Learning From Data Lecture 11: Reinforcement Learning

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 10, 2021

Today's Lecture

Reinforcement Learning

- What's reinforcement learning?
- Mathematical formulation: Markov Decision Process (MDP)
- Model Learning for MDP, Fitted Value Iteration
- Deep reinforcement learning (Deep Q-networks)

Introduction	Reinforcement Learning and MDP

Reinforcement Learning and MDP

Motivation

Markov Decision Process

Deep Reinforcement Learning: AlphaGo

AlphaGo beat World Go Champion Kejie (2017)

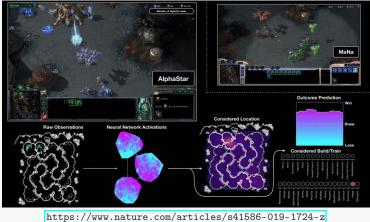
Nature paper on by AlphaGo team

Deep Reinforcement Learning: OpenAl

OpenAI beats Dota2 world champion (2017)

Multi-Agent Reinforcement Learning: AlphaStar

AlphaStar reached Grandmaster level in StarCraft II (2019)



Reinforcement Learning: Autonomous Car, Helicopter

Stanley, Winner of DARPA Grand Challenge (2005) Inverted autonomous helicopter flight (2004)

Other applications include robotic control, computational economics, health care...

Sequential decision making

____↓

To deciding, from **experience**, the **sequence of actions** to perform in an **uncertain environment** in order to achieve some **goals**.

- ▶ e.g. play games, robotic control, autonomous driving, smart grid
- Do not have full knowledge of the environment a prior
- Difficult to label a sample as "the right answer" for a learning goal

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

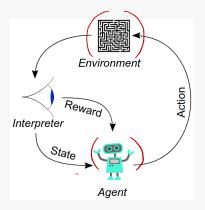
An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

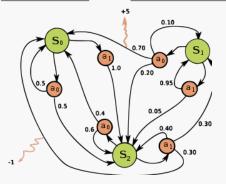
- An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing
- The agents take actions to maximize the cumulative "reward"

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

- An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing
- The agents take actions to maximize the cumulative "reward"



- A Markov decision process $(S, A, \{P_{sa}\}, \gamma, R)$
 - S: a set of states (environment)
 - ► A: a set of actions
 - $P_{sa} := P(s_{t+1}|s_t, a_t): \text{ state } \\ \text{transition probabilities.} \\ Markov property: \\ P(s_{t+1}|s_t, a_t) = \\ P(s_{t+1}|s_t, a_t, \dots, s_0, a_0) .$
 - $R: S \times A \to \mathbb{R} \text{ is a reward}$ function
 - $\gamma \in [0,1)$: discount factor



$$S = \{S_0, S_1, S_2\}$$

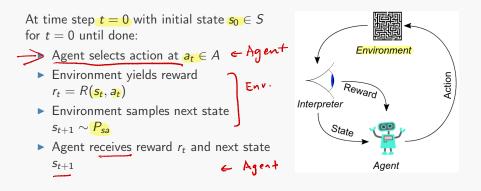
$$A = \{a_0, a_1\}$$

$$R(s_1, a_0) = 5, R(s_2, a_1) = -1$$

	S ₀	S1	S2
S ₀ , a ₀	0.5	0	0.5
S ₀ , a ₁	0	0	1
S1, a0	0.7	0.1	0.2
S1, a1	0	0.95	0.05
S ₂ , a ₀	0.4	0.6	0
S2, a1	0.3	0.3	0.4

Learning From Data

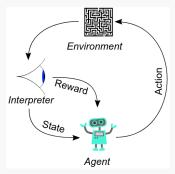
Markov Decision Process: Overview



Markov Decision Process: Overview

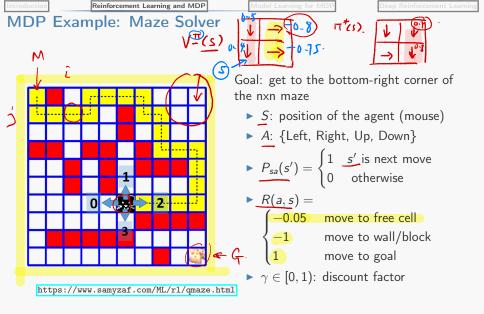
At time step t = 0 with initial state $s_0 \in S$ for t = 0 until done:

