Learning From Data Lecture 2: Linear Regression & Logistic Regression

Yang Li yangli@sz.tsinghua.edu.cn

September 24, 2021

Today's Lecture

Supervised Learning (Part I)

- Linear Regression
- Binary Classification
- Multi-Class Classification

Review: Supervised Learning

▶ Input space: \mathcal{X} , Target space: \mathcal{Y}

Review: Supervised Learning

► Input space:
$$\mathcal{X}$$
 , Target space: \mathcal{Y}

Given training examples, we want to learn a hypothesis function h: X → Y so that h(x) is a "good" predictor for the corresponding y.

Review: Supervised Learning

1 - to rget space

- y is discrete (categorical): classification problem
- y is continuous (real value): regression problem

Linear Regression

Linear Regression Model

Ordinary Least Square

Maximum Likelihood Estimation

y is continuous

Linear Regression

Living area (ft^2) # bedrooms Price (\$1000) X_1 *x*₂ y : price (1000\$) 2000 3000 # of rooms living area XI

Example: predict Portland housing price

Linear Approximation

A linear model
$$\chi = R^2$$
 $y = R$ $h: \chi \to \mathcal{Y}$

$$h(x) = \underline{\theta}_0 + \underline{\theta}_1 x_1 + \underline{\theta}_2 x_2$$

 θ_i 's are called **parameters**.

Linear Approximation

A linear model

$$h(x) = \frac{\mathcal{V}}{\theta_0 + \theta_1 x_1 + \theta_2 x_2}$$

 θ_i 's are called **parameters**.

Using vector notation,

$$\underline{h(x)} = \underline{\theta^{\mathsf{T}} x}, \quad \text{where } \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

Alternative Notation

$$h(x) = w_1 x_1 + w_2 x_2 + b$$

$$w_1, w_2 \text{ are called weights, } b \text{ is called the bias}$$

$$h(x) = w^T x + b, \quad \text{where } w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Apply model to new data

Suppose we have the optimal parameters θ , e.g.

make a prediction of new feature x:

Model Estimation

How to estimate model parameters θ (or w and b) from data?

Model Estimation

How to estimate model parameters θ (or *w* and *b*) from data?

geometric approach

Model Estimation

How to estimate model parameters θ (or w and b) from data?

Probabilistic approach

Ordinary Least Square

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$(x, y)$$

$$h(x) - y$$

$$h(x) = \theta_0 + \theta_1 x_1$$

$$+ \theta_2 x_2$$

Ordinary Least Square

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Ordinary Least Square

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

AIN

The ordinary Least square problem is:

$$= \min_{\theta} \underbrace{\frac{J(\theta)}{2}}_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

How to minimize $J(\theta)$?

- Numerical solution: gradient descent, Newton's method
- Analytical solution: normal equation

Theorem If $J(\theta)$ is convex, gradient descent finds the global minimum.

For the ordinary least square problem,

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 = \frac{1}{2} \underbrace{\sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2}_{i=1},$$

$$\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix}, \text{ where } \frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \frac{1}{2} \sum_{i=1}^{m} (\theta^T \chi^{i_i} - y^{i_i})^2$$
$$= \frac{1}{2} \sum_{i=1}^{m} 2 (\theta^T \chi^{i_i} - y^{i_i}) \frac{\partial}{\partial \theta_j} \frac{\partial}{$$

For the ordinary least square problem,

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2,$$

$$\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix}, \text{ where } \frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{1}{2} \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)} \right)^2 \right]$$
$$= \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Gradient descent for ordinary least square

$$\theta \leftarrow \theta - \alpha \nabla J(\theta)$$

Gradient of cost function: $\nabla \underline{J}(\theta)_j = \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)}\right) x_j^{(i)}$ Gradient descent update: $\theta_j = \theta - \alpha \nabla J(\theta) = \begin{bmatrix} \nabla J(\theta) \\ \nabla J(\theta) \\ \nabla J(\theta) \end{bmatrix}$ Batch Gradient Descent Repeat until convergence{ 🧲 $heta_j = heta_j + lpha \sum_{i=1}^m (y^{(i)} - h_ heta(x^{(i)})) x_i^{(i)}$ for every j while not conversed : for j in range(n) :

Gradient descent for ordinary least square

Gradient of cost function: $\nabla J(\theta)_j = \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$ Gradient descent update: $\theta := \theta - \alpha \nabla J(\theta)$

Batch Gradient Descent

Repeat until convergence {

$$\theta_{j} = \theta_{j} + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_{j}^{(i)}$$
for every j
}

 θ is only updated after we have seen all *m* training samples.

