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Midterm Results

Midterm

‘max mean median

raw score 109 57.9 56.5
curved score | 110 745 74
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I Introductionl I I :

Introduction|
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Today's Lecture

Practical tools to improve machine learning performance:

» Model selection: bias and variance trade off, cross-validation
X » Regularization
A brief introduction to learning theory
» Empirical risk estimation

» Generalization bound for finite and infinite hypothesis space
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[ Model selection|
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Empirical error & Generalization error 14 Mi"’)f‘j“( < ; 1+ "¢
0D =

Consider a learning task, the empirical (training) error of hypothesis h
is the expected I&SE over m training samples

é(h) = %Z 1{h(xD) # y(} (classification, 0-1 loss)

i=1

1 ; ;
é(h) = - Z [[h(x() — yD[|2 (regression, least-square loss)
- i=1
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Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

é(h) = %Z 1{h(xD) # y()}  (classification, 0-1 loss)

i=1

1 ; ;
é(h) = - Z [[h(x() — yD[|2 (regression, least-square loss)
i=1

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
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Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

é(h) = %Z 1{h(xD) # y()}  (classification, 0-1 loss)

i=1

1 ; ;
é(h) = - Z [[h(x() — yD[|2 (regression, least-square loss)
i=1

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
Goal of machine learning

» make training error small (optimization)

» make the gap between empirical and generalization error small
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[introduction]

Model selection

Overfit & Underfit

[

Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large
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[introduction]

Model selection : :

Overfit & Underfit

Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large
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Model capacity: the‘ability to fit a wide variety of functions
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Model Capacity

Changing a model’s capacity controls whether it is more likely to overfit
or underfit

» Choose a model’s hypothesis space: e.g. increase # of features
(adding parameters)

» Find the best among a family of hypothesis functions

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal



[introduction]

Model selection

Model Capacity

[

L )

Changing a model’s capacity controls whether it is more likely to overfit

or underfit

» Choose a model's hypothesis space: e.g. increase # of features
(adding parameters)

» Find the best among a family of hypothesis functions

Error

Underfitting zone

Overfitting zone

Training error
Generalization error

ﬂWN’fA

l

Optimal Capacity

Capacity

How to formalize this idea?
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Bias and Variance

Suppose data is generated by the following model: ot

W true
y=ho) e Py e Niiom o 69

with E[e] = 0, Var(e) = o2

hg) true hypothesis function, unknown — fixed value

f;D(X) estimated hypothesis function based on training data
D = {(xM),y®) ... (x(m, y(™} — a random variable
SEANT LA U P A random vl

D~ Pry a
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Bias and Variance

Suppose data is generated by the following model:

y = h(x)+ ¢ e
with E[e] = 0, Var(e) = o2

h(x) true hypothesis function, unknown — fixed value

ED(X) estimated hypothesis function based on training data
D = {(xM,y®) ... (x(m, y(™)} — a random variable

Bias of a model

The expected estimation error of hp over all chonces of training data D
sampled from Pxy —  tieed nld‘z’w"'

—

Bias(hp(x)) = E@[@B_)‘ h(x)] = Ep[hp(x)] — h(x)

When we make wrong assumptions about the model, such as too few
parameters, hp will have large bias (underfit)
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Model selection

Bia

s and Variance

V() = EL (- )]
= Bl] - (er2))”

Variance of a model

The variance of the model learned from different choices of training data

Var(hp(x)) = ED\[%D(XQ—ED[%ME

» When the model varies a lot with the choice of training data, it has
large variance (overfit).

P
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Model selection I/_——m =
. . ot =r = - E L}%——]
Bias - Variance Tradeoff (Fet A D (- EC L)
E(l«uwz_ E(lw+€)
E[(hoy+ - ERR- gy ]
N N N W) o
MSE = E[(hp(x) — y)?] = Bias(hp(x))* + Var(hp(x)) + %, = £ [¢*]
—_— _— ———
erro( Jf lA =42
» o2 represents irreducible error "(caused by noisy data)
> in practice, increasing capacity tends to increase variance and

[\l

If we measure generalization error by MSE

\

decrease bias. y=h)tg
MSE = B [ (Y- ko)) B (30 B
< ElRp00* : M9 §) ) = ]
ety )e Lyl Ef=0 ). o)