- Agent selects action at $a_t \in A$
- Environment yields reward r_t = R(s_t, a_t)
- Environment samples next state $s_{t+1} \sim P_{sa}$
- Agent receives reward r_t and next state s_{t+1}



A **policy** $\pi: S \rightarrow A$ specifies what action to take in each state

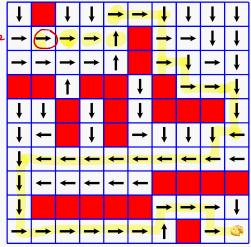
Goal: find optimal policy π^* that maximizes cumulative discounted reward



MDP Example: Maze Solver

$$\pi: S \longrightarrow A$$

$$\pi((\iota, \iota)) = Risk+$$



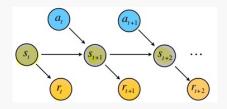
An optimal policy function $\pi(s)$ learned by the solver.

https://www.samyzaf.com/ML/rl/qmaze.html

Learning From Data

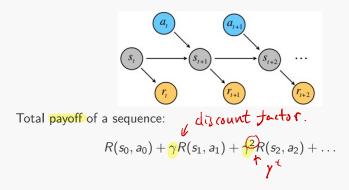
Inte	odu	Lot i	0.00
IIILI	out	ICU	on

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots



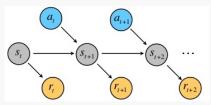
to the state of the set

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



Introduction		Rein
--------------	--	------

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



Total payoff of a sequence:

$$R(s_0,a_0) + \gamma R(s_1,a_1) + \gamma^2 R(s_2,a_2) + \dots$$

For simplicity, let's assume rewards only depends on state s, i.e.

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

Future reward at step t is discounted by γ^t

Introduction	Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning
Policy	& value functions		

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots]$$

Introduction	Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning
Policy	& value functions		

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots]$$

A **policy** is any function $\pi \colon S \to A$.

Introduction		Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforce
Policy	l & va	lue functions		

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots]$$

A **policy** is any function $\pi: S \to A$. A **value function** of policy π is the expected payoff if we start from *s*, take actions according to π

$$S_{\mathbf{a}} \qquad \qquad V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

Introduction	Reinforcement Learning and MDP	Model Learning for MDP	De
Policy & v	value functions		

Deep Reinforcement Learning

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots]$$

A **policy** is any function $\pi \colon S \to A$.

A **value function** of policy π is the expected payoff if we start from *s*, take actions according to π

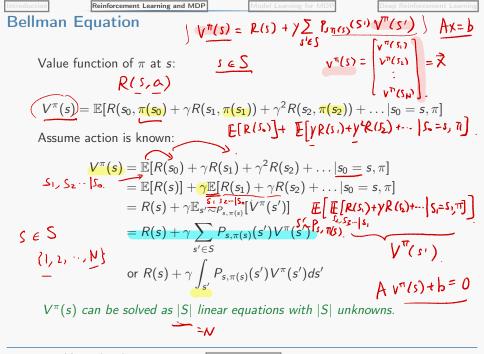
$$\mathbf{V}^{\pi}(s) \stackrel{\boldsymbol{\Delta}}{=} \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

Given π , value function satisfies the **Bellman equation**: *Why*?

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$
immediate
reword at S.
$$E V^{\pi}(s) \rightarrow E V^{\pi}(s'),$$

$$s' \sim P_{s\pi}, \quad a = \pi(s)$$

Learning From Data



Learning From Data

Optimal value and policy

We define the **optimal value function**

$$V^{*}(s) = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')$$
$$= R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^{*}(s')$$

Optimal value and policy

We define the **optimal value function**

$$V^{*}(s) = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')$$
$$= R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^{*}(s')$$
Let $\pi^{*}: S \to A$ be the policy that attains the 'max':
$$\pi^{*}(s) = \operatorname{argmax} \sum_{s' \in S} P_{sa}(s') V^{*}(s')$$

