Chapter 2
Support Vector Machines

Abstract In this chapter, we study support vector machines (SVM). We will see
that optimization methodology plays an important role in building and training of
SVM.

2.1 Basic SVM

One fundamental function of machine learning is to make classification from a set
of labeled training data. Suppose these data samples are denoted as {(x;, y;), i =
1,...,L = Lt 4+ L7}, where x; € R" are feature vectors and y; € {—1, 41} are
the labels. If these two kinds of examples formulate two disjoint convex hulls in
R”, we can find a hyperplane {x | wix +b= 0} to separate them, because of the
strong separation theorem. This indeed gives a classification function

Hx)=wlx+b 2.1)

Any point x giving H(x) > 0 will be recognized as Class I and any point x giving
H(x) < 0 will be recognized as Class II.

There might be infinite such hyperplanes that can separate these two convex sets.
Here, we would like to find the separating hyperplane which has the largest distance
to two convex sets. This will lead to the following optimization problem

max min {|x—x,—|% lwix+b=0,i= 1,...,L} 2.2)

w,

st. wix;+b=1, j=1,...,L* (2.3)
wixy+b<—-1,k=1,...,L" (2.4)

However, this optimization problem is not easy to solve. Therefore, we should
consider its equivalent form instead.

Notice that the parameters w and b can be rescaled in such a way that the points
closest to the hyperplane {x |wix +b = O} must lie on either the hyperplane
{x |wix +b = —l—l} or the hyperplane {x | wix +b = —1}. Meanwhile, the
distance between these two parallel hyperplanes can be gotten as ﬁ; see Fig. 2.1.
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Fig. 2.1 An illustration of support vector machines for binary classification

So, we can reach an optimization problem equivalent to (2.2)—(2.4) as

2

max —sx (2.5)
whb w3

sits Wi bE L f= 1 panl™ (2.6)

wixp+b<—-1,k=1,...,L" 2.7)

This is still not a convex optimization problem, so we consider its corresponding
minimization problem

15
in — 2.8
min 5wl &5)
st. wix; +b>1,j=1,...,LT (2.9)
wixy+b<—-1,k=1,...,L" (2.10)

In other words, we turn a classification problem into a convex optimization
problem. This optimization problem can be viewed as the primal form of the basic

Supporting Vector Machines (SVM) [1-7].
Introducing the sign variable y; and y; as

y;=1for wix; +b>1, j=1,..., LT (2.11)
ye =—1forwlxy+b<-1,k=1,...,L” (2.12)
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we can further rewrite (2.11)—(2.12) into a uniform constraint
yiwix; +b)=>1,i=1,...,L (2.13)
We can directly calculate the best parameters w* and »* of this SVM by solving

this primal problem. The sample Matlab code snippet of SVM in primal form is
given below.

function [w, b] = svm _prim_sep(data, labels)
% INPUT
% data: num-by-dim matrix. num is the number of data points,
% dim is the dimension of a point
% labels: num-by-1 vector, specifying the class that each point
% belongs to.
% either be +1 or be -1
% OUTPUT
T w: dim-by-1 vector, the normal direction of hyperplane
% b: a scalar, the bias
[num, dim] = size (data) ;

cvx_begin
variables w(dim) b;
minimize (norm(w)) ;
subject to
labels .x (data = w + b) >= 1;
cvx_end
end

Since it is a convex optimization problem, we can also attack its dual problem

instead; see discussions in Sect. 1.3.2. To get its dual problem, let us first write down
the generalized Lagrangian function as

L
Lw,b,a) = % wl3 — > o [yi (W'x; +b) — 1] (2.14)

i=1

where @ € Rf‘,_ are the associated Lagrange multipliers (dual variables).
Considering the partial derivatives of Lagrangian function with respect to w and
b as zero, based on KKT conditions for differentiable convex problems, we have

