Learning From Data Lecture 2: Linear Regression & Logistic Regression

Yang Li yangli@sz.tsinghua.edu.cn

September 24, 2021

Today's Lecture

Supervised Learning (Part I)

- **Linear Regression**
- \blacktriangleright Binary Classification
- \blacktriangleright Multi-Class Classification

Review: Supervised Learning

! Input space: *X* , Target space: *Y* \mathbb{R}^d $\frac{y}{x}$

Review: Supervised Learning exponentiation. We will also use $\mathcal{L}_\mathcal{A}$ denote the space of input values, and $\mathcal{L}_\mathcal{A}$

- **Example 18 space:** \mathcal{X} , Target space: <u> \mathcal{Y} (x</u>, y) is a function of the set of the solution of th $T_{\rm tot}$ (x, y)
- Siven training examples, we want to learn a hypothesis function $h: \mathcal{X} \to \mathcal{Y}$ so that $h(x)$ is a "good" predictor for the corresponding *y*. \therefore X, Target space:

ing examples, we wai
 \therefore $\angle x \rightarrow \angle y$ so that $h(x)$

ing y.

Review: Supervised Learning

 \emptyset - to rget space

- ▶ *y* is discrete (categorical): classification problem
- ▶ *y* is continuous (real value): regression problem

Linear Regression

Linear Regression Model

Ordinary Least Square

Maximum Likelihood Estimation

yiscontinuc.us

Linear Regression

Example: predict Portland housing price

Linear Approximation

ear Approximation
\ninput space
\n
$$
x = \mathbb{R}^2
$$
 or $y = \mathbb{R}$ $h: X \rightarrow Y$
\nA linear model
\n
$$
h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2
$$
\nA's are called parameters

$$
h(x) = \underline{\theta}_0 + \underline{\theta}_1 x_1 + \underline{\theta}_2 x_2
$$

 θ_i 's are called **parameters**.

Linear Approximation

A linear model

$$
h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2
$$

 θ_i 's are called **parameters**.

Using vector notation,

$$
h(x) = \theta^T x, \quad \text{where } \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}, \quad x = \begin{bmatrix} \mathbf{C} \\ x_1 \\ x_2 \end{bmatrix}
$$

Alternative Notation

$$
h(x) = w_1x_1 + w_2x_2 + b
$$

$$
w_1, w_2 \text{ are called weights, } b \text{ is called the bias
$$

$$
h(x) = w^T x + b, \quad \text{where } w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

Apply model to new data

Suppose we have the optimal parameters θ , e.g.

$$
> h = LinearRegression().fit(X, y) \n> theta = h. coef \narray([89.60, 0.1392, -8.738]) \n>
$$

make a prediction of new feature *x*:

Model Estimation

How to estimate model parameters θ (or w and ϕ) from data?

Model Estimation

How to estimate model parameters θ (or w and b) from data?

Least Square Estimation

geometric approach

Model Estimation

How to estimate model parameters θ (or w and b) from data?

Probabilistic approach

Ordinary Least Square

Cost function:

^J(θ) = ¹ 2 '*m i*=1 (*h*(*x*(*i*)) [−] *^y*(*i*)) 2 400 (*x, y*) *h*(*x*) = ✓⁰ + ✓1*x*¹ + ✓2*x*² *h*(*x*) *y*

Ordinary Least Square

Cost function:

$$
J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2
$$

Ordinary Least Square

Cost function:

where

\n
$$
J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \underbrace{(h(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2}_{\text{at square problem is:}}
$$

 $n^{\overline{1},\overline{1}}$

The ordinary Least square problem is:

$$
\min_{\theta} \frac{J(\theta)}{m} = \min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2
$$

How to minimize $J(\theta)$?

