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Abstract. Semi-supervised learning has become an important and thor-
oughly studied subdomain of machine learning in the past few years, be-
cause gathering large unlabeled data is almost costless, and the costly hu-
man labeling process can be minimized by semi-supervision. Label prop-
agation is a transductive semi-supervised learning method that operates
on the—most of the time undirected—data graph. It was introduced in
[8] and since many variants were proposed. However, the base algorithm
has two variants: the first variant presented in [8] and its slightly modified
version used afterwards, e.g. in [7]. This paper presents and compares the
two algorithms—both theoretically and experimentally—and also tries to
make a recommendation which variant to use.

1 Introduction

Label propagation is a transductive graph-based method for semi-supervised
classification. It is transductive because the algorithm can predict the labels
of the points included in the unlabeled learning dataset, it does not output an
inductive classifier applicable for a new point. However, it is true that using a
simple trick one can obtain a formula for calculating the label of an unknown
point without re-learning [1]. We call it graph-based, because it is interpreted
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as building a graph connecting the data points and assigning weights to these
edges according to some similarity measure, and then propagating the labels
from the labeled points towards the unlabeled ones. It is semi-supervised, since
some labeled points are needed—usually a small number of such points, and
can have a much larger set of unlabeled ones—which direct the algorithm
towards a stable labeling configuration.

The aim of this short paper is to analyze two variants of the label propa-
gation algorithm proposed for semi-supervised learning: the first variant that
appeared in [8] and its sightly modified version used afterwards. An interesting
fact is that there is an unmentioned minor modification in the second variant
that alters the problem and produces slightly different outputs. Most of the
researchers use the second variant of the basic label propagation algorithm as
appeared in [7], without any reference to the discrepancy.

We study the differences between the two methods by analyzing the labels
output by the algorithms, as well as the underlying optimization problems, and
show this on some benchmark datasets. Other variants of label propagation
and related methods that will not be discussed here can be found in [1, ch.11].

Section 2 presents the generic algorithm, while Subsections 2.1 and 2.2
present the above-mentioned variants of it. Section 3 analyzes and compares
the different outputs of the two variants, while in Section 4 the optimization
problems corresponding to the variants of label propagation are examined. In
Section 5 the algorithms are compared experimentally on various datasets and
the results of the comparison are discussed.

2 Label propagation

The iterative algorithm of label propagation is shown in Alg. 1. The matrix Y
is an N×k matrix, where N = `+u (` denotes the number of labeled and u the
number of unlabeled points) and k represent the size of the dataset and the
number of classes, respectively. Later we will split the dataset into labeled and
unlabeled parts, putting the labeled examples at the beginning of the dataset

and use the notation Y =

[
YL

YU

]
, where YL denotes the known and YU the

unknown labels. This is a matrix with rows containing the probabilities that
a point belongs to a given class.

The matrix T is an N × N transition matrix realizing the propagation of
the labels. The construction of this matrix will be detailed in the following
subsections. Step 3 is optional in the algorithm—only the first version requires



20 Z. Bodó, L. Csató

Algorithm 1 Label propagation
1: repeat
2: Y = TY
3: (Row-normalize Y.)
4: Clamp the labeled data.
5: until convergence

it—this is the reason why this operation is put in paranthesis.
Label propagation is not necessarily an iterative method: the output labels

of the unlabeled points can be expressed analytically.1 First we partition the
multiplication operation in step 2 of the algorithm:[

YL

YU

]
=

[
TLL TLU
TUL TUU

] [
YL

YU

]
, (1)

from which we can express the recursive formula for the unknown labels, that
is

YU = TULYL +TUUYU.

The labels output by label propagation then can be expressed as

YU = (I−TUU)
−1TULYL.

Obviously, in order to be able to solve the problem, I−TUU must be invertible,
but we assume this is the case.2

2.1 The first variant

The subtle—but unmentioned in the literature and undiscussed—difference
between the two variants lies in the construction of the transition matrix T.
This matrix is based on the graph built to represent data similarities. First
we define the matrix W containing the similarities. In [8] this is constructed
using the Gaussian similarity,

Wij = exp

(
−
‖xi − xj‖22
2σ2

)
, i, j = 1, 2, . . . ,N, (2)

1As will be shown in Section 4, the label propagation algorithms presented in this paper
have corresponding optimization problems, that can be solved in many different ways.