0L(w,b,x) -

— ow 0 =— w= i§=1aiyixi (2.15)
AL (w,b,a) -

—ab =0 = E oy = 0 (216)

i=1
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Further eliminating the primal decision variables w and b, we have the objective
of the Lagrange dual problem as

L(w,b,a) = %WT |:Z a,-y,-x,-] — Z(x,-y,-wa,-
—> aiyib+ > o (2.17)

| [ L T & I L
= _E [Zaiyixi] Zoz,—y,-x,— —b |:Z aiyi] + Zai (218)

i=1 i=1 i=1 i=1
L | L. L
= Za,- —EZZy,-yja,-ajxiij (2.19)
i=1 i=1 j=1

where we substitute (2.15) in (2.17) and (2.18).
Therefore, the integrate dual problem can be written as

L L L
1
mfx Zai — EZZyiyjaiajxiij (2.20)
i=1 i=1j=1
s.t. a; >0 2.21)
L
Y iy =0 (229

i=1

where (2.22) directly inherits from (2.16).

Suppose the solutions to the primal/dual optimization problem are denoted as
w*,b* , a® The nonzero dual variables o > 0 are called support vectors. The
complementary slackness condition in KKT conditions implies that

of [vi (x]w* +b*)—1] =0 223

This indicates that the constraints (2.9)—(2.10) are active with equality for all the
support vectors. In other words, the support vectors are lying on the hyperplanes
{x |wTx +b=%1}.

The parameter w* is then recovered from the solution o™ of the dual optimization
problem.
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w* = ol yix; (2.24)
i

Moreover, for the few «; > 0, the corresponding x; satisfies y; [(w*)T X; + b*] —
1. This means

W) xi +b* =1/y; = yi = b* =y, — (W) x; (2.25)

In practice, it is more robust to average over all support vectors and calculate b*
as

" 1 ExT
B = ; [y,- — (w") x,-] (2.26)

where S denotes the set of the indices of all support vectors and |S | is the cardinality
of S.

For any new sample z, the decision of classification can be given as

B
sign [(w*)Tz + b*] = sign Za;‘yixiTz + b* (2:27)

i=1

The sample Matlab code snippet of SVM in dual form is given below.

function [w, b, alphal = svm _dual_ sep(data, labels)
% INPUT
% data: num-by-dim matrix. num is the number of data points,
% dim is the dimension of a point
% labels: num-by-1 vector, specifying the class that each point
% belongs to.
% either be +1 or be -1
% OUTPUT
$ w: dim-by-1 vector, the normal direction of hyperplane
% 15is a scalar, the bias
% alpha: num-by-1 vector, dual variables
[num, ~] = size (data) ;
H = (data * data') .x (labels x labels') ;

cvx_begin
variable alpha (num) ;
maximize (sum(alpha) - alpha' %= H % alpha / 2);
subject to
alpha >= 0;
labels' *= alpha == 0
cvx_end

sv_ind = alpha > le-4;
w = data' * (alpha .x* labels);
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b = mean(labels (sv_ind) - data(sv_ind, :) =*x w) ;
end

2.2 Soft Margin SVM

If the data samples are not linearly separable, we could still build a linear classifier
likewise. To make the classification errors as small as possible, we usually introduce
a loss function (penalty function) on the classification errors.

The basic loss function is a linear function of loss on the violation. Using it, we
can then formulate a soft margin SVM as follows:

L

1 2
O, C , 2.28
min > |wl; + ;S (2.28)

T ;—

st. yiwix;, +b)=1—§&.i=1,....L (2.29)
£ >0,i=1,...,L (2.30)
where C € R™ is the penalty coefficient and §&; € R*,i = 1,..., L are the degree

of violation for each data sample; see Fig. 2.2.
Clearly, this is still a convex optimization problem, and we can form the
generalized Lagrangian function as

Fig. 2.2 An illustration of soft margin support vector machines
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: L L L
Lw,b,&,a,B) = = |W|§+C ZS:‘ _Zai [J’i (wai +b)—1 +§'i]—2,3i§i
i=1 i=1 i=1

