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Midterm Results

max mean median
raw score 109 57.9 56.5
curved score 110 74.5 74
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Today’s Lecture

Practical tools to improve machine learning performance:
I Model selection: bias and variance trade off, cross-validation
I Regularization

A brief introduction to learning theory
I Empirical risk estimation
I Generalization bound for finite and infinite hypothesis space
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Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

✏̂(h) =
1
m

mX

i=1

1{h(x (i)) 6= y (i)
} (classification, 0-1 loss)

✏̂(h) =
1
m

mX

i=1

||h(x (i))� y (i)
||

2
2 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning
I make training error small (optimization)
I make the gap between empirical and generalization error small
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Overfit & Underfit

Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions
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Overfit & Underfit

Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions
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Model Capacity

Changing a model’s capacity controls whether it is more likely to overfit
or underfit

I Choose a model’s hypothesis space: e.g. increase # of features
(adding parameters)

I Find the best among a family of hypothesis functions

How to formalize this idea?
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Model Capacity

Changing a model’s capacity controls whether it is more likely to overfit
or underfit

I Choose a model’s hypothesis space: e.g. increase # of features
(adding parameters)

I Find the best among a family of hypothesis functions

CHAPTER 5. MACHINE LEARNING BASICS
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply

stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||X i,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L 2 norm, such
as learned distance metrics ( , ). If the algorithm is allowedGoldberger et al. 2005
to break ties by averaging the yi values for all Xi,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

How to formalize this idea?
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Bias and Variance

Suppose data is generated by the following model:

y = h(x) + ✏

with E[✏] = 0,Var(✏) = �2

h(x) true hypothesis function, unknown ! fixed value

ĥD(x) estimated hypothesis function based on training data
D = {(x (1), y (1)), . . . , (x (m), y (m))} ! a random variable

Bias of a model

The expected estimation error of ĥD over all choices of training data D
sampled from PXY

Bias(ĥD(x)) = ED [ĥD(x)� h(x)] = ED [ĥD(x)]� h(x)

When we make wrong assumptions about the model, such as too few
parameters, ĥD will have large bias (underfit)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data
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Bias and Variance

Variance of a model
The variance of the model learned from different choices of training data

Var(ĥD(x)) = ED [ĥD(x)
2]� ED [ĥD(x)]

2

I When the model varies a lot with the choice of training data, it has
large variance (overfit).
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Bias - Variance Tradeoff
If we measure generalization error by MSE

MSE = E[(ĥD(x)� y)2] = Bias(ĥD(x))
2 + Var(ĥD(x)) + �2,

I �2 represents irreducible error (caused by noisy data)

I in practice, increasing capacity tends to increase variance and
decrease bias.
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Bias - Variance Tradeoff
If we measure generalization error by MSE
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CHAPTER 5. MACHINE LEARNING BASICS

Capacity

Bias Generalization

error Variance

Optimal

capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
Sec. and Fig. .5.2 5.3

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. , where we see again the U-shaped5.6
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

lim
m→∞

θ̂m
p→ θ. (5.55)

The symbol
p→ means that the convergence is in probability, i.e. for any  > 0,

P (|θ̂m − |θ > ) → 0 as m → ∞ . The condition described by Eq. is5.55
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of θ̂ to θ. Almost sure

130

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

y = hit) -1£
model

- - ① noise
.

-

-

-

-

-



Introduction Model selection Regularization Learning Theory

Model Selection

For a given task, how do we select which model to use?
I Different learning models

I e.g. SVM vs. logistic regression for binary classification

I Same learning models with different hyperparameters
I e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.
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Hold-out cross validation

Given training set S and candidate models M1,...,Mn:
1. Randomly split S into Strain and Scv (e.g. 70% Strain)
2. Training each Mi on Strain,
3. Select the model with smallest empirical error on Scv

Disavantages of hold-out cross validation
I "wastes" about 30% data
I chances of an unfortunate split
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K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.
1. Randomly split S into k disjoint subsets S1, . . . , Sk of m/k training

examples (usually k = 10)

2. For j = 1 . . . k :
Train each model on S\Sj , then validate on Sj ,

3. Select the model with the smallest average empirical error among
all k trails.
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Leave-One-Out Cross Validation

A special case of k-fold cross validation, when k = m.