T
Var[LDlx)X* ELL,000 "+ Verlyl+ELY1= zgﬁ,[l\ )] (Lu) )

= \ind Lp(ac))-r\lul;] (Uk., 7)) Ef;")’-—zgl‘i(k (*)T) AL Md

c S Q:va@ o) B8
(Y Fak D~ TEL (Lo I = E[Lyp-hen] O
= E[ j\DL’*) k(r)] (by Fack )

- B\&S[/k\)‘-*))
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Bias - Variance Tradeoff Y

ERINCAR KY
If we measure generalization error by MSE motLﬂ-I

MSE = E[(hp(x) — )?] = Bias(ho(x)) + Var(hp(x)) H{o2) "°'SE-

» o2 represents irreducible error (caused by noisy data)

> in practice, increasing capacity tends to increase variance and
nerease varane
decrease bias.

A

Underfitting zone

Overfitting zone

Generalizaiiil/

\FTOT -

Lo —a Variance
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P' ——
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Optimal Capacity
capacity
_

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal



Model Selection

For a given task, how do we select which model to use?
» Different learning models
> e.g. SVM vs. logistic regression for binary classification
» Same learning models with different hyperparameters
> e.g. # of clusters in k-means clustering
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Model selection :

Model Selection

For a given task, how do we select which model to use?
» Different learning models
> e.g. SVM vs. logistic regression for binary classification
» Same learning models with different hyperparameters
> e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.
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Hold-out cross validation !
lold-ol

{_/—/T T
! S train 2 j\ \
= A
lb% ”““‘PV\ J
Given training set S and candidate models My,...,M,:

1. Randomly split S into Syain and S, (e.g. 70% Strain)
2. Training each M; on Si.ain,

3. Select the model with smallest empirical error on S,

M‘/ N.\L,. -,./N\V\. — Strecw

Vo

/ch-
ZLV(L\D ECV(Ln; - e 20\,(\«0'
\,\/—__/
ot = %L\ICL\J)

()
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Model selection :

Hold-out cross validation

Given training set S and candidate models My,...,M,,:
1. Randomly split S into St.in and S, (e.g. 70% Strain)
2. Training each M; on Si.ain,
3. Select the model with smallest empirical error on S,

Disavantages of hold-out cross validation
» "wastes" about 30% data

» chances of an unfortunate split

—————

g(,v
—
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K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (usually k = 10)
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L]

Model selection

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (usually k = 10)

2. For_Lzl...k:

Train each model oné_\\.i, then validate on §;,

KZ.‘.;" Runll I

B

B <\

Run2|

_ |

. I
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Rins | |
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Validating
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K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (usually k = 10)

2. Forj=1...k:
Train each_model on S\§;, then validate on

Run 1 l I l | -C’F\ mulds i

ro2[ [ [ ] i
Run 3 I—, Trfa(;::;"gk
(T W]
Run aIfol?j "Y"-/
T 1] v

resiil T T T M

3. Select the model V\I;th the smallest average empirical error among
all k trails.
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Leave-One-Out Cross Validation

5o~n»r)/e’ff7.ﬂ-

A special case of k-fold cross validation, when k = f

1. For each training example x;
Train each model on S\{x;}, then evaluate on x;,

2. Select the model with the smallest average empirical error among all
m trails.

Often used when training data is scarce.
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Other Cross Validation Methods

the ™

» Random subsampling —

» Bootstrapping: sample with replacement from training examples
(used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)
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Other Cross Validation Methods

» Random subsampling

» Bootstrapping: sample with replacement from training examples
(used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.
—
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Regularization

I
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1 1 [Regerimaden] L ]

Regularization

Regularization is any modification we make to a learning algorithm to
. . . —_— . .
reduce its generalization error, but not the training error
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e}l [Resdlerimaton] [ ]

Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with norm penalty (see PA1& WA1)

J(0) =" "log p(y|x1; 0) + Al|6][3
i=1 —
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e}l [Resdlerimaton] [ ]

Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with norm penalty (see PA1& WA1)

J(0) = " log p(y"|x; 0) + \|0]|3
i=1

» Use prior probability: max-a-posteriori estimation
Map.
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Lo L I
Parameter Norm Penalty