(2.31)
where o € Rf‘f_ and B € Rf‘,_ are the associated Lagrange multipliers.
Letting its partial derivatives with respect to w, b, and &; be zero, we have

aL(w,b,E,-,a,ﬂ) L
= =0 — w= gaiyix,- (2.32)
AL(w, b, &, B) =
=0 ivi=0 2.33
= = ,;ay (2.33)
L bubio®oP) _ oy s @y —Bi=0 (2.34)

9

Eliminating the primal decision variables w, b, and &;, we have the objective of
the Lagrange dual problem as

L L L
Lw.b.&.a.B) = % W3 +C D & —> ai[yiwWixi +b)—1+&]—=D_ Biki

i=1 i=1 i=1

1 = L
= Swi =Y o [y Wxi +5) — 1]+ D& [C —ai — Bi]

i=1 i=1

1 L L
) |W|§ - Z [OfiinTxi - Oli] - (Z Ofiyi) b

i=1 i=1
L 1 L L
i=1 i=1j =1

where we substitute (2.32) in the last step.
The whole dual problem can be written as

E L L
1
max o — > Z Z y,—yja,-ajxiij (2.36)
«f = i=1 je=1
s.t. o; =0, ﬂi >0, o + ,3,' = (2.37)

L
Y iy =0 (2.38)

i=1



24 2 Support Vector Machines

Since the objective function of the Lagrange dual problem does not include B,
we have

L B I
1 T
moflx X;ai =5 Z} Z:ly,-yja,-ajxi X, (2.39)
1= 1= Jj=
sit. O0<qa; <C (2.40)
4
Y iy =0 (2.41)

i=1

We can see that the dual problem remains almost the same as the dual
problem (2.20)—(2.22), except we have a new upper bound for the dual variable
«a. That is, the key advantage of a linear penalty function is that the slack variables
vanish from the dual problem, with the constant C appearing only as an additional
constraint on the Lagrange multipliers. Cortes and Vapnik received the 2008 ACM
Paris Kanellakis Award for the above formulation and its huge impact in practice
[8].

Suppose the solutions to the primal/dual optimization problem are denoted as
w*,b* a™. The nonzero dual variables o > O are called support vectors. The
complementary slackness condition in KKT conditions implies that

a;" [y,- w*)" x; + yib* — 1+ g,-] —0 (2.42)

This indicates that the support vectors correspond to data samples that are
wrongly classified or lie right on the hyperplanes {x | w*"x + b = +1}.

Moreover, for the few «; > 0, the corresponding x; satisfies y; [(w*)T X; +b*] =

1 — &;. This means

(W*)Txi +b*=Q0—-8&)/yi = yi — yi&i

y

= b" =y —yiki — (W) x; (2.43)
Since we do not know §; in the dual problem, it is more robust to average over

all support vectors with §; = O and i € §, and calculate b* as

% 1 ES T
b* = — [yi — (w™) x,-] (2.44)
5T &

where S denotes the set of the indices of all support vectors with §; = 0,7 € S, |S|

is the cardinality of S.

For any new sample z, the decision of classification is still given as (2.27).

We can use different penalty functions to construct different soft margin SVMs.
Usually, we require the penalty function to be a convex function; otherwise, we
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cannot use convex optimization techniques to solve it. Moreover, we require the
value of penalty function to be O when the classification result is correct.

For examp

le, we can consider a quadratic form of penalty function

I
Y T
min = |wl; + C ; &7 (2.45)
st. yi(wix; +b)=1—¢,i=1,...,L (2.46)
G0 d = Lees (2.47)
where C € R™ is the penalty coefficient and § € R*,i = 1,..., L are the degree

of violation for each data sample.