Intro	du		0.00
IIILIO	uu	LU	UII

Optimal value and policy

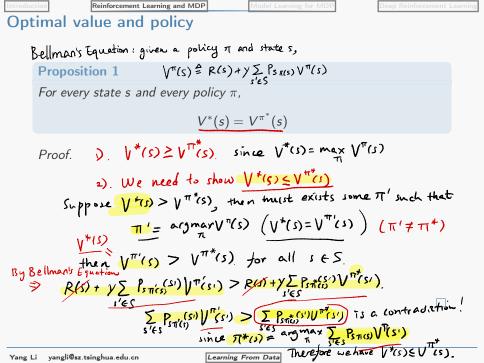
We define the **optimal value function**

$$V^{*}(s) = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')$$
$$= R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^{*}(s')$$

Let $\pi^*: S \to A$ be the policy that attains the 'max':

$$\pi^{*}(s) = \operatorname{argmax}_{s' \in S} \sum_{\substack{s' \in S \\ (s, \pi(s))}} P_{sa}(s') V^{*}(s')$$
Then for every state s and every policy π , we can show
by time value value from time of the optimal policy π .

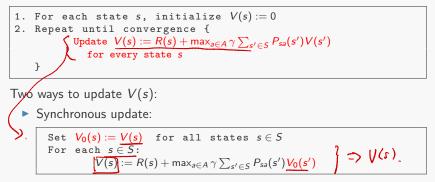
$$\frac{V^{*}(s) = V^{\pi^{*}}(s)}{\geq V^{\pi}(s)} \geq V^{\pi}(s)$$
 π^{*} is the optimal policy for any initial state s



1. For each state s, initialize V(s) := 02. Repeat until convergence { Update $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$ for every state s }

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.



Assume the MDP has finite state and action space.

1. For each state s, initialize
$$V(s) := 0$$

2. Repeat until convergence {
Update $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$
for every state s
}

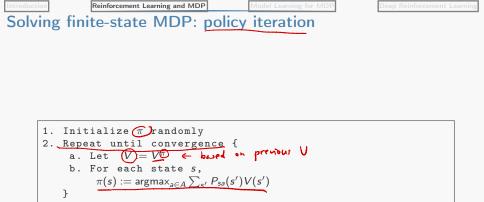
Two ways to update V(s):

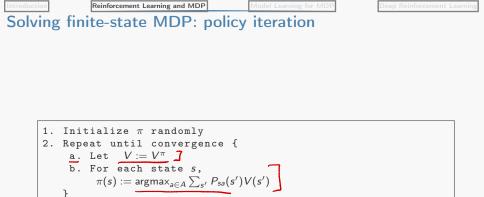
Synchronous update:

 $\begin{array}{l} \text{Set } V_0(s) := \underline{V}(s) & \text{for all states } s \in S \\ \text{For each } s \in \overline{S} : \\ V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V_0(s') \end{array}$

Asynchronous update:

For each $s \in S$: $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') \frac{V(s')}{V(s')}$





Step (a) can be done by solving Bellman's equation.

Introduction	Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning
Discussion			

Both value iteration and policy iteration will converge to V_{\perp}^* and π^*

 Value iteration vs. policy iteration

 Bell Man J >
 Policy iteration is more efficient and converge faster for small MDP

 Eq.
 Value iteration is more practical for MDP's with large state spaces

Model Learning for MDP

Discrete states

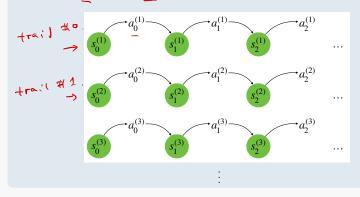
Continuous states

Learning a model for finite-state MDP

Suppose the reward function R(s) and the transition probability P_{sa} is not known. How to estimate them from data?

Experience from MDP

Given policy $\pi,$ execute π repeatedly in the environment:



1.

Estimate model from experience

Estimate P_{sa}

Maximum likelihood estimate of state transition probability:

$$P_{sa}(s') = \underline{P(s)}(\underline{s}, \underline{a}) = \frac{\#\{\underline{s} \xrightarrow{a}(\underline{s})\}}{\#\{\underline{s} \xrightarrow{a} \cdot\}}$$

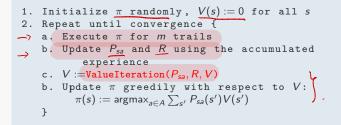
If $\#\{\underline{s} \xrightarrow{a} \cdot\} = 0$ set $P_{sa}(s') = \frac{1}{|S|}$.