1. For each training example xi
Train each model on S\{xi}, then evaluate on xi ,

2. Select the model with the smallest average empirical error among all
m trails.

Often used when training data is scarce.
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Other Cross Validation Methods

I Random subsampling

I Bootstrapping: sample with replacement from training examples
(used for small training set)

I Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.
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Regularization
Parameter Norm Penalty
MAP estimation
Regularization for neural networks
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Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:
I Penalize parameter size

e.g. linear regression with norm penalty (see PA1& WA1)

J(✓) =
mX

i=1

log p(y (i)
|x (i); ✓) + �||✓||22

I Use prior probability: max-a-posteriori estimation
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Parameter Norm Penalty
Adding a regularization term to the loss (error) function:

J̃(X ,Y ; ✓) = J(X ,Y ; ✓)| {z }
data-dependent loss

+� ⌦(✓)|{z}
regularizer

where

⌦(✓) =
1
2

nX

j=1

|✓j |
q =

1
2
||✓||qq

Contours of the regularizer (||✓||q = 1) for different q
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Parameter Norm Penalty
Adding a regularization term to the loss (error) function:
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data-dependent loss
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regularizer

where
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1
2

nX

j=1

|✓j |
q =

1
2
||✓||qq

3.1. Linear Basis Function Models 145

q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

Contours of the regularizer (||✓||q = 1) for different q
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L2 parameter penalty

When q = 2, it’s also known as Tokhonov regularization or ridge
regression

J̃(X ,Y ; ✓) = J(X ,Y ; ✓) +
�

2
✓T ✓

Gradient descent update:

✓  ✓ � ↵r✓ J̃(X ,Y ; ✓)

= ✓ � ↵(r✓J(X ,Y ; ✓) + �✓)

= (1� ↵�)✓ � ↵r✓J(X ,Y ; ✓)

L2 penalty multiplicatively shrinks parameter ✓ by a constant
Also known as weight decay in gradient descent (neural network).

Example: regularized least square (WA1)

When J(X ,Y ; ✓) = 1
2
Pm

i=1(y
(i)
� ✓T x (i))2 (ordinary least squares),

✓̃OLS = (XTX + �I )�1(XTY )
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L1 parameter penalty
When q = 1, ⌦(✓) = 1

2
Pn

j=1 |✓j | is also known as LASSO regression.
I If � is sufficiently large, some coefficients ✓j are driven to 0.
I It will lead to a sparse model

Proposition 1
Assuming J(✓) is a convex function over some convex set and � > 0,

solving min✓ J̃(X ,Y ; ✓) = J(X ,Y ; ✓) + �
2
Pn

j=1 |✓j |
q

is equivalent to

min✓ J(X ,Y ; ✓)
s.t.

Pn

j=1 |✓|
q
 ⌘

for some constant ⌘ > 0 (*). Furthermore, ⌘ =
Pn

j=1 |✓
⇤

j
(�)|q where

✓⇤(�) = argmin✓ J̃(X ,Y ; ✓,�)

I (*) assume constraint is satisfiable (e.g. with slater’s condition)
I Choosing � is equivalent to choosing ⌘ and vice versa
I Smaller �! larger constraint region
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L1 vs L2 parameter penalty

contour plot of unregularized error J(X ,Y ; ✓) and the constraint regionP
n

j=1 |✓|
q
 ⌘

146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w!.
The lasso gives a sparse solution in
which w!

1 = 0.

w1

w2

w!

w1

w2

w!

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)

θ1

θ2

θ* θ*

θ1

θ2

q = 1 q = 2

The lasso (l1 regularizer) gives a sparse solution with ✓⇤1 = 0.
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Bayesian Statistics

Maximum likelihood estimation: ✓ is an unknown constant

✓MLE = argmax
✓

mY

i=1

p(y (i)
|x (i); ✓)

Bayesian view: ✓ is a random variable

✓ ⇠ p(✓)

Given training set S = {x (i), y (i)
}, posterior distribution of ✓

p(✓|S) =
p(S |✓)p(✓)

p(S)
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Fully Bayesian statistics

p(✓|S) =

Qm

i=1 p(y
(i)
|x (i), ✓)p(✓)R

✓(
Qm

i=1 p(y
(i)|x (i), ✓)p(✓))d✓

To predict the label for new sample x , compute the posterior distribution
over training set S :

p(y |x , S) =

Z

✓
p(y |x , ✓)p(✓|S)d✓

The label is
E[y |x , S ] =

Z

y

y p(y |x , S)dy

Fully bayesian estimate of ✓ is difficult to compute, has no close-form
solution.
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Bayesian Statistics