2A detailed analysis of the convergence of label propagation can be found in [8].
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but other similarities can be used as well, provided that I − TUU remains
invertible. The similarity matrix can also be sparse—the description of some
useful matrix construction techniques can be found in [5].

We also introduce here the diagonal degree matrix defined as

D = diag(W1).

Based on the similarities we can define the transition probability matrix,

P = D−1W,

in which Pij contains the probability—based on data similarities—that from
point i we transition to point j.

The first variant propagates the labels from the labeled points towards the
unlabeled points, thus T := P ′, that is the label is determined by

Yij = P1iY1j + P2iY2j + · · ·+ PNiYNj.

Similarly to the partitioning of Y into labeled and unlabeled parts, we can
also split W, D and P, thus obtaining

YU =
(
I−P ′UU

)
P ′LUYL

= DU (DU −WUU)
−1WULD

−1
L YL. (3)

In this case re-normalization of the rows of Y is needed in the iterative
algorithm, because

k∑
j=1

Yij = P1i

k∑
j=1

Y1j + · · ·+ PNi
k∑
j=1

YNj

= P1i + P2i + · · ·+ PNi

does not sum to one. However, steps 2 and 3 of Alg. 1 can be combined into
Y = TY, where T is the row-normalized matrix of T, T ij = Tij/

∑N
k=1 Tik, ∀i, j.

Thus, it is sufficient to perform row-normalization once, right before starting
to propagate the labels.

2.2 The second variant

In the second variant the labels are propagated “backwards”, that is T := P is
used for the transition matrix, resulting in the following label determination:

Yij = Pi1Y1j + Pi2Y2j + · · ·+ PiNYNj.



22 Z. Bodó, L. Csató

In this case we can say that the label of a point is defined as the convex com-
bination of its forward neighbors’ labels. The analytic formula for calculating
the labels becomes

YU = (I−PUU)
−1PULYL

= (DU −WUU)
−1WULYL. (4)

This version of label propagation appeared in [7] and in papers published after-
wards, without mentioning the minor modification to the original algorithm.
In this variant re-normalization is not needed, since the rows of Y sum to one:

k∑
j=1

Yij = Pi1

k∑
j=1

Y1j + · · ·+ PiN
k∑
j=1

YNj

= Pi1 + Pi2 + · · ·+ PiN = 1.

All the formulae used in label propagation can be rewritten using the graph
Laplacian [2, 5], a central concept of graph-based learning methods, defined
as

L = D−W.

The Laplacian possesses some interesting and advantageous properties [5], and
will be used in Section 4 mostly to simplify the expressions.

3 Analysis of the outputs

Let us denote the u×` matrix (DU −WUU)
−1WUL appearing in both analyt-

ical formulae by A, which is a matrix with stochastic vectors in its rows. The
matrix A equals (I−PUU)

−1PUL and we will use this to prove our previous
statement (i.e. stochastic rows property). Using this notation we can write the
recursive formula of the two methods as

YU = DUAD−1
L YL (5)

YU = AYL. (6)

We can prove that the rows of A are stochastic in two steps: (i)
∑`
j=1Aij =

1, i = 1, 2, . . . , u, (ii) Aij ≥ 0, i = 1, 2, . . . , u, j = 1, 2, . . . , `. For the first
property we use eq. (6) and check the sum of the i-th row of YU, for which it
is easy to see that∑̀

j=1

(YU)ij = Ai1

k∑
j=1

Y1j + · · ·+Ai`
k∑
j=1

Y`j

= Ai1 +Ai2 + · · ·+Ai`,
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and since this is the second variant, we know that the rows of Y sum to one,
therefore the rows of A sum to one as well.

For the second property we consider the definition of A as (I−PUU)
−1PUL

and use the Neumann series to rewrite it as

A =

∞∑
i=0

PiUUPUL. (7)

Since both PUU and PUL contain only nonnegative values, A also contains
only nonnegatives.