> Numerical solution: gradient descent, Newton's method \blacktriangleright Analytical solution: normal equation

For the ordinary least square problem,
\n
$$
J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2,
$$
\n
$$
\sqrt{\frac{\partial J(\theta)}{\partial \theta_1}}
$$
\n
$$
\partial J(\theta) = \theta \sqrt{\pi} \sqrt{\pi} \sin \theta
$$

$$
\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix}, \text{ where } \frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \sum_{i=1}^{N} (\theta^T x^{i} - y^{i})^2
$$

\n
$$
\begin{bmatrix} \theta \\ \vdots \\ \theta_n \end{bmatrix} \leftarrow \theta \text{ terms of } \theta
$$

\n
$$
\begin{aligned}\n\frac{1}{\theta} \sum_{i=1}^{N} 2 (\theta^T x^{i} - y^{i})^2 \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2 \\
&= \frac{1}{2} \sum_{i=1}^{N} 2 (\theta^T x^{i})^2 \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2 \\
&= \frac{1}{2} \sum_{i=1}^{N} 2 (\theta^T x^{i})^2 \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2 \\
&= \frac{1}{2} \sum_{i=1}^{N} \theta_i x^{i} \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2 \\
&= \frac{1}{2} \sum_{i=1}^{N} \theta_i x^{i} \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2 \\
&= \frac{1}{2} \sum_{i=1}^{N} \theta_i x^{i} \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2 \\
&= \frac{1}{2} \sum_{i=1}^{N} \theta_i x^{i} \frac{\partial}{\partial \theta_i} (\theta^T y^{i})^2\n\end{aligned}
$$

For the ordinary least square problem,
\n
$$
J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2,
$$

$$
\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix}, \text{ where } \frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{1}{2} \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)} \right)^2 \right] = \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)} \right) x_j^{(i)}
$$

Gradient descent for ordinary least square

$$
\theta \leftarrow \theta - \alpha \sqrt{J(\theta)}
$$

Gradient of cost function: $\nabla J(\theta)_j = \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$
Gradient descent update: $\theta \overrightarrow{\theta} = \theta - \alpha \nabla J(\theta) > \begin{bmatrix} \nabla \sqrt{D} & \sqrt{D} \\ \nabla \sqrt{D} & \sqrt{D} \\ \nabla \sqrt{D} & \sqrt{D} \\ \nabla \sqrt{D} & \sqrt{D} \end{bmatrix}$
Batch Gradient Descent \begin Repeat until convergence { \leftarrow $\theta_j = \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_\theta(x^{(i)})) x_i^{(i)}$ for every j while not converted:
 $\frac{1}{2}$ or $\frac{1}{2}$ in range (n):
 $\theta_{\text{J}} = \frac{1}{2}$

$$
15/48
$$

Gradient descent for ordinary least square

Gradient of cost function: $\nabla J(\theta)_j = \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$ Gradient descent update: $\theta := \theta - \alpha \nabla J(\theta)$

Batch Gradient Descent

Gradient of cost function:
$$
\nabla J(\theta)_j = \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}
$$

Gradient descent update: $\theta := \theta - \alpha \nabla J(\theta)$
Batch Gradient Descent
Repeat until convergence of
 $\theta_j = \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_\theta(x^{(i)})) x_j^{(i)}$ for every j
 θ is only updated after we have seen all m training samples.
 θ

 θ is only updated after we have seen all m training samples.

 θ is updated each time a training example is read

Batch gradient descent

 θ is updated each time a training example is read

- \triangleright Stochastic gradient descent gets θ close to minimum much faster
- \triangleright Good for regression on large data

Minimize *J*(θ) Analytically

X is called the design matrix.

Minimize $J(\theta)$ Analytically

 X is called the **design matrix**. The least square function can be written as

$$
J(\theta) = \frac{1}{2}(\underline{X\theta - y})^T(X\theta - y)
$$

Compute the gradient of
$$
J(\theta)
$$
: $\frac{1}{2}(\mathbf{Q} \times -\mathbf{y})^T (\mathbf{Q} \times -\mathbf{y})^T$

$$
\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^T (X\theta - y) \right]
$$

Compute the gradient of $J(\theta)$:

$$
\nabla_{\theta}J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (\underline{X\theta} - y)^{T} (X\theta - y) \right]
$$
\nHint: $(let \underline{x} \leftarrow \theta, \underline{Q} \leftarrow \underline{X})$
\n
$$
\hat{X} \cdot \underline{\theta} \cdot \underline{R} \overline{X}
$$
\n
$$
\hat{X} \cdot \underline{\theta} \in \mathbb{R}^{n}
$$
\n
$$
\hat{X} \cdot \underline{\theta} \cdot \
$$

Compute the gradient of $J(\theta)$:

$$
\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{\top} (X\theta - y) \right]
$$

=

Since *J*(θ) is convex, *x* is a global minimum of *J*(θ) when $\nabla J(\theta) = 0.$ Since $J(\theta)$ is **conve**
 $\nabla J(\theta) = 0$.