Adding a regularization term to the loss (error) function: )\ >0
JX,Y:0) = JX,Y;0) +X.Q()
N—_——— T N
data-dependent loss regularizer

where

Q(0) = ZIG 7= —HHII"
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e}l [Resderimaton] [ ]

Parameter Norm Penalty
Adding a regularization term to the loss (error) function:
JX,Y:0)= JX,Y;0) +X Q@)
—_——— N~
data-dependent loss regularizer

where

Q(0) = ZI9| *HHIIZ

g=1 q=2 q=14
18 1(,
Contours of the regularizer (||6||9 = 1) for different g

s e
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Lo L I
L2 parameter penalty

When g = 2, it's also known as Tokhonov regularization or ridge

regression
JX,Y;0) = J(X,Y;6) + %eTa
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eyl [Resdlerimaton] [ ]

L2 parameter penalty

When g = 2, it's also known as Tokhonov regularization or ridge

regression
JX,Y:0)=J(X,Y;0)+ %eTa
Gradient descent update: Va(—;QTO) =\)

0+ 0—aVyeJ(X,Y;0)

= 0 —(@(VaJ(X. Y:6) +(6)
= (1—a\)i - aVeJ(X, Y;0)

_

L2 penalty multiplicatively shrinks parameter 6 by a constant
Also known as weight decay in gradient descent (neural network).
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eyl [Resdlerimaton] [ ]

L2 parameter penalty

When g = 2, it's also known as Tokhonov regularization or ridge

regression

JX,Y:0)=J(X,Y;0)+ %eTo

Gradient descent update:

060 —aVeJ(X,Y;0)
=0—a(VeJ(X,Y;0)+ \0)
=(1—-a\)f—aVeJ(X,Y;0)

L2 penalty multiplicatively shrinks parameter 6 by a constant
Also known as weight decay in gradient descent (neural network).
Example: regularized least square (WA1)

When J(X,Y;0) = 5 Z/ 1y (i) — 9T x( )2 (ordlnary least squares),
HOLS = (XTX 4 )\I) (XTY) (-ﬁl f\‘\ My\dqcle-‘ﬂn\\u Py\:
de Creose 3e/lerouu:ham error.

Llem-
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: Regularization| :
L1 parameter penalty

When g =1, Q(0) = %Z};l |6;] is also known as LASSO regression.
=197 Tegressior
> If X is sufficiently large, some coefficients 6; are driven to 0.

» It will lead to a sparse model
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Lo e ] L o]
L1 parameter penalty
When g =1, Q(¢) = 3 J'-’Zl |6;] is also known as LASSO regression.
> If X is sufficiently large, some coefficients 6; are driven to 0.
» It will lead to a sparse model
Dise
Proposition 1 N> D, peD. covex set

Assuming .ﬂ_)_ is a convex function over some convex set and \ > 0,
() solving ming J(X, Y;0) = J(X,Y;0) + 221 6|9 is equivalent to

—

~

Z 3 _ming J(X, Y;0)  re3%00 L -~ 1Bl%
Y SR VT
for some constant n > 0 (*). Furthermore, n ="

i1 107 (A)| where
0*(\) = argming J(X Y 0, )
= )\>.O) P‘E‘P“’*i }\,( U>¢> f’r ']70, *oir('('\leo( (1.)
> (*) assume constraint is satisfiable (e.g. with slater’s condition)
» Choosing A is equivalent to choosing 1 and vice versa

—

» Smaller A — larger constraint region

—
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e}l [Resderimation] [ ]

L1

vs L2 parameter penalty

contour plot of unregularized error J(X, Y;0) and the constraint region
>l <

g=1 =2 1=\,
0, ,‘T(G) 0,
w\j(e
oy —

6,

6
i T (@Y 0

The lasso (I1 regularizer) gives a sparse solution with 07 = 0.

