇣

�k�1

�k

⌘

3

7775

I b(y) = 1
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;�) =
kY

i=1

�1{y=i}
i

Derive the exponential family form of Multinomial(�1, ..,�k): Note:
�k = 1�

Pk�1
i=1 �i is not a parameter

I T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

T (y)i = 1{y = i} =

(
0 y 6= i

1 y = i

I a(⌘) = � log(�k)

I ⌘ =

2

6664

log
⇣

�1

�k

⌘

...
log
⇣

�k�1

�k

⌘

3

7775

I b(y) = 1
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;�) =
kY

i=1

�1{y=i}
i

Derive the exponential family form of Multinomial(�1, ..,�k): Note:
�k = 1�

Pk�1
i=1 �i is not a parameter

I T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

T (y)i = 1{y = i} =

(
0 y 6= i

1 y = i

I a(⌘) = � log(�k)

I ⌘ =

2

6664

log
⇣

�1

�k

⌘

...
log
⇣

�k�1

�k

⌘

3

7775

I b(y) = 1
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;�) =
kY

i=1

�1{y=i}
i

Derive the exponential family form of Multinomial(�1, ..,�k): Note:
�k = 1�

Pk�1
i=1 �i is not a parameter

I T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

T (y)i = 1{y = i} =

(
0 y 6= i

1 y = i

I a(⌘) = � log(�k)

I ⌘ =

2

6664

log
⇣

�1

�k

⌘

...
log
⇣

�k�1

�k

⌘

3

7775

I b(y) = 1
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GLM example: Softmax regression

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ Multinomial(�1, . . . ,�k), for all i = 1 . . . k � 1

⌘i = log
⇣
�i
�k

⌘
, T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

Compute inverse: �i = e⌘iPk
j=1

e⌘j
 canonical response function

2. Derive hypothesis function:

h✓(x) = E

2

64
1{y = 1}

...
1{y = k � 1}

�������
x ; ✓

3

75 =

2

64
�1
...

�k�1

3

75

�i =
e
⌘i

Pk
j=1 e

⌘j
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GLM example: Softmax regression

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ Multinomial(�1, . . . ,�k), for all i = 1 . . . k � 1

⌘i = log
⇣
�i
�k

⌘
, T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

Compute inverse: �i = e⌘iPk
j=1

e⌘j
 canonical response function

2. Derive hypothesis function:

h✓(x) = E

2

64
1{y = 1}

...
1{y = k � 1}

�������
x ; ✓

3

75 =

2

64
�1
...

�k�1

3

75

�i =
e
⌘i

Pk
j=1 e

⌘j
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GLM example: Softmax regression

Apply GLM construction rules:

1. Let y |x ; ✓ ⇠ Multinomial(�1, . . . ,�k), for all i = 1 . . . k � 1

⌘i = log
⇣
�i
�k

⌘
, T (y) =

2

64
1{y = 1}

...
1{y = k � 1}

3

75

Compute inverse: �i = e⌘iPk
j=1

e⌘j
 canonical response function

2. Derive hypothesis function:

h✓(x) = E

2

64
1{y = 1}

...
1{y = k � 1}

�������
x ; ✓

3

75 =

2

64
�1
...

�k�1

3

75

�i =
e
⌘i

Pk
j=1 e

⌘j
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GLM example: Softmax regression

3. Adopt linear model ⌘i = ✓Ti x :

�i =
e
✓T
i x

Pk
j=1 e

✓T
j x

for all i = 1 . . . k � 1

h✓(x) =
1

Pk
j=1 e

✓T
j x

2

64
e
✓T
1
x

...
e
✓T
k�1

x

3

75

Canonical response function: �i = g(⌘) =
e
⌘iPk

j=1 e
⌘j

Canonical link function : ⌘i = g
�1(�i ) = log

⇣
�i
�k

⌘
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GLM example: Softmax regression

3. Adopt linear model ⌘i = ✓Ti x :

�i =
e
✓T
i x

Pk
j=1 e

✓T
j x

for all i = 1 . . . k � 1

h✓(x) =
1

Pk
j=1 e

✓T
j x

2

64
e
✓T
1
x

...
e
✓T
k�1

x

3

75

Canonical response function: �i = g(⌘) =
e
⌘iPk

j=1 e
⌘j

Canonical link function : ⌘i = g
�1(�i ) = log

⇣
�i
�k

⌘
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GLM Summary

Sufficient statistic T (y)

Response function g(⌘)

Link function g
�1(E[T (y); ⌘])

Exponential Family Y T (y) g(⌘) g�1(E[T (y); ⌘])
N (µ, 1) R y ⌘ µ

Bernoulli(�) {0, 1} y 1
1+e�⌘ log �

1��
Poisson(�) N y e⌘ log(�)

Multinomial(�1, . . . ,�k) {1, . . . , k} 1{y = i} e⌘iPk
j=1 e⌘j

⌘i = log
⇣

�i

�k

⌘

GLM is effective for modelling different types of distributions over y
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