Compute the gradient of $J(\theta)$:

$$
\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{T} (X\theta - y) \right]
$$

$$
= \underbrace{(X^{T} \mathbf{X}\theta - X^{T} y)}_{\boldsymbol{\theta} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}}_{\boldsymbol{\theta} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{-1} \mathbf{Y}}
$$

Since $J(\theta)$ is convex, x is a global minimum of $J(\theta)$ when
The Normal equation

$$
\theta = (X^{T}X)^{-1}X^{T}y
$$

The Normal equation

$$
\theta = (X^T X)^{-1} X^T y
$$

Compute the gradient of $J(\theta)$:

$$
\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{\top} (X\theta - y) \right]
$$

$$
= X^{\top} X\theta - X^{\top} y
$$

Since $J(\theta)$ is **convex**, x is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0.$ The Normal equation $\theta = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} y$ global minimu
K د مس^{مµ} م global minimum of $J(0)$
 $X \in \mathbb{R}^{m \times m} \rightarrow \mathfrak{g} \times X^{-1}y$
 $X \in \mathbb{R}^{m \times m} \rightarrow (X^{+}X)^{-1}$ v^{om}: → β=X⁻¹y
m*n → (XtX)⁻¹X^T y.
. global mini
 $X \in \mathbb{R}^{m \times m}$
 $X \in \mathbb{R}^{m \times n}$
 $(X^T X)^{-1} X$

Moore-Penr

 $(X^TX)^{-1}X^T$ is called the Moore-Penrose pseudoinverse of X

Minimize *J*(θ) using Newton's Method

minize
$$
J(\theta)
$$
 using Newton's Me

\n $f(\theta)$ \nNumerically solve for θ in $\sqrt{\sqrt{\theta} + \theta}$

\nNewton's method

\nSolves real functions $f(x) = 0$ by iterate θ for θ with $f(x) = 0$ for θ with $f(x) = 0$ for x is θ for x and x is x .

\n∴ Update x until convergence $x := x - \frac{f}{f}$

Newton's method

Solves real functions $f(x) = 0$ by iterative approximation:

- ► Start an initial guess x
- ▶ Update *x* until convergence

By iterative

\nhence

\n
$$
x := x - \frac{f(x)}{f'(x)}
$$

Newton's Method Demo

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Minimize *J*(θ) using Newton's Method

 $\begin{pmatrix} -\frac{1}{2\theta_1^2} & 1 & \theta_1 \\ \frac{1}{2\theta_2^2} & \frac{1}{2\theta_3^2} & 1 \\ \frac{1}{2\theta_2^2} & \frac{1}{2\theta_3^2} & \frac{1}{2\theta_3^2} \\ \frac{1}{2\theta_2^2} & \frac{1}{2\theta_3^2} & \frac{1}{2\theta_3^2} & 1 \end{pmatrix}$ $\frac{2}{36}$ (10) $\frac{2}{36}$ (10)

 $H(\theta)$
= $\frac{2^2}{2\theta^2} J(\theta) \frac{2}{2\theta} J(\theta)$

Hessian matrix

 $H(\mathcal{B})$

Minimize *J*(θ) using Newton's Method

Use newton's method to solve $\nabla_{\theta} J(\theta)=0$:

Newton's method for optimization min $_{\theta}$ *J*($_{\theta}$)