Estimate R(s)

Let $R(s)^{(t)}$ be the immediate reward of state s in the t-th trail,

$$R(s) = \mathbf{E}[R(s)^{(t)}] = \frac{1}{m} \sum_{t=1}^{m} R(s)^{(t)}$$

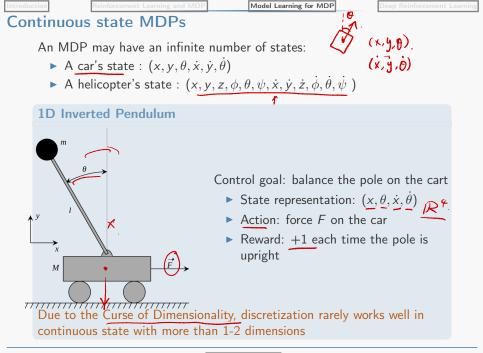
Algorithm: MDP Model Learning



ValueIteration(P_{sa}, R, V_0)

1. Initialize
$$V = V_0$$

2. Repeat until convergence {
Update $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')$
for every state s
}



Introduction		Rei
--------------	--	-----

	IDP

Value function approximation

How to approximate V directly without resorting to discretization?

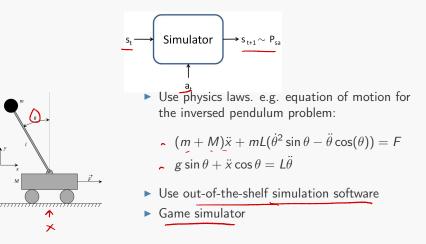
Main ideas:

- Obtain a model or simulator for the MDP, to produce experience tuples: (s, a, s', r)
- Sample $s^{(1)}, \ldots, s^{(m)}$ from the state space S, estimate their optimal
- value. expected total payoff using the model, i.e. $f \rightarrow y^{(1)} \approx V_0(s^{(1)}), y^{(2)} \approx V_0(s^{(2)}), \dots$
 - Approximate V as a function of state s using supervised learning from (s⁽¹⁾, y⁽¹⁾), (s⁽²⁾, y⁽²⁾), ... e.g.

$$V(s) = \theta^{T} \phi(s)$$

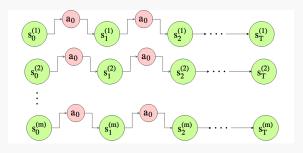
Obtaining a simulator

A **simulator** is a black box that generates the next state s_{t+1} given current state s_t and action a_t .



Obtaining a model from data

Execute m trails in which we repeatedly take actions in an MDP, each trial for T timesteps.



Learn a prediction model $s_{t+1} = h_{\theta} \left(\begin{bmatrix} s_t \\ a_t \end{bmatrix} \right)$ by picking

$$\frac{\theta^*}{\theta} = \operatorname{argmin}_{\theta} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \left\| s_{t+1}^{(i)} - h_{\theta} \left(\begin{bmatrix} s_t^{(i)} \\ a_t^{(i)} \end{bmatrix} \right) \right\|^2$$

Introduction	Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning

Obtaining a model from data

Popular prediction models

- Linear function: $h_{\theta} = As_t + Ba_t$
- Linear function with feature mapping: $h_{\theta} = A\phi_s(s_t) + B\phi_a(a_t)$
- Neural network

Build a simulator using the model:

► Deterministic model:
$$s_{t+1} = h_{\theta} \left(\begin{bmatrix} s_t \\ a_t \end{bmatrix} \right) \qquad \underbrace{P_{SA}}_{F}$$

► Stochastic model: $s_{t+1} = h_{\theta} \left(\begin{bmatrix} s_t \\ a_t \end{bmatrix} \right) + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \Sigma)$

Introduction		Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning
	~			

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:

- Obtain a model or simulator for the MDP
- Sample <u>s⁽¹⁾</u>,..., s^(m) from the state space S, estimate their optimal expected total payoff using the model, i.e.
 y⁽¹⁾ ≈ V(s⁽¹⁾), y⁽²⁾ ≈ V(s⁽²⁾),...
- ▶ Approximate V as a function of state s using supervised learning from (s⁽¹⁾, y⁽¹⁾), (s⁽²⁾, y⁽²⁾), ... e.g.