The sample Matlab code snippet of soft margin SVM in primal form (2.45)—
(2.47) is given below.

function [w, b] = svm_prim nonsep2(data, labels, C)
% INPUT
% data num-by-dim matrix. num is the number of data points,

dim is the dimension of a point

num-by-1 vector, specifying the class that each point

belongs to.
either be +1 or be -1

% G the tuning parameter
% OUEPUT
$ w: dim-by-1 vector, the normal direction of hyperplane
% b: a scalar, the bias
[num, dim] = size(data) ;

cvx_beg
variabl
min
sub

cvx_end
end

in
es w(dim) b xi (num) ;

imize (sum(w.®2) / 2 + C % sum(xi.”2));
ject to
labels .x (data = w + b) >= 1 - xi;

xi >= 0;

Clearly, this is still a convex optimization problem, and we can form the
generalized Lagrangian function as

L

L E
Lov.b. & e B) =5 WE+C Y &= o [y Wi + ) — 1 +&]- 3 it

i=1 i=1 i=1

(2.48)

where @ € Rf;_ and B € Rf[_ are the associated Lagrange multipliers.
Letting its partial derivatives with respect to w, b, and &; be zero, we have
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oL(w,b.&,a,B) -
™ =0 — w= ;aiyixi (2.49)
L(w.b.&.a,B) -
» Uy Gl ’ =0 i Vi = 0 2.
- — ;a y (2.50)
oLw, b, &, a,

&

Eliminating the primal decision variables w, b, and &;, we have the objective of
the Lagrange dual problem as

1 E L I
Lw.b.§.a.B) = ) wl; + C Z‘i"{z _Zai [vi W'x; +b) — 1+ &] —Z,Bisi

i=1 i=1 i=1

L L
= S wB =D e [ (w7xs +5) — 1]+ D& [CE —ai — ]

i=1 i=1

1 L L
5 |w|§—Za, [y,- (wai +b) — 1] —CZ&Z

i=1 i=1

L

7 L L
= Zai = % Zzyiyjaiaj x)" x; — % Z(Oli + Bi)?

i=1 i=1j=1 i=1

(2.52)

The whole dual problem can be written as

L L L L
1 1
mzligx E o — 5 E E y,-yja,-ajxiij ~1c E (a; + /3,-)2 (2.53)
a,

i=1 i=1j=1 i=1

s.t.  o; = 0, ,3[ = 0 (254)
L
> aiyi=0 (2.55)
i=1
Clearly, the maximum value is reached when 8; = 0. So, the whole dual problem

can be rewritten as

L L L
mfx Za,——%ZZy,—yja,-ajxiij —%Zaf‘ (2.56)

i=1 i=1 j=1 i=1
st. «o; =0 (2.57)
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5
Y iy =0 (2.58)

b* is still calculated as (2.44). For any new sample z, the decision of classification
is still given as (2.27).

The sample Matlab code snippet of soft margin SVM in dual form (2.56)—(2.58)
is given below.

function [w, b, alphal = svm_dual nonsep2(data, labels, C)

% INPUT

% data: num-by-dim matrix. num is the number of data points,
% dim is the dimension of a point

% labels: num-by-1 vector, specifying the class that each point
% belongs to.

% either be +1 or be -1
5 s the tuning parameter
% OUTPUT
$ w: dim-by-1 vector, the normal direction of hyperplane
% b: a scalar, the bias
% alpha: num-by-1 vector, dual variables
[num, ~] = size (data) ;
H = (data = data') .x (labels x labels') ;

cvx_begin
variable alpha (num) ;
maximize (sum(alpha) - alpha' x H x alpha
/ 2 - sum(alpha.”2) / (4 = C));
subject to
alpha >= 0;
labels' x alpha == 0
cvx_end

sv_ind = alpha > le-4;
w = data' * (alpha .x labels);
xi = alpha / (2 %= C);
b = mean(labels(sv_ind) .* (1 - xi(sv_ind)) - data
(sv_ind, :) * w);
end