 \blacktriangleright θ is one-dimensional:

$$
\theta := \theta - \frac{J'(\theta)}{J''(\theta)}
$$

$$
\theta = \theta - \underbrace{H^{-1}(\theta)} \nabla J(\theta)
$$

a.k.a Newton-Raphson method

```
Initialize \thetaWhile \theta has not coverged {
     ile \theta has not co<br>
\theta := \theta - H^{-1}(\theta) \nabla J(\theta)}
```

```
Initialize \thetaWhile \theta has not coverged {
   \theta := \theta - H^{-1}(\theta) \nabla J(\theta)}
```
Performance of Newton's method:

 \triangleright Needs fewer interations than batch gradient descent

Performance of Newton's method:

- \triangleright Needs fewer interations than batch gradient descent
- \triangleright Computing H^{-1} is time consuming

```
Initialize \thetaWhile \theta has not coverged {
   \theta := \theta - H^{-1}(\theta) \nabla J(\theta)}
```
Performance of Newton's method:

- \triangleright Needs fewer interations than batch gradient descent
- \triangleright Computing H^{-1} is time consuming
- ► Faster in practice when *n* is small

Consider target *y* is modeled as

Consider target *y* is modeled as

$$
y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}
$$

and $\epsilon^{(i)}$ are *independently and identically distributed (IID)* to Gaussian distribution $\mathcal{N}(0, \sigma^2)$, then

$$
p(\epsilon^{(i)}) =
$$

Consider target *y* is modeled as

$$
y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}
$$

(x

。)
...

")
עץ

and &(*i*) are *independently and identically distributed (IID)* to Gaussian distribution $\mathcal{N}(0, \sigma^2)$, then $\frac{1}{\sqrt{\frac{1}{10}}\sqrt{\frac{1}{10}}}}$ $\frac{2}{\sqrt{1-\frac{\zeta^{(1)}}{2\sigma^2}}}$

bendently and identically distribu

\n
$$
\text{tion } \mathcal{N}(0, \sigma^2) \text{, then}
$$
\n
$$
\underline{p(\epsilon^{(i)})} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma^2}\right)
$$

Consider target *y* is modeled as

$$
y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}
$$

and $\epsilon^{(i)}$ are *independently and identically distributed (IID)* to Gaussian distribution $\mathcal{N}(0, \sigma^2)$, then $p(\underbrace{\epsilon^{(i)}}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma^2}\right)$ \setminus $p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$ $2\sigma^2$ λ $\mathcal{L}^{(i)} = \int_0^{(i)} \theta^T x^{(i)}$ consider target y is modeled as
 $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$

and $\underline{\epsilon}^{(i)}$ are independently and identically distributed (IID)

Gaussian distribution $\mathcal{N}(0, \sigma^2)$, then
 $p(\underline{\epsilon}^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma$ \overrightarrow{p}
 \overrightarrow{p} leled as
 $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$

ly and identically distributed (1
 $\frac{(0, \sigma^2)}{\sqrt{2\pi\sigma^2}}$, then
 $= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma^2}\right)$ $\frac{\epsilon^{(i)}}{\sqrt{2\pi\sigma^2}}$
 $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})}{2\sigma^2}\right)$

The likelihood of this model with respect to θ is

$$
L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{\lfloor \frac{b-b_i}{2} \rfloor} p(y^{(i)}|x^{(i)};\theta) \quad \text{due to } i \cdot \text{id}.
$$

The likelihood of this model with respect to θ is

$$
L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)
$$

Maximum likelihood estimation of
$$
\theta
$$
:
\n
$$
\underbrace{\theta_{MLE}}_{\text{MLE}} = \underset{\theta}{\arg\max} L(\theta)
$$

We compute log likelihood,

$$
\begin{aligned}\n\text{Mear} & \text{Likelihood Estimation} \\
\text{We compute log likelihood,} \\
\text{Max log } L(\theta) &= \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta) \\
&= \sum_{i=1}^{m} \log \frac{1 \cdot \text{log} \left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} \right)}{\sqrt{2\pi\sigma^2 + \left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} \right)}} \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} + \left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2 \sigma^2} \right) \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} - \frac{1}{\sigma^2} \left(\frac{1}{2} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \right) \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} - \frac{1}{\sigma^2} \left(\frac{1}{2} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \right) \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} - \frac{1}{\sigma^2} \left(\frac{1}{2} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \right) \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} - \frac{1}{\sigma^2} \left(\frac{1}{2} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \right) \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} - \frac{1}{\sigma^2} \left(\frac{1}{2} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \right) \\
&= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi b^2}} - \frac{1}{\sigma^2} \left(\frac{1}{2} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \right) \\
&= \sum_{i=1}^{m} \log \frac{
$$