$$V(s) = \theta^{\mathsf{T}} \phi(s)$$

Value function for continuous states

Update for finite-state value function:

$$V(s) := R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V(s')$$

Update we want for continuous-state value function:

$$V(s) := R(s) + \gamma \max_{a \in A} \int_{s'} P_{sa}(s') V(s') ds'$$
$$= R(s) + \gamma \max_{a \in A} \mathbb{E}_{s' \sim P_{sa}} [V(s')]$$

For each sample state s, we compute $Y^{(i)}$ to approximate $\mathbb{R}(s) + \gamma \max_{a \in A} \mathbb{E}_{s' \sim P_{s(i)_a}}[V(s')]$ using finite samples from P_{sa}

Introduction		Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning	
	~				1

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:

- Obtain a model or simulator for the MDP
- Sample s⁽¹⁾,..., s^(m) from the state space S, estimate their optimal expected total payoff using the model, i.e. y⁽¹⁾ ≈ V(s⁽¹⁾), y⁽²⁾ ≈ V(s⁽²⁾),...
- ▶ Approximate V as a function of state s using supervised learning from (s⁽¹⁾, y⁽¹⁾), (s⁽²⁾, y⁽²⁾), ... e.g.

 $V(s) = \theta^T \phi(s)$

Fitted value iteration

Algorithm: Fitted value iteration (Stochastic Model)

1. Sample
$$\underline{s^{(1)}, \ldots, \underline{s^{(m)}} \in S}$$

2. Initialize $\underline{\theta} := 0$ Value function parameter.
2. Repeat {
(a) For each sample $\underline{s^{(i)}}$ $(S^{(i)}, \underline{a})$
For each action \underline{a} :
 $Sample \underline{s'_1, \ldots, s'_k} \sim P_{\underline{s^{(i)}}, \underline{a}}$ using a model
Compute $Q(\underline{a}) = \frac{1}{k} \sum_{j=1}^{k} R(\underline{s^{(i)}}) + \gamma V(\underline{s'_j})$
 \uparrow estimates $\underline{R(\underline{s^{(i)}})} + \gamma \mathbb{E}_{\underline{s'} \sim P_{\underline{s'_a}}}[V(\underline{s'})]$
where $V(\underline{s}) := \overline{\theta^T \phi(\underline{s})}$ empirical extination
 $\underline{y^{(i)}} = \max_{\underline{a}} Q(\underline{a}) = \underbrace{u_{\underline{c}\underline{b}} e^{it} v_{\underline{c}\underline{b}\underline{c}\underline{s}}}_{\underline{s'} \sim P_{\underline{s'_a}}}[V(\underline{s'})]$
 $\oplus \text{ estimates } R(\underline{s^{(i)}}) + \gamma \max_{\underline{a}} \mathbb{E}_{\underline{s'} \sim P_{\underline{s'_a}}}[V(\underline{s'})]$
 $\oplus \text{ of } \underline{s'}$.

If the model is deterministic, set k = 1

Learning From Data

Introduction	Reinforcement Le	earning and	MDP		Model Learning for MDP	Deep Reinforcement Learning	l
-				-			1

Computing the optimal policy

After obtaining the value function approximation V, the corresponding policy is

$$\pi(s) = \operatorname*{argmax}_{a} \mathbb{E}_{s' \sim P_{sa}}[V(s')])$$

Estimate the optimal policy from experience:

For each action a:
1. Sample
$$s'_1, \ldots, s'_k \sim P_{s,a}$$
 using a model
2. Compute $Q(a) = \frac{1}{k} \sum_{j=1}^k R(s) + \gamma V(s'_j)$
 $\pi(s) = \operatorname{argmax}_a Q(a)$

Instead of linear regression, other learning algorithms can be used to estimate V(s).