Posterior distribution on class label y using p(✓|S)

p(y |x , S) =

Z

✓
p(y |x , ✓)p(✓|S)d✓

We can approximate p(y |x , ✓) as follows:

MAP approximation
The MAP (maximum a posteriori) estimate of ✓ is

✓MAP = argmax
✓

mY

i=1

p(y (i)
|x (i), ✓)p(✓)

p(y (i)
|x (i), ✓) is not the same as p(y (i)

|x (i); ✓)
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Bayesian Statistics

Posterior distribution on class label y using p(✓|S)
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Z

✓
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We can approximate p(y |x , ✓) as follows:

MAP approximation
The MAP (maximum a posteriori) estimate of ✓ is
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MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y (i)

|x (i)) ⇠ N (✓T x (i),�2):

✓MLE = argmax
✓

mY

i=1

p(y i
|x i ; ✓)

= (XTX )�1XTY = ✓OLS

The MAP estimation when ✓ ⇠ N(0, ⌧2I ) is

✓MAP = argmax
✓

 
mY

i=1

p(y i
|x i ; ✓)

!
p(✓)

= argmin
✓

✓
�2

⌧2 ✓
T ✓ + (Y � X✓)T (Y � X✓)

◆

= (XTX +
�2

⌧
I )�1XTY = ✓̃OLS when � =

�2

⌧
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MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y (i)

|x (i)) ⇠ N (✓T x (i),�2):
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Discussion on MAP Estimation

General remarks on MAP:
I When ✓ is uniform, ✓MAP = ✓MLE

I A common choice for p(✓) is ✓ ⇠ N (0, ⌧2I ), and ✓MAP corresponds
to weight decay (L2-regularization)

I When ✓ is an isotropic Laplace distribution, ✓MAP corresponds to
LASSO ( L1-regularization). See WA3

I ✓MAP often have smaller norm than ✓MLE
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Regularization for neural networks

Common regularization techniques:
I Data augmentation
I Parameter sharing
I Drop out
I . . .
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Data augmentation
Create fake data and add it to the training set. (Useful in certain tasks
such as object classification.)

Generate fake digits via geometric transformation, e.g. scale, rotation etc

Generate images of different styles using GAN

Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019
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Parameter Sharing

Force sets of parameters to be equal based on prior knowledge.

Siamese Network
I Given input X , learns a discriminative

feature f (X )

I For every pair of samples (X1,X2) in
the same class, minimize their distance
in feature space ||f (X1)� f (X2)||2

Convolutional Neural Network (CNN)
I Image features should be invariant to translation
I CNN shares parameters across multiple image locations.

Soft parameter sharing: add a norm penalty between sets of
parameters:

⌦(✓A, ✓B) = ||✓A � ✓B ||22
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Drop Out

I Randomly remove a non-output unit from network by multiplying its
output by zero (with probability p)

I In each mini-batch, randomly sample binary masks to apply to all
inputs and hidden units

I Dropout trains an ensemble of different sub-networks to prevent
“co-adaptation" of neurons (i.e. highly correlated hidden units)
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Learning Theory
Empirical Risk Estimation
Uniform Convergence and Sample Complexity
Infinite H
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Introduction to Learning Theory

I Empirical risk estimation
I Learning bounds

I Finite Hypothesis Class

I Infinite Hypothesis Class
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Learning theory
How to quantify generalization error?

Prof. Vladimir Vapnik in front of his famous theorem
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Empirical risk

Simplified assumption: y 2 (0, 1)
I Training set: S = (x (i), y (i)); i = 1, . . . ,m with (x (i), y (i)) ⇠ D

I For hypothesis h, the training error or empirical risk/error in
learning theory is defined as

✏̂(h) =
1
m

mX

i=1

1{h(x (i)) 6= y (i)
}

I The generalization error is

✏(h) = P(x,y)⇠D(h(x) 6= y)

I PAC assumption: assume that training data and test data (for
evaluating generalization error) were drawn from the same
distribution D
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Hypothesis Class and ERM

Hypothesis class
The hypothesis class H used by a learning algorithm is the set of all
classsifiers considered by it.
e.g. Linear classification considers h✓(x) = 1{✓T x � 0}

Empirical Risk Minimization (ERM): the “simplest" learning
algorithm: pick the best hypothesis h from hypothesis class H

ĥ = argmin
h2H

✏̂(h)

How to measure the generalization error of empirical risk minimization

over H?