 $\boldsymbol{\theta}$ is updated each time a training example is read

Batch gradient descent

 $\boldsymbol{\theta}$ is updated each time a training example is read

- Stochastic gradient descent gets θ close to minimum much faster
- Good for regression on large data

Minimize $J(\theta)$ Analytically

X is called the **design matrix**.

Minimize $J(\theta)$ Analytically

$$\frac{\partial}{\partial t} = \frac{\langle \theta^{z} \left[\begin{pmatrix} \theta^{T} \chi^{(i)} \\ \theta^{T} \chi^{(i)} \\$$

X is called the **design matrix**. The least square function can be written as

$$J(\theta) = \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

Compute the gradient of
$$J(\theta) := \frac{1}{2} (Q \times -y)^T (Q \times -y)^T$$

 $\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X \theta - y)^T (X \theta - y) \right]$

Compute the gradient of $J(\theta)$:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{T} (X\theta - y) \right]$$
Hint: (let $x \leftarrow \theta, Q \leftarrow X$)
 $\chi \in [\mathbb{R}^{n}, \mathbb{Q} \in \mathbb{R}^{n \times n}, \mathbb{L} : [\mathbb{R}^{n} \rightarrow \mathbb{R}]$.
 $\mathcal{L}(x) = \frac{1}{2} (\mathbb{Q} \times - \frac{1}{2})^{T} (\mathbb{Q} \times - \frac{1}{2})$
 $= \frac{1}{2} (\sqrt{x} \mathbb{Q}^{T} - \sqrt{x}^{T}) (\mathbb{Q} \times - \frac{1}{2})$
 $= \frac{1}{2} (\sqrt{x} \mathbb{Q}^{T} - \sqrt{x}^{T}) (\mathbb{Q} \times - \frac{1}{2})$
 $= \frac{1}{2} \sqrt{x} \mathbb{Q}^{T} \mathbb{Q} \times - \frac{1}{2} \mathbb{Q} \times - \mathbb{Q} \times -$

Compute the gradient of $J(\theta)$:

$$abla_{ heta} J(heta) =
abla_{ heta} \left[rac{1}{2} (X heta - y)^{T} (X heta - y)
ight]$$

Since $J(\theta)$ is **convex**, x is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0$.

Compute the gradient of $J(\theta)$:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{T} (X\theta - y) \right]$$

= $(X^{T} X \theta - X^{T} y = 0)$
 $\Theta = (X^{T} \chi)^{-1} \chi^{T} y$
Since $J(\theta)$ is **convex**, x is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0$.

The Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

Compute the gradient of $J(\theta)$:

$$abla_{ heta} J(heta) =
abla_{ heta} \left[rac{1}{2} (X heta - y)^{\mathsf{T}} (X heta - y)
ight] = X^{\mathsf{T}} X heta - X^{\mathsf{T}} y$$

Since $J(\theta)$ is **convex**, x is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0.$ The Normal equation $\begin{array}{c} \chi \in \mathbb{R}^{n \times m} \rightarrow \theta = X^{-1} y \\ \chi \in \mathbb{R}^{n \times m} \rightarrow (\chi \tau \chi)^{1} \chi^{\tau} y \\ \theta = (X^{T} X)^{-1} X^{T} y \end{array}$

 $(X^{T}X)^{-1}X^{T}$ is called the **Moore-Penrose pseudoinverse of** X

gradient descent	normal equation
iterative solution	exact solution

gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge steepest GD.	