Introduction Reinforcement Learning and MDF	P Model Learning for MD	Deep Reinforcement Learning
---	-------------------------	-----------------------------

Deep Reinforcement Learning

Two Outstanding Success Stories

Atari AI [Minh et al. 2015]

- Plays a variety of Atari 2600 video games at superhuman level
- Trained directly from image pixels, based on a single reward signal

AlphaGo [Silver et al. 2016]

- A hybrid deep RL system
- Trained using supervised and reinforcement learning, in combination with a traditional tree-search algorithm.

roduction	Reinforcement Learning and MDP	Model Learning for MDP	Deep Reinforcement Learning	

Vo(S)

Deep Reinforcement Learning

Main difference from classic RL:

- Use deep network to represent value function
- Optimize value function end-to-end
- Use stochastic gradient descent

Q-Learning

Given policy π which produce sample sequence $(s_0, a_0, r_0), (s_1, a_1, r_1), \ldots$ Value function of π :

$$\underbrace{V^{\pi}(s)}_{t \ge 0} = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \middle| s_0 = s, \pi\right]$$

The Q-value function Q^π(s, a) is the expected payoff if we take a at state s and follow π

$$\underline{Q_{\underline{\gamma}}^{\pi}(s,a)} = \mathbb{E}\left[\sum_{t\geq 0} \gamma^{t} r_{t} \middle| s_{0} = s, a_{0} = a, \pi\right]$$

The optimal Q-value function is:

Reinforcement Learning and MDI

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t \middle| s_0 = s, a_0 = a, \pi\right]$$

Q-Value Function

Q-Learning

Bellman's equation for Q-Value function:

$$Q^*(s,a) = \mathbb{E}_{\underline{s'} \sim \mathcal{E}}\left[\gamma + \gamma \max_{a'} Q^*(s',a')|s,a\right]$$

Value iteration is not practical when the search space is large.

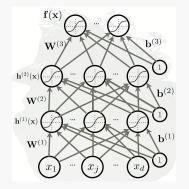
e.g. In an Atari game, each frame is an 128-color 210 \times 160 image, then $|S| = 128^{210 \times 160}$

Uses a function approximation:

 $Q(s,a; heta) pprox Q^*(s,a)$

In deep Q-learning, Q(s, a; θ) is a neural network

Neural Network Review



Training goal: $\min_{\theta} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})$

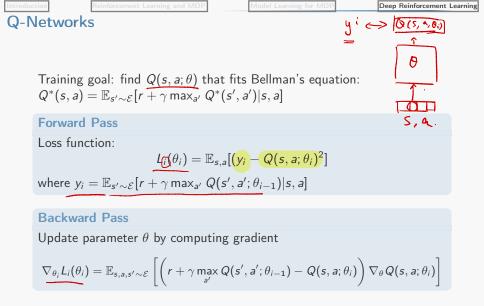
Forward propagation

Initialize $h^{(0)}(x) = x$ For each layer $l = 1 \dots d$: • $a^{(l)}(x) = W^{(l)}h^{(l-1)}(x) + b^{(l)}$ • $h^{(l)}(x) = g(a^{(l)}(x))$ Evaluate loss function $L(h^{(d)}(x), y)$

Backward propagation

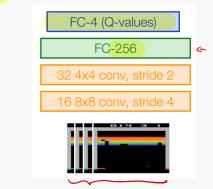
Compute gradient $\frac{dL}{dh^{(d)}}$ For each layer $l = d \dots 1$:

Update gradient for parameters in layer



Deep Q-Network Architecture

- Input: 4 consecutive frames
- Preprocessing: convert to grayscale, down-sampling, cropping. Final dimension 84 × 84 × 4
- Output: Q-value functions for 4 actions $Q(s, a_1), Q(s, a_2), Q(s, a_3), Q(s, a_4)$



Introducti	on	Reinfo

Learning and MDP
Learning and MDF

Experience Replay

Challenge of standard deep Q-learning: correlated input

- invalidate the i.i.d. assumption on training samples
- current policy may restrict action samples we experience in the environment

Experience replay

- Store past transitions (s_t, a_t, r_t, s_{t+1}) within a sliding window in the **replay memory** *D*.
- Train Q-Network using random mini-batch sampled from D to reduce sample correlation
- Also reduces total running time by reusing samples

The Algorithm

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability \leq select a random action a_t otherwise select $\overline{a_t} = \max_a Q^*(\phi(s_t), a; \theta)$ 44 Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $\phi_{j,a_j,r_j,\phi_{j+1}}$ from \mathcal{D} See $y_j = \begin{cases} r_j & \text{for non-terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1},a';\theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 update O in O(S, a, O) end for end for

Parameter ϵ_{i} controls the exploration vs. optimization trade-off



Reinforcement Learning and MDP

Model Learning for MDF

Deep Reinforcement Learning

Reinforcement Learning Demo

See Demo.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/ rldemo.html