I Case of finite H

I Case of infinite H
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Case of Finite H

Goal: give guarantee on generalization error ✏(h)
I Show ✏̂(h) (training error) is a good estimate of ✏(h)
I Derive an upper bound on ✏(h)

For any hi 2 H, the event of hi miss-classification given sample
(x , y) ⇠ D:

Z = 1{hi (x) 6= y}

Zj = 1{hi (x (j)) 6= y (j)
} : event of hi miss-classifying sample x (j)

Training error of hi 2 H is:

✏̂(hi ) =
1
m

mX

j=1

1{hi (x (j)) 6= y (j)
}

✏̂(hi ) =
1
m

mX

j=1

Zj
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Case of Finite H
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For any hi 2 H, the event of hi miss-classification given sample
(x , y) ⇠ D:
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Zj = 1{hi (x (j)) 6= y (j)
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Preliminaries

Here we make use of two famous inequalities:

Lemma 1 (Union Bound)
Let A1,A2, . . . ,Ak be k different events, then

P(A1 [ . . . [ Ak)  P(A1) + . . .+ P(Ak)

Probability of any one of k events happening is less the sums of their

probabilities.
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Preliminaries

Lemma 2 (Hoeffding Inequality, Chernoff bound)
Let Z1, . . . ,Zm be m i.i.d. random variables drawn from a Bernoulli(�)

distribution. i.e. P(Zi = 1) = � , P(Zi = 0) = 1� �. Let �̂ = 1
m

Pm

i=1 Zi

be the sample mean of RVs.

For any � > 0,

P(|�� �̂| > �)  2 exp(�2�2m)

The probability of �̂ having large estimation error is small when m is

large!
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Case of Finite H

Training error of hi 2 H is:

✏̂(hi ) =
1
m

mX

j=1

Zj

where Zj ⇠ Bernoulli(✏(hi ))

By Hoeffding inequality,

P(|✏(hi )� ✏̂(hi )| > �)  2e�2�2
m

By Union bound,

P(8h 2 H.|✏(h)� ✏̂(h)|  �) � 1� 2ke�2�2
m
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Case of Finite H

Training error of hi 2 H is:
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Case of Finite H

Training error of hi 2 H is:

✏̂(hi ) =
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m

mX
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Uniform Convergence Results

Corollary 3
Given � and � > 0, If

m �
1

2�2 log
2k
�

Then with probability at least 1� �, we have |✏(h)� ✏̂(h)|  � for all H.

m is called the algorithm’s sample complexity.

Remarks
I Lower bound on m tell us how many training examples we need to

make generalization guarantee.
I # of training examples needed is logarithm in k
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Uniform Convergence Results

Corollary 3
Given � and � > 0, If

m �
1

2�2 log
2k
�

Then with probability at least 1� �, we have |✏(h)� ✏̂(h)|  � for all H.

m is called the algorithm’s sample complexity.

Remarks
I Lower bound on m tell us how many training examples we need to

make generalization guarantee.
I # of training examples needed is logarithm in k
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Uniform Convergence Results

Corollary 4
With probability 1� �, for all h 2 H,

|✏̂(h)� ✏(h)| 

r
1

2m
log

2k
�

What is the convergence result when we pick ĥ = argminh2H
✏̂(h)
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Uniform Convergence Results

Corollary 4
With probability 1� �, for all h 2 H,
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r
1

2m
log

2k
�

What is the convergence result when we pick ĥ = argminh2H
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Uniform Convergence Theorem for Finite H

Using previous corollaries, we can bound ✏(ĥ):

Theorem 5 (Uniform convergence)
Let |H| = k , and m,� be fixed. With probability at least 1� �, we have

✏(ĥ) 

✓
min
h2H

✏(h)

◆
+ 2
r

1
2m

log
2k
�
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite H?

Example
I Suppose H is parameterized by d real numbers. e.g.

✓ = [✓1, ✓2, . . . , ✓d ] 2 Rd in linear regression with d � 1 unknowns.

I In a 64-bit floating point representation, size of hypothesis class:
|H| = 264d

I How many samples do we need to guarantee ✏(ĥ)  ✏(h⇤) + 2� to
hold with probability at least 1� �?

m � O

✓
1
�2 log

264d

�

◆
= O

✓
d

�2 log
1
�

◆
= O�,�(d)

To learn well, the number of samples has to be linear in d
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Infinite hypothesis class: Challenges

Size of H depends on the choice of parameterization

Example
2n + 2 parameters:

hu,v = 1{(u2
0 � v2

0 ) + (u2
1 � v2

1 )x1 + . . .+ (u2
n � v2

n )xn � 0}

is equivalent the hypothesis with n + 1 parameters:

h✓(x) = 1{✓0 + ✓1x1 + . . .+ ✓nxn � 0}

We need a complexity measure of a hypothesis class invariant to

parameterization choice
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parameterization choice
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Infinite hypothesis class: Vapnik-Chervonenkis theory

A computational learning theory developed during 1960-1990 explaining
the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian mathemati-
cian

Vladimir Vapnik (Facebook AI Research, Vencore Labs)
Most known for his contribution in statistical learning
theory
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Shattering a point set

I Given d points x (i) 2 X , i = 1, . . . , d , H shatters S if H can realize
any labeling on S .