—

N
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Bayesian Statistics

Maximum likelihood estimation: 6 is an unknown constant
. ~ VI~ P
Omie = arggnapr(y XU ) 9)

i=1

Bayesian view: 6 is a random variable
— -
0 ~ p(0)

Given training set S = {x{), ()} posterior distribution of &

s01s) — PLSI0PO)

— (%)

ewden ca/clah
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Fully Bayesian statistics 7(5]0) fﬁ)_)
[61S) = (10s))
o) a0 03000

) = T b0, 0)p(6))d6 <

To predict the label for new sample x, compute the posterior distribution
over training set S:

plyle.S) = [ plyix.O0p(e]5)de

-

The label is
Blylx.S] = [ v plylx. S)dy

Yy

Fully bayesian estimate of # is difficult to compute, has no close-form
solution.
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: I I IReguIarizationI
Bayesian Statistics

Posterior distribution on class label y using p(6]S)

p(y[x, ) = / ply|x.0)p(6]5)d6
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:] Regularization|
Bayesian Statistics

Posterior distribution on class label y using p(0|S)
plyIx.5) = [ plybe,0)p(615)ds
0

We can approximate p(y|x, 6) as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of 0 is

Omap = arggnaXH p(y D |xD, 0)p(6)

=1 —
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Bayesian Statistics

Posterior distribution on class label y using p(0|S)

p(y[x, ) = / ply|x.0)p(6]5)d6

We can approximate p(y|x, 6) as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of 0 is

0 = argmax () X(i), 0
MAP ge HP(Y | Cﬂ)P( )

i=1
P(y(i)|x(")7€) is not the same as p(y)|x())9) 2’
) T(o\'\ﬁuﬁ ¢

av -
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E Regularization| I:

MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y()|x()) ~ (GTX(’) a?): g O™ +¢

§~ N(06Y)

OpLe = argmax H p(y'|x"; 6)
- o iz

=(XTX)IXTY =005
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:] Regularization|
MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y()|x(0) ~ V(07 x(), 52):

m
OpLe = argmax H p(y'|x"; 6)
o iz

=(XTX)IXTY =005

The MAP estimation when 6 ~ N(0, 72/) is

HMAP = argmax (Hp |x 0) ) 6)

i=1

o2
—argm|n< 070+ (Y — X6) (Y—X9)>

2
=(XTx+[2 /) IXTY = fos when A = "7

—
—
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Discussion on MAP Estimation

General remarks on MAP:

» When 6 is uniform, Opap = OpLe

» A common choice for p(6) is  ~ N(0{72), and Opap corresponds
to weight decay (L2-regularization

When 6 _is an isotropic Laplace distribution, 8yap corresponds to

LASSO ( Ll-regularization). See WA3 ¢

Opmap often have smaller norm than Oy e

—_—

v

v

(07 :
L?‘ ra_,)\,(wiu.h'w
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Regularization for neural networks

Common regularization techniques:

Data augmentation

>
» Parameter sharing
» Drop out

>
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L]

Data augmentation

|

Regularization| :

Create fake data and add it to the training set. (Useful in certain tasks
such as object classification.)

Photograph Van Gogh Cezanne Ukiyo-e

Generate images of different styles using GAN
-

Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019
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Parameter Sharing

Force sets of parameters to be equal based on prior knowledge.

Siamese Network Similar/Not ?

» Given input_X, learns a discriminative
feature £(X)

» For every pair of samples (Xi, X>) in
the same class, minimize their distance
in feature space ||f(X1) — f(X2)|[?

—

Convolutional Neural Network (CNN)

» Image features should be invariant to translation

» CNN shares parameters across multiple image locations.
Soft parameter sharing: add a norm penalty between sets of
parameters:

Q(64,6%) = (16" — 6|13
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Drop Out

L )

» Randomly remove a non-output unit from network by multiplying its
output by zero (with probability p)

> In each mini-batch, randomly sample binary masks to apply to all
inputs and hidden units

» Dropout trains an ensemble of different sub-networks to prevent
“co-adaptation" of neurons (i.e. highly correlated hidden units)

(a) Standard Neural Network
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[Learning Theory|

Infinite H
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[introduction] [ Model selection] [Regularization]
Introduction to Learning Theory

» Empirical risk estimation
» Learning bounds

» Finite Hypothesis Class
> Infinite Hypothesis Class

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal



L] e o] SR [
Learning theory

. o J
How to quantify generalization error? =

Prof. Vladimir Vapnik in front of his famous theorem
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Empirical risk