Which method to use?	V: (MXM) M+M. (XTX)7 (XTX)7 issue: add small purple obdion: normal equation (XTX + XI)
gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	numerically unstable when X is ill-conditioned. e.g. features are highly correlated

gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	numerically unstable when X is ill-conditioned. e.g. features are highly correlated
works well for large number of samples m	

gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	numerically unstable when X is ill-conditioned. e.g. features are highly correlated
works well for large number of samples m	solving equation is slow when <i>m</i> is large

Minimize $J(\theta)$ using Newton's Method

Numerically solve for θ in $\nabla_{\theta} J(\theta) = 0$

Newton's method

Solves real functions f(x) = 0 by iterative approximation:

- Start an initial guess x
- Update x until convergence

$$x := x - \frac{f(x)}{f'(x)}$$

Newton's Method Demo

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Minimize $J(\theta)$ using Newton's Method

Newton's method for optimization $\min_{\theta} J(\theta)$ Use newton's method to solve $\nabla_{\theta} J(\theta) = 0$: θ is one-dimensional: $\theta := \theta - \frac{J'(\theta)}{J''(\theta)} \leftarrow \frac{2^2}{2\theta} J(\theta)$ Minimize $J(\theta)$ using Newton's Method Hessian matrix $= \begin{bmatrix} 2^{2} \\ \overline{\partial \theta_{1}^{2}} \\ \overline{\partial \theta_{1}^{2}} \end{bmatrix} \begin{bmatrix} 0 \\ \overline{\partial \theta_{1}^{2}} \end{bmatrix} \begin{bmatrix} 0 \\ \overline{\partial \theta_{2}} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Newton's method for optimization $\min_{\theta} J(\theta)$

Use newton's method to solve $\nabla_{\theta} J(\theta) = 0$:

 \triangleright θ is one-dimensional:

$$\theta := \theta - \frac{J'(\theta)}{J''(\theta)}$$

► A is multidimensional:

$$\theta = \theta - \underbrace{H^{-1}(\theta)}_{\bullet} \nabla J(\theta)$$

where H is the Hessian matrix of $J(\theta)$.

a.k.a Newton-Raphson method

 $\frac{\tilde{\partial}}{\partial \theta_{2}} \partial \theta_{1}^{(\nu)}$

Initialize
$$\theta$$

While θ has not coverged {
 $\theta := \theta - H^{-1}(\theta) \nabla J(\theta)$
}

```
\begin{array}{l} \text{Initialize } \theta \\ \text{While } \theta \text{ has not coverged } \{ \\ \theta := \theta - H^{-1}(\theta) \nabla J(\theta) \\ \} \end{array}
```

Performance of Newton's method:

Needs fewer interations than batch gradient descent

Performance of Newton's method:

- Needs fewer interations than batch gradient descent
- Computing H⁻¹ is time consuming

```
\begin{array}{l} \text{Initialize } \theta \\ \text{While } \theta \text{ has not coverged } \{ \\ \theta := \theta - H^{-1}(\theta) \nabla J(\theta) \\ \} \end{array}
```

Performance of Newton's method:

- Needs fewer interations than batch gradient descent
- Computing H⁻¹ is time consuming
- Faster in practice when n is small

Consider target y is modeled as

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

and $\epsilon^{(i)}$ are independently and identically distributed (IID) to Gaussian distribution $\mathcal{N}(0,\sigma^2)$

Consider target y is modeled as

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

and $\epsilon^{(i)}$ are independently and identically distributed (IID) to Gaussian distribution $\mathcal{N}(0,\sigma^2)$, then

$$p(\epsilon^{(i)}) =$$

Consider target y is modeled as

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

ß

ρ

and $\epsilon^{(i)}$ are independently and identically distributed (IID) to Gaussian distribution $\mathcal{N}(0, \sigma^2)$, then

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma^2}\right)$$

Consider target y is modeled as

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

and $\underline{\epsilon}^{(i)}$ are independently and identically distributed (IID) to Gaussian distribution $\mathcal{N}(0, \sigma^2)$, then $p(\underline{\epsilon}^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma^2}\right) \qquad \underbrace{\epsilon^{(i)}}_{l} = \underbrace{y^{(i)}}_{l} - \underbrace{\theta^{\mathsf{T}} x^{(i)}}_{l} \\ p(\underline{y}^{(i)} | x^{(i)}; \underline{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\underline{y}^{(i)} - \theta^{\mathsf{T}} x^{(i)})^2}{2\sigma^2}\right)$

The **likelihood** of this model with respect to θ is

$$L(\theta) = \underbrace{p(\vec{y}|X;\theta)}_{i=1} = \prod_{i=1}^{m} \underbrace{p(y^{(i)}|x^{(i)};\theta)}_{i=1} \quad \text{due to. i.i.d.}$$