We compute log likelihood,

$$
\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

$$
= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)
$$

We compute log likelihood,

$$
\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

$$
= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)
$$

$$
= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2
$$

We compute log likelihood,

mpute log likelihood,
\nlog
$$
L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)}|x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \theta)
$$

\n
$$
= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)
$$
\n
$$
= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2
$$
\n
$$
\arg\max_{\theta} \log L(\theta) \equiv \arg\min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2.
$$

$$
= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2
$$

Then $\text{argmax}_{\theta} \log L(\theta) \equiv \text{argmin}_{\theta} \frac{1}{2}$ $\frac{1}{2}\sum_{i=1}^{m}(y^{(i)} - \theta^{T}x^{(i)})^2$.

We compute log likelihood,

$$
\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

$$
= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)
$$

$$
= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2
$$

30/48 Then $\mathsf{argmax}_\theta \log L(\theta) \equiv \mathsf{argmin}_\theta \frac{1}{2}$ $\frac{1}{2}\sum_{i=1}^{m}(y^{(i)} - \theta^{T}x^{(i)})^2$. Under the assumptions on $\epsilon^{(i)}$, least-squares regression corresponds to the maximum likelihood estimate of θ .
Login $\Omega = \Omega + 10^{10}$

Linear Regression Summary

How to estimate model parameters θ (or *w* and *b*) from data?

- \blacktriangleright Least square regression (geometry approach)
- \triangleright Maximum likelihood estimation (probabilistic modeling approach) oglession Summary

so estimate model parame

east square regression (ge

laximum likelihood estima

pproach)

Linear Regression Summary

How to estimate model parameters θ (or *w* and *b*) from data?

- \blacktriangleright Least square regression (geometry approach)
- \triangleright Maximum likelihood estimation (probabilistic modeling approach)
- *Other estimation methods exist, e.g. Bayesian estimation*

Linear Regression Summary

How to estimate model parameters θ (or w and b) from data?

- \blacktriangleright Least square regression (geometry approach)
- \blacktriangleright Maximum likelihood estimation (probabilistic modeling approach) -

Other estimation methods exist, e.g. Bayesian estimation

How to solve for solutions ?

- **•** normal equation (close-form solution) -5
- ! gradient descent

 \triangleright newton's method \int

A binary classification problem

Classify binary digits

 \blacktriangleright Training data: 12600 grayscale images of handwritten digits

28

 $\overline{\mathbb{R}}$

 \blacktriangleright Each image is represent by a vector $x^{(i)}$ of dimension $28 \times 28 = 784$ a vecto
 $= 784$
to $[0,1]$

 \blacktriangleright Vectors $x^{(i)}$ are normalized to [0,1]

 $(255,255,255) \rightarrow$

28

A binary classification problem

Classify binary digits

 \blacktriangleright Training data: 12600 grayscale images of handwritten digits

 \blacktriangleright Each image is represent by a vector $x^{(i)}$ of dimension 28 \times 28 = 784

 \blacktriangleright Vectors $x^{(i)}$ are normalized to [0,1]

Binary classification: $\mathcal{Y} = \{0, 1\}$

$$
\blacktriangleright
$$
 negative class: $y^{(i)} = 0$

$$
x^{(i)}
$$
 of dimension 28 × 28
\nVectors $x^{(i)}$ are normaliz
\n
\nmany classification: $y = \{\n\text{negative class: } \frac{y^{(i)} = 0}{y^{(i)} = 1}\n\}$