Simplified assumption: y € (0, 1)
» Training set: S = (x(), y(); i =1,... mwith (x(), y()) ~ D
» For hypothesis h, the training error or emplrlcal risk /error in
learning theory is defined as

12 ) .
oh) = — (@ (i)
)= o L) % 0)
» The generalization error is

e(h) = Pleyy(h() 7 )

» PAC assumption: assume that training data and test data (for
evaluating generalization error) were drawn from the same
distribution D
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Hypothesis Class and ERM

Hypothesis class

The hypothesis class 7 used by a learning algorithm is the set of all
classsifiers considered by it.
e.g. Linear classification considers hg(x) = 1{0"x > 0}

Empirical Risk Minimization (ERM): the “simplest" learning
algorithm: pick the best hypothesis h from hypothesis class H

—
~ ~
¢ (LL) h = argmin é(h)
L’\——\,
How to measure the generalization error of empirical risk minimization
over H?

» Case of finite H
» Case of infinite H
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[introduction] [ Model selection] _ [Regularization]
Case of Finite H

Goal: give guarantee on generalization error ¢(h)
» Show é(h) (training error) is a good estimate of €(h)

» Derive an upper bound on ¢(h)
—

For any h; € H, the event of h; miss-classification given sample
(x,y) ~ D:
Z=Uh(x) #y},

Z; = 1{h;(xY)) # yU)} : event of h; miss-classifying sample xU)
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[introduction] [ Model selection] _ [Regularization]
Case of Finite H

Goal: give guarantee on generalization error ¢(h)
» Show é(h) (training error) is a good estimate of €(h)

» Derive an upper bound on ¢(h)

For any h; € H, the event of h; miss-classification given sample
(x,y) ~ D:
Z = 1{hi(x) # y}

Z; = 1{h;(xY)) # yU)} : event of h; miss-classifying sample xU)

Training error ofi,- eHis:

{(h) =+ LR # 90

e(h) = %sz samrle mean df Z)-,
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Preliminaries

Here we make use of two famous inequalities:

Lemma 1 (Union Bound)
Let A1, Aa, ..., Ak be k different events, then

P(ALU... UAQ) < P(A1) + ...+ P(A)

- —_—

Probability of any one of k events happening is less the sums of their
probabilities.
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[introduction] [ Model selection] [ ]
Preliminaries

é"’ twe mean
A
;( ~ Ja-w\rlQ ne arv

Lemma 2 (Hoeffding Inequality, Chernoff bound)

Let Zy,...,2Z, be m iid. random variables drawn from a BernouII/(Q)

clen, (s P(Zi=1)=¢,P(Zi=0)=1—¢. Let p=L1y"Z
be the sample mean of RVs.
For any v > 0,

-

_(ath;u Sr'ee

. 4
P(l¢ = 9| > 7) < 2exp(=21m).

The probability of ¢ having large estimation error is small when m is
large!
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[introduction] [Model selection] [Regularization]
Case of Finite H

z; = 14 hi (<% 4y

Training error of h; € H is:

where Z; ~ Bernoulli(e(h;))
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[introduction]
Case of Finite H

[ Mode selection] [Regulerization]
HD ﬁffdl"‘ s

_2Y'm
PO ¢-2l2Y) c2e '
Training error of h; € H is:

é(hi) =

3+

P4
j=1

where Z; ~ Bernoulli(e(h;))

b= &Ch)
—_— 2 ~ ! ( “
By Hoeffding inequality, o7 ©~§ Wi, 76 = ¢(h)= "‘&«\)?;)iﬂf(”itﬂs
P(le(h;) — &(h)| > 7) < 2e727°m ) 2y
c— .
Ai o [elhi)- eckf>|>/

59 wnon bbb\no\/ A‘ - . Zk F(A)
P2 heH \ lech Y- €k )’7}9: PCAU--. UAK) - < __,_'_W‘M
€S P(etho- 2N pCiphem [1E0ER| N2 1-2ke

B) o), - < f )_e—zy‘n - 2.’(6—1 ",
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[introduction] [ Model selection] _|Regularization]
Case of Finite H