The **likelihood** of this model with respect to θ is

$$L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)$$

Maximum likelihood estimation of θ :

$$\underbrace{\theta_{MLE}}_{\theta} = \operatorname{argmax}_{\theta} L(\theta)$$

We compute log likelihood,

$$\max \log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp \left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^{2}}} + \left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\delta^{2}}\right)$$

$$= \max \log \frac{1}{\sqrt{2\pi\delta^{2}}} - \frac{1}{\delta^{2}} \left(\frac{1}{2} \left(y^{(i)} - \theta^{T}x^{(i)}\right)^{2}}{2\delta^{2}}\right)$$

$$= \max \log \frac{1}{\sqrt{2\pi\delta^{2}}} - \frac{1}{\delta^{2}} \left(\frac{1}{2} \left(y^{(i)} - \theta^{T}x^{(i)}\right)^{2}}{2\delta^{2}}\right)$$

We compute log likelihood,

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

We compute log likelihood,

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2$$

We compute log likelihood,

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2$$

Then $\operatorname{argmax}_{\theta} \log L(\theta) \equiv \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$.

We compute log likelihood,

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2$$

Then $\operatorname{argmax}_{\theta} \log L(\theta) \equiv \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}$. Under the assumptions on $\epsilon^{(i)}$, least-squares regression corresponds to the maximum likelihood estimate of θ . gradient ascent $\theta = \theta + d \nabla L(\theta)$ 30/48

Linear Regression Summary

How to estimate model parameters θ (or *w* and *b*) from data?

- Least square regression (geometry approach)
- Maximum likelihood estimation (probabilistic modeling approach)

Linear Regression Summary

How to estimate model parameters θ (or *w* and *b*) from data?

- Least square regression (geometry approach)
- Maximum likelihood estimation (probabilistic modeling approach)
- Other estimation methods exist, e.g. Bayesian estimation

Linear Regression Summary

How to estimate model parameters θ (or w and b) from data?

- Least square regression (geometry approach)
- Maximum likelihood estimation (probabilistic modeling approach)

Other estimation methods exist, e.g. Bayesian estimation

How to solve for solutions ?

- normal equation (close-form solution)

gradient descent 2 iterative
newton's method 3

A binary classification problem

Classify binary digits

 Training data: 12600 grayscale images of handwritten digits

ent hv a vector

 Each image is represent by a vector x⁽ⁱ⁾ of dimension 28 × 28 = 784

Vectors x⁽ⁱ⁾ are normalized to [0,1]

7848 184

28

A binary classification problem

Classify binary digits

 Training data: 12600 grayscale images of handwritten digits

- Each image is represent by a vector x⁽ⁱ⁾ of dimension 28 × 28 = 784
- Vectors $x^{(i)}$ are normalized to [0,1]

Binary classification: $\mathcal{Y} = \{0, 1\}$

• negative class:
$$y^{(i)} = 0$$

• positive class:
$$y^{(i)} = 1$$

Logistic Regression Hypothesis Function

Sigmoid function

$$g(z) = \frac{1}{1+e^{-z}}$$

$$f : \mathbb{R} \to (0, 1)$$

$$f'(z) = g(z)(l - g(z))$$

Logistic Regression Hypothesis Function

Sigmoid function

$$g(z)=\frac{1}{1+e^{-z}}$$

▶
$$g : \mathbb{R} \to (0, 1)$$

▶ $g'(z) = g(z)(1 - g(z))$

Logistic Regression Hypothesis Function

Sigmoid function

regression: 1

$$h_{\theta} = g(\theta^{T} x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

Review: Bernoulli Distribution

A discrete probability distribution of a binary random variable $x \in \{0, 1\}$:

$$p(x) = \begin{cases} \lambda & \text{if } x = 1 \\ 1 - \lambda & \text{if } x = 0 \end{cases}$$
$$= p^{x} (1 - p)^{1 - x} = \lambda^{x} (1 - \lambda)^{1 - x}$$

Maximum likelihood estimation for logistic regression

Logistic regression assumes
$$y|x$$
 is **Bernoulli distributed**.
 $p(y = 1 | x; \theta) = h_{\theta}(x)$
 $p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$

Logistic regression assumes y|x is **Bernoulli distributed**.