From (7) the value Aij can be interpreted as the probability that the first
labeled node of a random walk starting at unlabeled node i is j.

In the first variant we can leave out the multiplication with DU, observing
that it does not influence the result. Therefore we are left with the following
two very similar formulae:

YU = AD−1
L YL (8)

YU = AYL. (9)

4 Analysis of the optimization problems

The outputs of the presented methods can be viewed as solutions of specific
(semi-supervised) optimization problems. In this section we present and ana-
lyze the corresponding problems. We start with the second variant, because
the optimization problem of the first label propagation variant can be viewed
as a special case of the second variant’s minimization problem.

Statement 1 The output labels (4) in the second variant of label propagation
are also a solution of the following optimization problem:

min
yi,i=`+1,...,N

1

2

N∑
i,j=1

Wij‖yi − yj‖2, (10)

where yi denotes the i-th row of Y, that is the probabilistic vector assigned to
the i-th data point.
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Proof. The minimizable expression can be written as tr(YY ′L) = tr(Y ′LY),
because

1

2

N∑
i,j=1

Wij‖yi − yj‖2 =
1

2

∑
i

y ′iyi
∑
j

Wij +
1

2

∑
j

y ′jyj
∑
i

Wij −
∑
i,j

Wijy
′
iyj

=
∑
i,j

y ′iyiDii −
∑
i,j

Wijy
′
iyj = tr(Y ′DY) − tr(Y ′WY)

= tr(Y ′LY).

Hence we can rewrite the optimization problem (10) in the more compact form
of

min
YU

tr(Y ′LY). (11)

The YU that minimizes the above expression can be found by taking the
derivative of the trace with respect to YU and setting it equal to zero. First we
partition L and Y into labeled and unlabeled blocks, similarly to the matrices
in (1), and expand our formula

Y ′LY = Y ′LLLLYL +Y ′ULULYL +Y ′LLLUYU +Y ′ULUUYU.

Applying the trace operator we get

tr(Y ′LY) = tr(Y ′LLLLYL + 2Y
′
ULULYL +Y ′ULUUYU).

Then we take the derivative of the trace with respect to YU and set it equal
to zero, thus obtaining

YU = −L−1
UULULYL = (DU −WUU)

−1WULYL. (12)

as in (4).3 �

Statement 2 The output labels (3) of the first variant of label propagation
minimize the following expression:

min
yi,i=`+1,...,N

1

2

N∑
i,j=1

Wij

∥∥∥∥ yi
Dii

−
yj
Djj

∥∥∥∥2 , (13)

where Dii is the i-th diagonal element of D.

3In the derivation we used the following properties of the trace [4]: tr(A + B) = tr(A) +

tr(B), tr(A ′) = tr(A), ∂ tr(X ′A)
∂X

= A, ∂ tr(X ′AX)
∂X

= (A + A ′)X.
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Proof. By using the substitution zi := yi/Dii (or Z := D−1Y) we arrive to
the following optimization problem

min
yi,i=`+1,...,N

1

2

N∑
i,j=1

Wij ‖zi − zj‖2 .

Similarly to our previous proof, we can write this as tr(Z ′LZ), which equals
tr(Y ′D−1LD−1Y), where for simplicity we use the substitution G := D−1LD−1.
Thus our optimization problem becomes

min
YU

tr(Y ′GY).

Apart from the middle square matrix, this problem is identical to (11), there-
fore we can apply the same derivation. Using the results from (12) and sub-
stituting L back we obtain

YU = −G−1
UUGULYL = DU(DU −WUU)

−1WULDL
−1YL,

as in (3). �

The optimization problem in (10) can be explained as follows: we want to
determine the stochastic vectors yi, belonging to the unlabeled points, so that
to minimize the distance between these class membership vectors depending
on, i.e. weighted by the similarities of the neighboring points. The first variant
is a normalized version of the second: here, instead of L we use D−1LD−1,
a normalized graph Laplacian.4 By dividing yi by the degree of the point a
greater weight is assigned to points having fewer or distant neighbors. This,
as will be shown in the experiments, can yield a more balanced solution.