Training error of h; € H is:

where Z; ~ Bernoulli(e(h;))
By Hoeffding inequality,
P(le(hy) = &(hi)| > 7) < 27277
By Union bound, J
¢ 2
P(Yh € H.le(h) — &(h)| <) > 1 —2ke 27"
\—/_V*—/ —
/ -~
(rwen 7/ , Witk ?M\muw«é] ok \east =S meH-\ch)-c(le)’ s
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Uniform Convergence Results Pon

-2
PCyhen| lLeb-2W]g)2 b, 8= 2Fe e
luo& = loale‘"—ﬂ-l.-l)’&«)
m = lojl\( -Iog S ——ily,_logc—i‘k)

Corollary 3 2y
Given v and § > 0, If

Then with probability at least 1 — &, we have |e(h) — é(h)| < v for all H.
m is called the algorithm’s sample complexity”

)

lower L"W\cl “JL ™
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Uniform Convergence Results

Corollary 3

Given v and § > 0, If
1 | 2k
m2 o 22 B
Then with probability at least 1 — &, we have |e(h) — é(h)| < v for all H.
m is called the algorithm’s sample complexity.

Remarks

» Lower bound on m tell us how many training examples we need to
make generalization guarantee.

> # of training examples needed is logarithm in k

- = A|
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Uniform Convergence Results

- 2k
m = 2y °43-
y= 585
Corollary 4
With probability 1 — (_5 for all h € H, @

1 2k

&(h) — e(h)| </ 5—log —

2m 1)

Learning Theory

Yang Li
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[introduction] [ Mode! selection [ ]

Uniform Convergence Results

Corollary 4
With probability 1 — 6, for all h € H,

1 2k
é(h) —e(h)| </ =— log —
(k) — ()] <\ 5~ log =

What is the convergence result when we pick h = argmin, ¢y, &(h)

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal



e e o] <y,
Uniform Convergence Theorem for Finite H —Y=><X.
Lﬂ- [U\"-L yob. ot least -4,

A . el
l = 0\18”\“\, Q(L)_ — emg:‘fig+(;w ,z)ulog—g, ls - ga.)]v;‘v“
— —  all A
W' = ogmin 80 &t hypothes's” Thaw |ecdo- 2] <y
. hed. T sc-Ezy.

Using previous corollaries, we can bound €(h ) s (L) < V4 L(L)

<’(L\<5(L‘*) L/ el,t)'md:\\"
i) € Jt € £ ChF).
Let |H| = k, and m,6 be fixed. Wlth probabl/lty at least 158, we have

Theorem 5 (Uniform convergence)

ei/i)‘ < (Ir:;l?r_} e(h)) +2 2— log 25/(

gmadecly SCht)  Combine © and (2
| $Ch?)- 40k ¢y sclye )’+£LL\*) /+i(h)+y
L(W)- (k) 7Y >

£Ck) € ECht) vy,

B ca(b’le - —
7 ¢th) ¢ icl\") 41[:”\1"/311
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 = [01,02,...,04] € RY in linear regression with d — 1 unknowns.
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 = [01,02,...,04] € RY in linear regression with d — 1 unknowns.

» In a 64-bit floating point representation, size of hypothesis class:
|H| — 264d
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 =1[01,62,...,04] € R9 in linear regression with d — 1 unknowns.
» In a 64-bit floating point representation, size of hypothesis class:
|7{| 264d

» How many samples do we need to guarantee e(h) < e(h*) + 27 to
hold with probability at least 1 — §7

1 264d 1
m > O(’y—log 5 ):O<—|0g5> = 0,5(d)
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 =1[01,62,...,04] € R9 in linear regression with d — 1 unknowns.
» In a 64-bit floating point representation, size of hypothesis class:
|7{| 264d

» How many samples do we need to guarantee e(h) < e(h*) + 27 to
hold with probability at least 1 — §7

1 264d 1
m > O(’y—log 5 ):O<—|0g5> = 0,5(d)
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite 7

Example

» Suppose H is parameterized by d real numbers. e.g.
0 = [01,02,...,04] € RY in linear regression with d — 1 unknowns.