Logistic Regression Hypothesis Function

Sigmoid function

$$
g(z) = \frac{1}{1 + e^{-z}}
$$

$$
\begin{array}{l} \star \; g : \mathbb{R} \to (0,1) \\ \star \; g'(z) = \; \underline{\mathbf{g}(\mathbf{z}) \, (1-\mathbf{g}(\mathbf{z}))} \end{array}
$$

Logistic Regression Hypothesis Function

Sigmoid function

$$
g(z) = \frac{1}{1+e^{-z}}
$$

$$
\begin{aligned} \n\blacktriangleright \ g: \mathbb{R} &\to (0,1) \\ \n\blacktriangleright \ g'(z) &= g(z)(1-g(z)) \n\end{aligned}
$$

Logistic Regression Hypothesis Function

Sigmoid function

regression:

$$
h_{\theta} = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}
$$

Review: Bernoulli Distribution

 $P(h_{eod}) > \lambda$ (h_{mod}) = λ
p (tail) = $1-\lambda$

A discrete probability distribution of a binary random variable *x* ∈ *{*0*,* 1*}*:

Distribution

\nlity distribution of a binary random variable

\n
$$
\underbrace{p(x)}_{x} = \begin{cases} \n\lambda & \text{if } x = 1 \\ \n1 - \lambda & \text{if } x = 0 \n\end{cases}
$$
\n
$$
= \underbrace{p^x(1 - p)^{1-x}}_{x} = \lambda^x (1 - \lambda)^{1-x}
$$

Maximum likelihood estimation for logistic regression

Logistic regression assumes
$$
y|x
$$
 is **Bernoulli distributed**.
\n
$$
P(y|x) = \int_{0}^{1} p(y=1 | x; \theta) = h_{\theta}(x)
$$
\n
$$
h_{\theta}(x)
$$
\n
$$
h_{\theta}(x)
$$
Logistic regression assumes $y|x$ is **Bernoulli distributed**.

$$
\begin{aligned} \n\blacktriangleright \ p(y = 1 \mid x; \theta) &= h_{\theta}(x) \\ \n\blacktriangleright \ p(y = 0 \mid x; \theta) &= 1 - h_{\theta}(x) \\ \np(y \mid x; \theta) &= (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y} \n\end{aligned}
$$

Logistic regression assumes $y|x$ is **Bernoulli distributed**.

$$
p(y = 1 | x; \theta) = h_{\theta}(x)
$$

\n
$$
p(y = 0 | x; \theta) = 1 - h_{\theta}(x)
$$

\n
$$
p(y | x; \theta) = (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}
$$

Given *m* independently generated training examples, the likelihood function is: $\frac{(h_{\theta}(x))^{y}(1-h_{\theta}(x))^{1-y}}{n \cdot \pi}$
 $\frac{(b_{\theta}(x))^{y}}{n \cdot \pi}$

likelihood function is:
\n
$$
L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)
$$
\n
$$
I(\theta) = \underbrace{\log(L(\theta))}_{i=1} = \sum_{i=1}^{m} y^{(i)} \underbrace{\log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \underbrace{\log(1 - h_{\theta}(x^{(i)}))}_{i=1}
$$

Logistic regression assumes $y|x$ is **Bernoulli distributed**.

$$
p(y = 1 | x; \theta) = h_{\theta}(x)
$$
\n
$$
p(y = 0 | x; \theta) = 1 - h_{\theta}(x)
$$
\n
$$
p(y | x; \theta) = (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}
$$

Given *m* independently generated training examples, the likelihood function is:

Maximum likelihood estimation for logistic regression\nLogistic regression assumes
$$
y|x
$$
 is **Bernoulli distributed**.\n\n
$$
p(y = 1 | x; \theta) = h_{\theta}(x)
$$
\n
$$
p(y = 0 | x; \theta) = 1 - h_{\theta}(x)
$$
\n
$$
p(y | x; \theta) = (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}
$$
\nGiven *m* independently generated training examples, the likelihood function is:\n\n
$$
L(\theta) = p(\vec{y}|X; \theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)}; \theta)
$$
\n
$$
I(\theta) = \log(L(\theta)) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))
$$
\n
$$
I(\theta) \text{ is concave!}
$$

$$
I(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \frac{\partial}{\partial \theta_{j}} (\theta \log x)
$$