5 Experimental results and discussion

In the experiments we used 7 benchmark datasets from [1].5 The main prop-
erties of these sets are summarized in Table 1. Every set has 2× 12 splits: 12
random splits with 10 labeled points and 12 splits with 100 labeled points. In
our experiments we used only the first split of the datasets with 10 labeled
data.

4This Laplacian is the normalized version of the symmetric normalized Laplacian from
[5].

5The datasets can be downloaded from http://olivier.chapelle.cc/ssl-book/

benchmarks.html.

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://olivier.chapelle.cc/ssl-book/benchmarks.html
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Dataset Classes Dimension Points Note

g241c 2 241 1500 artificial
g241n 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 imbalanced
COIL2 2 241 1500

BCI 2 117 400

Text 2 11 960 1500 sparse discrete

Table 1: Properties of the datasets used in the experiments.

Dataset σ E ∆E ∆YU Iterations

g241c 5.8845 0.5013 0 5.1548 1219 1066

g241n 5.8914 0.5020 0 1.1718 1191 1133

Digit1 0.3941 0.2409 0 0.0334 7235 7270

USPS∗ 0.9 0.1906 0 0.7705 1 1

COIL2
∗ 400 0.4993 0 3.12 · 10−13 932 839

BCI 1.7296 0.5333 0 0.0378 3060 3083

Text∗ 1.3 0.4987 0 0.0045 780 781

Table 2: Experimental results obtained using Gaussian similarity with the
indicated parameter: E – error, ∆E – error difference, ∆YU – norm of the
difference vector of the outputs.

Besides these we experimented with other two sets for visually demonstrat-
ing the difference between the analyzed methods. The first of these is the
2moons dataset containing 2 labeled and 383 unlabeled points, while the sec-
ond simple dataset contains 2 labeled and 8 unlabeled points.6

The results obtained are shown in Table 2. In all the experiments we used
the Gaussian similarity (2) where the parameter was set using the procedure
described in [8]. The minimum spanning tree of the data was constructed using
Kruskal’s algorithm [3]. The process of building the tree, i.e. connecting the
points proceeds until the components being connected contain opposite labels;
the length of this peculiar edge is denoted by d0. Then—following the three-
sigma or 68−95−99.7 rule of the normal distribution [6]—the σ parameter of
the Gaussian similarity is set to d0/3. In this way it is expected that the “local
propagation is mostly within classes” [8]. In four cases this method provided

6The datasets can be downloaded from http://www.cs.ubbcluj.ro/~zbodo/datasets.

html.

http://www.cs.ubbcluj.ro/~zbodo/datasets.html
http://www.cs.ubbcluj.ro/~zbodo/datasets.html
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Figure 1: The output of (the first and second variant of) label propagation for
the (a), (b) simple and (c), (d) 2moons datasets.

acceptable values, but for the remaining sets (marked with a star in Table 2)
resulted in ill-conditioned (nearly singular) (DU −WUU) matrices. For these
datasets the indicated parameters were set by investigating the histogram of
the kernel values.

We list four values: (i) the error, (ii) the error difference ∆E, that is ∆E =
|E1−E2|, where Ei is the error obtained by the i-th method, (iii) the Frobenius
norm of the difference vector of the outputs, ∆YU =

∥∥Y1
U −Y2

U

∥∥
F

and (iv) the
number of iterations. The first three of these are calculated using the analytical



28 Z. Bodó, L. Csató

formulae (3) and (4). In the last two columns of the table we show the number
of iterations required for the iterative algorithms to converge; convergence was
reached when the Frobenius norm of the difference matrix obtained from two
consecutive steps did not exceed 10−3. The initial matrix of YU was set to[
1 0

]
.7

In the contour plots of Figure 1 the outputs of label propagation are shown
for two datasets: (a) and (b) show the results of the first and second variant of
label propagation for the simple dataset, while (c) and (d) present the assigned
labels for the 2moons dataset. In both cases the Gaussian similarity was used
with parameter σ = 3. The encircled points denote the labeled data and the
thicker black curves show the decision boundaries of the classifier.8 These were
determined using the following methodology. Considering the optimization
problems (10) and (13) one can determine the label of a newly arrived point
by taking the derivative of the new objective functions with respect to y (y
denoting the new, unknown label of the new point x):