Example: S = {x (1), x (2), x (3)
} where x (i)

2 R2
.

9

“well” using a hypothesis class that has d parameters, generally we’re going
to need on the order of a linear number of training examples in d.

(At this point, it’s worth noting that these results were proved for an al-
gorithm that uses empirical risk minimization. Thus, while the linear depen-
dence of sample complexity on d does generally hold for most discriminative
learning algorithms that try to minimize training error or some approxima-
tion to training error, these conclusions do not always apply as readily to
discriminative learning algorithms. Giving good theoretical guarantees on
many non-ERM learning algorithms is still an area of active research.)

The other part of our previous argument that’s slightly unsatisfying is
that it relies on the parameterization of H. Intuitively, this doesn’t seem like
it should matter: We had written the class of linear classifiers as hθ(x) =
1{θ0 + θ1x1 + · · · θnxn ≥ 0}, with n + 1 parameters θ0, . . . , θn. But it could
also be written hu,v(x) = 1{(u2

0 − v2
0) + (u2

1 − v2
1)x1 + · · · (u2

n − v2
n)xn ≥ 0}

with 2n + 2 parameters ui, vi. Yet, both of these are just defining the same
H: The set of linear classifiers in n dimensions.

To derive a more satisfying argument, lets define a few more things.
Given a set S = {x(i), . . . , x(d)} (no relation to the training set) of points

x(i) ∈ X , we say that H shatters S if H can realize any labeling on S.
I.e., if for any set of labels {y(1), . . . , y(d)}, there exists some h ∈ H so that
h(x(i)) = y(i) for all i = 1, . . . d.

Given a hypothesis class H, we then define its Vapnik-Chervonenkis
dimension, written VC(H), to be the size of the largest set that is shattered
by H. (If H can shatter arbitrarily large sets, then VC(H) = ∞.)

For instance, consider the following set of three points:

x

x1

2

Can the set H of linear classifiers in two dimensions (h(x) = 1{θ0+θ1x1+
θ2x2 ≥ 0}) can shatter the set above? The answer is yes. Specifically, we

Suppose y (i)
2 {0, 1}, how many possible labelings does S have?

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Model selection Regularization Learning Theory

Shattering a point set
I Example: Let HLTF ,2 be the linear threshold function in R2 (e.g. in

the perceptron algorithm)

h(x) =

⇢
1 w1x1 + w2x2 � b

0 otherwise

10

see that, for any of the eight possible labelings of these points, we can find a
linear classifier that obtains “zero training error” on them:

x

x1

2 x

x1

2 x

x1

2 x

x1

2

x

x1

2 x

x1

2 x

x1

2 x

x1

2

Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter. Thus, the largest set that H can shatter is of
size 3, and hence VC(H) = 3.

Note that the VC dimension of H here is 3 even though there may be
sets of size 3 that it cannot shatter. For instance, if we had a set of three
points lying in a straight line (left figure), then there is no way to find a linear
separator for the labeling of the three points shown below (right figure):

x

x1

2x

x1

2

In order words, under the definition of the VC dimension, in order to
prove that VC(H) is at least d, we need to show only that there’s at least
one set of size d that H can shatter.

The following theorem, due to Vapnik, can then be shown. (This is, many
would argue, the most important theorem in all of learning theory.)

HLTF ,2 shatters S = {x (1), x (2), x (3)
}
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VC Dimension

The Vapnik-Chervonenkis dimension of H, or VC (H), is the cardinality
of the largest set shattered by H.