•
$$p(y = 1 | x; \theta) = h_{\theta}(x)$$

• $p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$
 $p(y | x; \theta) = (h_{\theta}(x))^{y}(1 - h_{\theta}(x))^{1-y}$

Logistic regression assumes y|x is **Bernoulli distributed**.

$$p(y = 1 | x; \theta) = h_{\theta}(x)$$

$$p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$$

$$p(y | x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Given *m* **independently generated** training examples, the likelihood function is:

$$L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))$$

$$I(\theta) = \log(L(\theta)) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))$$

Logistic regression assumes y|x is **Bernoulli distributed**.

$$p(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$p(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Given *m* **independently generated** training examples, the likelihood function is:

$$L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)$$

$$l(\theta) = \log(L(\theta)) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$l(\theta) \text{ is concave!}$$

$$l(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \xrightarrow{\mathbf{3}}_{\mathbf{3}\theta_{i}} h_{\theta}(\mathbf{x}^{(i)})$$

Solve $\operatorname{argmax}_{\theta} I(\theta)$ using gradient ascent:

$$\frac{\nabla \left(\begin{array}{c} (\Theta) \\ \Theta \end{array}\right)}{\left[\begin{array}{c} \frac{\partial}{\partial \theta_{j}} \\ \frac{\partial}{\partial \theta_{j}} \end{array}\right]} = \sum_{i=1}^{\infty} \left(y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} \frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)}) + \frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})} \frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)}) \right)}{\left[\begin{array}{c} \frac{\partial}{\partial \theta_{j}} \\ \frac{\partial}{\partial \theta_{j}} \end{array}\right]} = \sum_{i=1}^{\infty} \left[y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1-y^{(i)}) \frac{1}{(-h_{\theta}(x^{(i)})} \right] \frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)})}{h_{\theta}(x^{(i)}) x_{j}^{(i)}} \right] = \sum_{i=1}^{\infty} \left[y^{(i)} (1-h_{\theta}(x^{(i)}) x_{j}^{(i)} - (1-y^{(i)}) h_{\theta}(x^{(i)}) x_{j}^{(i)} \right]}{h_{\theta}(x^{(i)}) x_{j}^{(i)}} \right] = \frac{1}{2} \left[\left(y^{i} (1-h_{\theta}(x^{(i)}) - (1-y^{(i)}) h_{\theta}(x^{(i)}) x_{j}^{(i)} \right)}{h_{\theta}(x^{(i)}) x_{j}^{(i)}} \right] = \frac{1}{2} \left[\left(y^{i} (1-h_{\theta}(x^{(i)}) - (1-y^{(i)}) h_{\theta}(x^{(i)}) x_{j}^{(i)} \right)}{h_{\theta}(x^{(i)}) x_{j}^{(i)}} \right] x_{j}^{(i)}$$

$$I(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Solve $\operatorname{argmax}_{\theta} I(\theta)$ using gradient ascent:

$$\frac{\partial I(\theta)}{\partial \theta_j} = \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Stocastic Gradient Ascent

Repeat until convergence{
for
$$i = 1...m$$
 {
 $\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)}))x_j^{(i)}$ for every $j = 1, \dots, N$.
}
 $\forall Vl(\theta)$

• Update rule has the same form as least square regression, but with different hypothesis function h_{θ}

Binary Digit Classification

Using the learned classifier

Given an image x, the predicted label is

$$\hat{y} = \begin{cases} 1 & g(\underline{\theta}^T x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5

Ο

Binary digit classification results

	sample size	accuracy
Training	1 <u>620</u> 0	100%
Testing	1225	100%

Testing accuracy is 100% since this problem is relatively easy.

Multi-Class Classification Multiple Binary Classifiers Softmax Regression

Multi-class classification

Each data sample belong to one of k > 2 different classes.

$$\mathcal{Y} = \{1, \ldots, k\}$$

Given new sample $x \in \mathbb{R}^k$, predict which class it belongs.

Naive Approach: Convert to binary classification

One-Vs-Rest

Learn k classifiers h_1, \ldots, h_k . Each h_i classify one class against the rest of the classes.

Given a new data sample x, its predicted label \hat{y} :

$$\hat{y} = \operatorname*{argmax}_{i} h_i(x)$$

Multiple binary classifiers

Drawbacks of One-Vs-Rest:

- Class unbalance: more negative samples than positive samples
- Different classifiers may have different confidence scales

Multiple binary classifiers

Drawbacks of One-Vs-Rest:

- Class imbalance: more negative samples than positive samples
- Different classifiers may have different confidence scales

Multinomial classifier

Learn one model for all classes!