C1 +

N∑
i=1

w(x,xi)

(
y

d
−
yi
Dii

)2

C2 +

N∑
i=1

w(x,xi)(y− yi)
2,

where C1 and C2 denote the unchanged parts of the objective functions and
w(x,xi) is the similarity of points x and xi. Setting the derivatives equal to
zero and expressing the label we obtain

y =

N∑
i=1

w(x,xi)∑N
j=1Wij

yi

y =

N∑
i=1

w(x,xi)∑N
j=1w(x,xj)

yi

for the two variants. For the labels of the unlabeled points (yi) in the dataset
the labels given by the algorithms were used in the above formulae (not the
true labels).

7We also experimented with class mass normalization [9] that uses the prior class distri-
bution to influence the predictions, but no significant differences were observed in the results,
therefore these results are not divulged here.

8We used here the binary version of label propagation, where Y is an N × 1 vector,
YL ∈ {−1,+1}`; yi ≥ 0 denotes a positive class assignment and yi < 0 a negative label.
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Examining the ∆E, ∆YU values and the iteration counts in Table 2 we can-
not notice considerable differences. The error values show the inadequacy of
the learning algorithm or its parameters.9 We obtained seemingly acceptable
error rates for two datasets, but the only set where label propagation per-
formed well was Digit1, taking into account the imbalanced class distribution
in the USPS dataset. In order to somehow experimentally compare the two
variants we decided to use some toy datasets where the results can be easily
visualized. Comparing the results in Figure 1 one can see that the normal-
ization included in the first variant resulted in more balanced (and correct)
solutions. We saw that (8) and (9) only differ by the inverse of the diagonal
degree matrix DL, a neglectable computational load from a complexity point
of view. The iterative algorithms differ in no steps, since in the first variant it is
sufficient to perform row-normalization only once, as discussed in Section 2.1.
Normalizing the labels by the points’ degree, however, can result in a more
natural, more balanced labeling. Therefore, concluding the theoretical analysis
and the experiments performed, we recommend to prefer the first variant of
label propagation over the second variant, where possible.

Acknowledgement

The authors acknowledge the support of the Romanian Ministry of Education
and Research via grant PN-II-RU-TE-2011-3-0278.

References

[1] O. Chapelle, B. Schölkopf, A. Zien, Semi-Supervised Learning, The MIT Press,
Cambridge, 2006. ⇒18, 19, 25

[2] F. Chung, Spectral Graph Theory, volume 92 of Regional Conference Series in
Mathematics, AMS, Philadelphia, 1997. ⇒22

[3] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Amer. Math. Soc., 7, 1 (1956) 48–50. ⇒26

[4] H. Lütkepohl, Handbook of Matrices, John Wiley & Sons, Chichester, 1996. ⇒
24

[5] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17, 4 (2007)
395–416. ⇒21, 22, 25

[6] M. W. Trosset, An Introduction to Statistical Inference and Its Applications with
R, Chapman & Hall/CRC Texts in Statistical Science, CRC Press, Boca Raton,
2009. ⇒26

9By parameters we refer both to the similarity function and its parameters.

http://olivier.chapelle.cc/
http://www.is.tuebingen.mpg.de/employee/details/bs.html
http://www.raetschlab.org/members/zien
http://olivier.chapelle.cc/ssl-book/
http://mitpress.mit.edu/
http://www.math.ucsd.edu/~fan/
http://www.math.ucsd.edu/~fan/research/revised.html
http://en.wikipedia.org/wiki/Joseph_Kruskal
http://www.ams.org/publications/journals/journalsframework/proc
http://www.wiwiss.fu-berlin.de/fachbereich/vwl/luetkepohl/MitarbeiterNeu/Luetkepohl.html
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488[0].pdf
http://www.springer.com/statistics/computational+statistics/journal/11222
http://mypage.iu.edu/~mtrosset/


30 Z. Bodó, L. Csató
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