Obviously, when a special penalty function is chosen, we can get a special SVM
in both primal and dual formats. Figure 2.3 provides an example to distinguish the
difference between soft margin SVM with linear and quadratic penalty functions for
classification errors. It is shown that the soft margin SVM with quadratic penalty
functions will be more sensitive to outliers.
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Fig. 2.3 An illustration of different classification hyperplanes found by soft margin SVM with
linear and quadratic penalty functions

2.3 Kernel SVM

In many situations, we cannot separate the data with a hyperplane. Instead, we
design a nonlinear classification function rather than linear classification func-
tion (2.1)

H'(x) =w'¢ (x) +b (2.59)
Any point x giving H'(x) > 0 will be recognized as Class I, and any point x giving
H’(x) < 0 will be recognized as Class II.

Suppose we use nonlinear classification functions and get the following convex
optimization problem

1,
- 2.60
. -5 1wl =0
st. yi[wieox)+b]=1,i=1,....L (2.61)

We form the generalized Lagrangian function as

1 L
Lw.b,a) =3 w3 — > o [yi (Wo(xi) +b) —1] (2.62)

i=1

Letting its partial derivatives with respect to w and b be zero, we have
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L
L (w,b,a)
—— =0 = w= ;aiyiqﬁ(x,-) (2.63)
IL(w,b,a) -

i=1

Further eliminating the primal decision variables w and b, we have the objective
of the Lagrange dual problem as

L L L B
Lw,b,a) = %WT I:Z aiyi¢(xi)] =Y aiyiwlpx) — D) aiyib+ Y a

i=1 i=1 i=1 i=1

I B L L
= —EWT D aiyipxi)— D aiyib+ Y o

i=1 i=1 i=1

1 T2 Tz L L
=3 |:Z aiyi¢(xi):| Y aiyip(xi) —b (Z aiyi) + > o

i=1 i=1 i=1 i=1
L

[ Lo L
= Zai =5 Z Zyiyjaiaj [p(x)]" p(x;) (2.65)

i=1 i=1j=1

The whole dual problem can then be written as

L B b
1
max Zai -3 Z Zyiyjaiaj [p(x)]" p(x;) (2.66)
i=1 i=1j=1
st. o; =>0,i =1,...,n (2.67)
L
S iy =0 (2.68)

i=1

This problem is sometimes easier to solve, because we do not need to know the
detailed form of ¢(x). Instead, we only need to know the kernel function

Ox.y) = [$()]" ¢(») (2.69)
The dual problem can then be written as

L L L
1
m‘flx E o — 5 E E y,-yjaiaj@(xi,xj) (270)

i=1 i=1j=1
st. o; =0,i=1,...,n 2.71)
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L
Y iy =0 @72

i=1

The parameter w* is then recovered from the solution o™ of the dual optimization
problem.

w* = afyip(x:) (2.73)

Moreover, for the few «; > 0, the corresponding x; satisfies y; [(w*)T d(x;)
+b*] = 1. This means

(w*)qu(x,-) +b*=1/y; =y; = b* = y; — (w*)T¢(x,-) (2.74)

In practice, it is more robust to average over all support vectors and calculate »*
as

b* : [yi = (W*)T ¢(xi)] (2.75)

ISTiss

where S denotes the set of the indices of all support vectors and |S| is the cardinality
of §.
For any new sample z, the decision of classification can be given as

)
sign | (w*)" ¢ (@ + b*| = sign { > ol yilp )" d @) + b*g

i=1

L
= sign [Z afyiO(x;.2) + b*] (2.76)

i=1

which can be determined without knowing the detailed form of ¢ (x).
Applying kernel functions provides us a powerful tool to model possible
nonlinear relations within data.