Solve argmax $_{\theta}$ *l*(θ) using gradient ascent:

Solve
$$
\arg\max_{\theta} I(\theta)
$$
 using gradient ascent:
\n
$$
\frac{\partial}{\partial \theta} \left(\frac{\theta}{\theta} \right) \frac{\partial}{\partial \theta} I(\theta) = \sum_{i=1}^{m} \left(\frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta) \right) + \frac{1 - \frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta)}{\frac{1}{2} \theta \theta \theta} = \sum_{i=1}^{m} \left(\frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta) \right) + \frac{1 - \frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta)}{\frac{1}{2} \theta \theta \theta} = \sum_{i=1}^{m} \left(\frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta) \right) + \frac{1 - \frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta) \frac{\partial}{\partial \theta}}{\frac{1}{2} \theta \theta \theta} = \sum_{i=1}^{m} \left(\frac{1}{2} \int_{\theta} \frac{\partial}{\partial \theta} I(\theta) \right) \frac{\partial}{\partial \theta} I(\theta) \frac{\partial}{\
$$

$$
I(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))
$$

Solve argmax $_{\theta}$ *l*(θ) using gradient ascent:

$$
\frac{\partial l(\theta)}{\partial \theta_j} = \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}
$$

Stocastic Gradient Ascent

$$
I(\theta) = \sum_{i=1} y^{(1)} \log h_{\theta}(x^{(1)}) + (1 - y^{(1)}) \log(1 - h_{\theta}(x^{(1)}))
$$

Solve $\arg\max_{\theta} I(\theta)$ using gradient ascent:

$$
\frac{\partial I(\theta)}{\partial \theta_j} = \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}
$$

Stocastic Gradient Ascent
Repeat until convergence {
for $i = 1...m$ {\n
 $\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$ for every $j \leq j$ **•** \cdot
 $\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$ for every $j \leq j$ **•** \cdot
 $\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$ for every $j \leq j$ **•** \cdot
 $\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$ for every $j \leq j$ **•** \cdot \cdot

 \triangleright Update rule has the same form as least square regression, but with different hypothesis function h_{θ}

Binary Digit Classification

Using the learned classifier

Given an image *x*, the predicted label is

$$
\hat{y} = \begin{cases} 1 & g(\theta^T x) > 0.5 \\ 0 & \text{otherwise} \end{cases}
$$

Binary digit classification results

۰

 \blacktriangleright Testing accuracy is 100% since this problem is relatively easy.

$$
\begin{array}{c}\n1 \\
0 \\
\circ \\
0 \\
\circ \\
0 \\
\hline\n\end{array}
$$

Multi-Class Classification Multiple Binary Classifiers

Softmax Regression

Multi-class classification

Each data sample belong to one of *k >* 2 different classes.

$$
\mathcal{Y} = \{1, \ldots, k\}
$$

Given new sample $x \in \mathbb{R}^k$, predict which class it belongs.

Naive Approach: Convert to binary classification

One-Vs-Rest

Learn k classifiers h_1, \ldots, h_k . Each h_i classify one class against the rest of the classes.

Given a new data sample x, its predicted label \hat{y} :

$$
\hat{y} = \underset{i}{\text{argmax}}\, h_i(x)
$$

Multiple binary classifiers

Drawbacks of One-Vs-Rest:

- \triangleright Class unbalance: more negative samples than positive samples
- \triangleright Different classifiers may have different confidence scales

Multiple binary classifiers

Drawbacks of One-Vs-Rest:

- \triangleright Class imbalance: more negative samples than positive samples
- **Different classifiers may have different confidence scales**

Multinomial classifier

Learn one model for all classes!