Review: Multinomial Distribution

Models the probability of counts for each side of a k-sided die rolled m times, each side with independent probability ϕ_i

Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $k = |\mathcal{Y}|$

Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed, $k = |\mathcal{Y}|$ Hypothesis function for sample x:

$$h_{\theta}(x) = \begin{bmatrix} p(y = 1|x; \theta) \\ \vdots \\ p(y = k|x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x_{j}}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix} = \operatorname{softmax}(\theta^{T} x)$$
$$\operatorname{softmax}(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{(z_{j})}}$$

Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

$$h_{\theta}(x) = \begin{bmatrix} p(y = 1 | x; \theta) \\ \vdots \\ p(y = k | x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x_{j}}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix} = \operatorname{softmax}(\theta^{T} x)$$

$$\operatorname{softmax}(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{(z_{j})}}$$
Parameters: $\theta = \begin{bmatrix} - \theta_{1}^{T} & - \\ \vdots \\ - \theta_{k}^{T} & - \end{bmatrix}$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$
$$= \sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l|x^{(i)})^{1\{y^{(i)} = l\}}$$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

= $\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l|x^{(i)})^{1\{y^{(i)}=l\}}$
= $\sum_{i=1}^{m} \sum_{l=1}^{k} 1\{y^{(i)} = l\} \log p(y^{(i)} = l|x^{(i)})$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$

= $\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l|x^{(i)})^{1\{y^{(i)}=l\}}$
= $\sum_{i=1}^{m} \sum_{l=1}^{k} 1\{y^{(i)} = l\} \log p(y^{(i)} = l|x^{(i)})$
= $\sum_{i=1}^{m} \sum_{l=1}^{k} 1\{y^{(i)} = l\} \log \frac{e^{\theta_{l}^{T}x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_{j}^{T}x^{(j)}}}$

Derive the stochastic gradient descent update:

Find
$$\nabla_{\theta_l} \ell(\theta)$$

$$\nabla_{\theta_l} \ell(\theta) = \sum_{i=1}^m \left[\left(\mathbf{1} \{ y^{(i)} = l \} - P\left(y^{(i)} = l | x^{(i)}; \theta \right) \right) x^{(i)} \right]$$

Property of Softmax Regression

- Parameters $\theta_1, \dots, \theta_k$ are not independent: $\sum_j p(y = j | x) = \sum_j \phi_j = 1$
- Knowning k 1 parameters completely determines model.

Invariant to scalar addition

$$p(y|x;\theta) = p(y|x;\theta - \psi)$$

Proof.

Relationship with Logistic Regression

When K = 2,

$$h_{ heta}(x) = rac{1}{e^{ heta_1^T x} + e^{ heta_2^T x}} egin{bmatrix} e^{ heta_1^T x} \ e^{ heta_2^T x} \end{bmatrix}$$

Relationship with Logistic Regression

When K = 2,

$$h_{\theta}(x) = \frac{1}{e^{\theta_1^T x} + e^{\theta_2^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ e^{\theta_2^T x} \end{bmatrix}$$
Replace $\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$ with $\theta * = \theta - \begin{bmatrix} \theta_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \theta_1 - \theta_2 \\ 0 \end{bmatrix}$,

$$h_{\theta}(x) = \frac{1}{e^{\theta_1^T x - \theta_2^T x} + e^{0x}} \begin{bmatrix} e^{(\theta_1 - \theta_2)^T x} \\ e^{0^T x} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{(\theta_1 - \theta_2)^T x}}{1 + e^{(\theta_1 - \theta_2)^T x}} \\ \frac{1}{1 + e^{(\theta_1 - \theta_2)^T x}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{1 + e^{-(\theta_1 - \theta_2)^T x}} \\ 1 - \frac{1}{1 + e^{-(\theta_1 - \theta_2)^T x}} \end{bmatrix} = \begin{bmatrix} g(\theta *^T x) \\ 1 - g(\theta *^T x) \end{bmatrix}$$

When to use Softmax?

- When classes are mutually exclusive: use Softmax
- Not mutually exclusive: multiple binary classifiers may be better