Definition 2.1 A kernel function is a function ® : §2 x £2 + R that for all x,y
from a space £2 (which need not be a vector space), it can be expressed as an inner
product of vectors ¢(x) and ¢ (y)

Ox.y) = (¢(x).¢(y)) 2.77)

where ¢ (x) : £2 +— H is a mapping from the space £2 to a Hilbert space H that is
usually called the feature space.
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For real space, the kernel function ® can be arbitrarily chosen, when the
existence of mapping function ¢ had been guaranteed by Mercer’s condition [9].

Theorem 2.1 (Mercer’s condition) Let 2 € R”" be a compact set and let ®
2 x £2 +— R be a continuous and symmetric function. Then, & admits a uniformly
convergent expansion of the form

O@x.y) =Y cilp:i@)]" ¢:(») (2.78)

i=0

with ¢; > 0 if and only if for any square integrable function g(x) € Ly(x), the
following condition holds

f fg E@]” 0O y)dxdy = 0 (2.79)

Mercer’s condition is equivalent to the assumption that the kernel ® be symmet-
ric positive definite; see also Chap. 5.

Theorem 2.2 A kernel function ® : 2 x £2 +— R is said to be positive definite
symmetric if for any x1,...,X,, € 82, the matrix K = [K(x;,x;)];j; € R™" js
symmetric positive semidefinite.

Apparently, when & is a symmetric positive definite kernel function, the above
dual problem (2.70)—(2.72) is a convex problem that is easy to solve. More
discussions on kernel tricks can be found in [10—-13].

Example 2.1 Let us consider a simple case, where the real space R” with the dot
product is taken as a special inner product space £2

Ox,y) = [p)]" ¢(») (2.80)

Suppose we apply the mapping function
P(x) : (x1,x2) (x12 */Exlxqug) = (21,22, 23) (2.81)
This formulates a symmetric positive definite kernel function

Ox.y) =[px)]T ¢(y) = x2y? + 2x 1023192 + x2y2 = (xTy)° =0  (2.82)

We can map two kinds of data within or outside an ellipsoid in the original x, y
space (see also the discussions in Sect.7.1)

2 2

x2 x x?2  x
{(xl,xz) ’a—§+b—§§1} and{(xl,xz) Ia—;+b—§>1 (2.83)
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Fig. 2.4 Two illustrations of kernel tricks

into two kinds of data that can be separated by a hyperplane in the feature space
Z1, 22, z3; see Fig. 2.4 for an illustration.
<

L +§>1} (2.84)

21 23
(@ 202) | 55+ 25 <1} and {@1.22.23) | 55 + 73

b2

We can also tolerate classification errors in kernel SVM. For example, let us
formulate a soft margin SVM as follows:

L
1
min > w3+ C > & (2.85)
ot i=1
st. yi [wWieox)+b]=>1-&,i=1,...,L (2.86)
£>0,i=1,...,L (2.87)
where C € R™ is the penalty coefficient and §&; € R*,i = 1,..., L are the degree

of violation for each data sample.
Clearly, this is still a convex optimization problem, and we can form the
generalized Lagrangian function as

] i L B
Lw,b.§,a,B) = > wl3+C Z Ei—Zai {yi [WT¢(xi) +b]—1+ fi}—z Bi&i
i=1 i=1 i=1

(2.88)
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where @ € RY* and B € RY™ are the associated Lagrange multipliers.
Letting its partial derivatives with respect to w, b, and §; be zero, we have

oL ,b, i &, -
(w §i.a ﬂ) =0 — w= Z(X,‘yi¢(xi) (2.89)
ow i=1
IL(w,b.& . a,B) S
=0 ivi=20 2.90
L Y ;ay (2.90)
aL ,bg is s
w.0.8.08) o _ c_a—pg =0 (2.91)

9&;

Eliminating the primal decision variables w, b, and &;, we have the objective of
the Lagrange dual problem as