I Example: VC (HLTF ,2) = 3

HLTF can not shatter 4 points: for any 4 points, label points on the diagonal as

’+’. (See Radon’s theorem)

I To show VC (H) � d , it’s sufficient to find one set of d points
shattered by H

I To show VC (H) < d , need to prove H doesn’t shatter any set of d
points
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VC Dimension

I Example: VC (AxisAlignedRectangles) = 4

1.2 Determining VC-dimension

In the last section, we claimed VC-dim(Axis-aligned rectangles) = 4. Now we show how
to prove it. The proof involves two steps: first, we show the VC-dimension is at least 4
by showing that there exists a 4-point set shattered by the concept set (it’s worth noting
that not every 4-point configuration can be shattered, but we only need one to make the
statement). Then, we show that there is no 5-point set that can be shattered.

Proof (1) An example 4-point set is shown in Figure 1 with all typical labelings and the
corresponding realization. So we have VC-dim� 4.

(2) For any 5-point set, we can construct a data assignment in this way: pick the
topmost, bottommost, leftmost and rightmost points and give them the label “+”. Because
there are 5 points, there must be at least one point left to which we assign “�”. Any
rectangle that contains all the “+” points must contains the “�” point, which is a case
where shattering is not possible. This proves that VC-dim< 5.

In sum, VC-dim(axis aligned rectangle)= 4.

Figure 1: Proving that rectangle concept space shatters at least 4 points

2 Sauer’s Lemma

Sauer’s Lemma provides an upper bound for ⇧H(m) parameterized by d, the VC-dimension
of H. It also leads to the proof that the growth function is either O(md) or 2m. In this
section, we are going to use these definition and facts in binomial coe�cients:

✓
m

k

◆
= 0 if k < 0 or k > m (4)

✓
m

k

◆
=

✓
m� 1
k � 1

◆
+

✓
m� 1

k

◆
(5)

(a + b)m =
mX

k=0

✓
m

k

◆
a

k
b
m�k (6)

Lemma 2.1 (Sauer’s Lemma) Let H be a hypothesis set with VC-dim(H) = d. Then, for
all m 2 N , the following inequality holds

2

Axis-aligned rectangles can shatter 4 points. VC(AxisAlignedRectangles) � 4
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VC Dimension

I Example: VC (AxisAlignedRectangles) = 4

For any 5 points, label topmost, bottommost, leftmost and rightmost points as

“+”.

VC(AxisAlignedRectangles) < 5
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Discussion on VC Dimension
More VC results of common H:

I VC (ConstantFunctions) =

0
I VC (PositiveHalf -Lines) = 1,X = R

I VC (Intervals) = 2,X = R
I VC (LTF in Rn) = n + 1,X = Rn

 prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H:

VC (H)  log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then |H| � 2d
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Discussion on VC Dimension
More VC results of common H:

I VC (ConstantFunctions) = 0
I VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

I VC (Intervals) = 2,X = R
I VC (LTF in Rn) = n + 1,X = Rn

 prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H:

VC (H)  log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then |H| � 2d

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Model selection Regularization Learning Theory

Discussion on VC Dimension
More VC results of common H:

I VC (ConstantFunctions) = 0
I VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

I VC (Intervals) = 2,X = R
I VC (LTF in Rn) = n + 1,X = Rn

 prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H:

VC (H)  log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then |H| � 2d

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Model selection Regularization Learning Theory

Discussion on VC Dimension
More VC results of common H:

I VC (ConstantFunctions) = 0
I VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

I VC (Intervals) = 2,X = R
I VC (LTF in Rn) = n + 1,X = Rn

 prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H:

VC (H)  log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then |H| � 2d

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Model selection Regularization Learning Theory

Learning bound for infinite H

Theorem 6
Given H, let d = VC (H).

I With probability at least 1� �, we have that for all h

|✏(h)� ✏̂(h)|  O

 r
d

m
log

m

d
+

1
m

log
1
�

!

I Thus, with probability at least 1� �, we also have

✏(ĥ)  ✏(h⇤) + O

 r
d

m
log

m

d
+

1
m

log
1
�

!
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Learning bound for infinite H

Corollary 7
For |✏(h)� ✏̂(h)|  � to hold for all h 2 H with probability at least 1� �,
it suffices that m = Oy ,�(d).

Remarks
I Sample complexity using H is linear in VC (H)

I For “most”a hypothesis classes, the VC dimension is linear in terms
of parameters

I For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

aNot always true for deep neural networks
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)
Let N be an arbitrary feedforward neural net with w weights that

consists of linear threshold activations, then VC (N ) = O(w logw).

Recent progress

I For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and l be
the number of layers, VC (N ) = O(wl log(w)) [Bartlett et. al., 2017]

I Among all networks with the same size (number of weights), more

layers have larger VC dimension , thus more training samples are
needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets
Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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