Review: Multinomial Distribution

Models the probability of counts for each side of a *k*-sided die rolled *m* times, each side with independent probability φ*ⁱ*

Extend logistic regression: Softmax Regression

Assume $p(y|x)$ is **multinomial distributed**, $k = |\mathcal{Y}|$

Extend logistic regression: Softmax Regression

Assume $p(y|x)$ is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

$$
h_{\theta}(x) = \begin{bmatrix} p(y=1|x; \theta) \\ \vdots \\ p(y=k|x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_j^T x_j}} \begin{bmatrix} e^{\theta_1^T x} \\ \vdots \\ e^{\theta_k^T x} \end{bmatrix} = \text{softmax}(\theta^T x)
$$

$$
\text{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{k} e^{(z_j)}}
$$

Extend logistic regression: Softmax Regression

Assume $p(y|x)$ is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

$$
h_{\theta}(x) = \begin{bmatrix} p(y=1|x; \theta) \\ \vdots \\ p(y=k|x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x_{j}}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix} = \text{softmax}(\theta^{T} x)
$$

$$
\text{softmax}(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{(z_{j})}}
$$

$$
\text{Parameters: } \theta = \begin{bmatrix} -\theta_{1}^{T} & - \\ \vdots & \vdots \\ -\theta_{k}^{T} & - \end{bmatrix}
$$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$, the log-likelihood of the Softmax model is

$$
\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

=
$$
\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l | x^{(i)})^{1\{y^{(i)} = l\}}
$$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$, the log-likelihood of the Softmax model is

$$
\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

=
$$
\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l | x^{(i)})^{1\{y^{(i)}=l\}}
$$

=
$$
\sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1} \{y^{(i)} = l\} \log p(y^{(i)} = l | x^{(i)})
$$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, \ldots, m$, the log-likelihood of the Softmax model is

$$
\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)
$$

=
$$
\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l | x^{(i)})^{\{1\}^{(i)} = l\}}
$$

=
$$
\sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1} \{y^{(i)} = l\} \log p(y^{(i)} = l | x^{(i)})
$$

=
$$
\sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1} \{y^{(i)} = l\} \log \frac{e^{\theta_{l}^{T} x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x^{(i)}}}
$$

Derive the stochastic gradient descent update:

$$
\blacktriangleright \text{ Find } \nabla_{\theta_i} \ell(\theta)
$$

$$
\nabla_{\theta_i} \ell(\theta) = \sum_{i=1}^m \left[\left(\mathbf{1} \{ y^{(i)} = l \} - P \left(y^{(i)} = l | x^{(i)}; \theta \right) \right) x^{(i)} \right]
$$

Property of Softmax Regression

► Parameters
$$
\theta_1, \ldots, \theta_k
$$
 are not independent:
\n
$$
\sum_j p(y = j | x) = \sum_j \phi_j = 1
$$

 \triangleright Knowning $k - 1$ parameters completely determines model.

Invariant to scalar addition

$$
p(y|x; \theta) = p(y|x; \theta - \psi)
$$

Proof.

Relationship with Logistic Regression

When $K = 2$,

$$
h_{\theta}(x) = \frac{1}{e^{\theta_1^T x} + e^{\theta_2^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ e^{\theta_2^T x} \end{bmatrix}
$$

Relationship with Logistic Regression

When K = 2,
\n
$$
h_{\theta}(x) = \frac{1}{e^{\theta_1^T x} + e^{\theta_2^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ e^{\theta_2^T x} \end{bmatrix}
$$
\nReplace $\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$ with $\theta * = \theta - \begin{bmatrix} \theta_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \theta_1 - \theta_2 \\ 0 \end{bmatrix}$,
\n
$$
h_{\theta}(x) = \frac{1}{e^{\theta_1^T x - \theta_2^T x} + e^{0x}} \begin{bmatrix} e^{(\theta_1 - \theta_2)^T x} \\ e^{0^T x} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \frac{e^{(\theta_1 - \theta_2)^T x}}{1 + e^{(\theta_1 - \theta_2)^T x}} \\ 1 + e^{(\theta_1 - \theta_2)^T x} \end{bmatrix} = \begin{bmatrix} g(\theta *^T x) \\ 1 - g(\theta *^T x) \end{bmatrix}
$$

&

When to use Softmax?

- \triangleright When classes are mutually exclusive: use Softmax
- \triangleright Not mutually exclusive: multiple binary classifiers may be better