/43 5
Low.b, &, B) = 5 W3+ C D & — 3 e {yi (W) + 5] — 1+ &)

i=1 i=1

L
— > Biki

i=1

1 L L
= |w|% - Z [(X,-yl-wT¢(xi) — a,-] — (Z Otiyi) b

i=1 i=1

L
+ D &IC —a — Bi]

i=1
L

;L. L
= o — 5 D yiyiaia; (o))" ¢(x;) (2.92)

i=1 i=1j=1

The whole dual problem can be written as

L L L
1
max D o= D yiveie, )] ¢(x;) (2.93)
: i=l1 i=1j=1
st. ;>0,8,=0,0; +8:,=C (2.94)
L
Z"‘i y; =0 (2.95)

Since the objective function of the Lagrange dual problem does not include B,
we have
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L L L
1
m(slx Z(X,’ —EZZyiyja,-aj@(x,-,xj) (296)
i=1 i=1j=1
sit. 0= o0 <€ (2.97)
Za, yi =0 (2.98)

Moreover, for the few «; > 0, the corresponding x; satisfies y; [(w*)T d(x;)
+b*] = 1 — &;. This means

W*) dxi) +b* = (1 —&)/yi = yi — yifi => b* = y; — yi&;
— W) p(x1) (2.99)

Since we do not know &; in the dual problem, it is more robust to average over

all support vectors with §; = 0,7 € S, and calculate »* as
7
= S| > [y = )" g x| (2.100)
where S denotes the set of the indices of all support vectors with §; = 0,7 € S, | S|

is the cardinality of S.

For any new sample z, the decision of classification is still (2.76).

The sample Matlab code snippet of kernel SVM in dual form (2.96)—(2.98) is
given below, where the kernel function &@(x, y) is chosen a Gaussian kernel (2.101).
Here, we do not have a close form the mapping function ¢ (x) so that no code for
the kernel SVM in primal form is provided.

function [b, alphal] = svm_dual nonsep_gaussian_ kernel (data,
labels, C, sigma)

% INPUT

% data: num-by-dim matrix. num is the number of data points,

o°

dim is the dimension of a point

labels: num-by-1 vector, specifying the class that each point
belongs to.
either be +1 or be -1

o o

o®

% e the tuning parameter
% sigma: the parameter of gaussian kernel
%$ OUTPUT
% b: a scalar, the bias
% alpha: num-by-1 vector, dual variables
[num, ~] = size (data) ;
K = zeros (num) ;

kernel = @(x, y) exp(-norm(x - y)*2 / 2 / sigma™2) /
sgrt (2 % pi) / sigma;



2.4 Multi-kernel SVM 35

for i = 1:num
for j = i:num
K(i, j) = kernel(data(i, :), data(j, :));
K(j, 4) K(i, 393
end
end
H = (labels x labels') .x K;

cvx_begin
variable alpha (num) ;
maximize (sum(alpha) - alpha' %= H % alpha / 2);
subject to
alpha >= 0;
alpha <= C;
labels' x alpha == 0;
cvx_end

ind = alpha > le-4 & alpha < C - le-4;
b = mean(labels (ind) - K(ind, :) * (alpha .x labels)) ;
end

Example 2.2 Both the selections of penalty coefficient C and the parameters of
kernel function can greatly influence the classification results.
Suppose we choose Gaussian function

—5— lx - y 2 (2.101)

as the kernel function for x, y € R?”.

The choices of o and C lead to different classification functions; see Fig. 2.5.
A relatively large C requires the SVM to try to correctly classify all the known
samples. This often results in fractal classification boundaries, when multiple
outliers exist. On the other hand, a relatively large o will make the classification
boundaries smooth.

2.4 Multi-kernel SVM

One problem of kernel methods is that the resulting decision function is sometimes
hard to interpret and is thus difficult to extract relevant knowledge about the
problem. We can solve this problem by considering convex combinations of K
kernel functions, each of which has distinct meaning. The resulting multi-kernel
SVM can then be given as

K TF K
Ox.y) =¢x) ¢p(y) = [Z ﬂk¢k(x,-)] [Z ﬂkqbk(y,-)]