» In a 64-bit floating point representation, size of hypothesis class:
|H| — 264d

» How many samples do we need to guarantee e(h) < e(h*) + 27 to
hold with probability at least 1 — §7

1 20 d 1

To learn well, the number of samples has to be linear in d
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Infinite hypothesis class: Challenges

Size of H depends on the choice of parameterization

Example

2n + 2 parameters:
hu, = H{(ug = v§) + (uf — vi)xa + ... + (uj — vi)xn > 0}
is equivalent the hypothesis with n + 1 parameters:

hg(X) = 1{90 +O01x1 + ...+ Opx, > 0}
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Infinite hypothesis class: Challenges

Learning Theory

Size of H depends on the choice of parameterization

Example

2n + 2 parameters:
hu, = H{(ug = v§) + (uf — vi)xa + ... + (uj — vi)xn > 0}
is equivalent the hypothesis with n + 1 parameters:

hg(X) = 1{90 +O01x1 + ...+ Opx, > 0}

We need a complexity measure of a hypothesis class invariant to
parameterization choice

Yang Li
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Infinite hypothesis class: Vapnik-Chervonenkis theory

A computational learning theory developed during 1960-1990 explaining
the learning process from a statistical point of view.
Alexey Chervonenkis (1938-2014), Russian mathemati-
cian

Vladimir Vapnik (Facebook Al Research, Vencore Labs)
Most known for his contribution in statistical learning
theory
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Shattering a point set

» Given d points x() € X, i=1,...,d, H shatters S if H can realize
any labeling on S.

Example: S = {x), x® xB)} where x1) € R2.

X1

Suppose y\) € {0,1}, how many possible labelings does S have?
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Lo
Shattering a point set

NS |

[Regularization]

Learning Theory

» Example: Let H;7r > be the linear threshold function in R? (e.g. in
the perceptron algorithm)

h(x) 1 waixy+wex2 > b
X) = .
otherwise
X X X
X @) X @]
X X X3 X2
X X O
X X X X
O @) @)
X O X @)
X, X, X X,
X X o o
Xy X X1 Xy

Hi7r 2 shatters S = {xI), x®) x()}

Yang Li

yangli@sz.tsinghua.edu.cn
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VC Dimension

The Vapnik-Chervonenkis dimension of #, or VC(H), is the cardinality
of the largest set shattered by #.

> Example: VC(Hirr2) =3
N
+ —_

H.rr can not shatter 4 points: for any 4 points, label points on the diagonal as
'+'. (See Radon's theorem)
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VC Dimension

The Vapnik-Chervonenkis dimension of #, or VC(H), is the cardinality
of the largest set shattered by #.

» Example: VC(Hirr2) =3

_+\+_

H.rr can not shatter 4 points: for any 4 points, label points on the diagonal as
'+'. (See Radon's theorem)

» To show VC(H) > d , it's sufficient to find one set of d points
shattered by #H

» To show VC(H) < d, need to prove H doesn’t shatter any set of d
points
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VC Dimension

» Example: VC(AxisAlignedRectangles) = 4

o ® ®
®) o)
@]
O|:I o ® D
) 2 L
(@] o) ()}
0] o) ®
(<))
o 1|[® o 2|P ® 4

Axis-aligned rectangles can shatter 4 points. VC(AxisAlignedRectangles) > 4
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VC Dimension

» Example: VC(AxisAlignedRectangles) = 4

O
1D
P

37)

For any 5 points, label topmost, bottommost, leftmost and rightmost points as
.
VC(AxisAlignedRectangles) < 5
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Discussion on VC Dimension

More VC results of common #:
» VC(ConstantFunctions) =
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[introduction] [ Model selection] [ | [Learning Theory|
Discussion on VC Dimension

More VC results of common #:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) =1, X =R

+ o+

|
» VC(Intervals) =2,X =R
» VC(LTF in R") = n+1,X = R" < prove this at home!
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Discussion on VC Dimension

Learning Theory

More VC results of common #:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) =1, X =R

+ o+

|
» VC(Intervals) =2, X =R
» VC(LTF inR")=n+1,X =R" « prove this at home!

Proposition 2

If H is finite, VC dimension is related to the cardinality of H.:

VC(H) < log|H|

Yang Li
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[introduction] [ Model selection] [ ] [Learning Theory|
Discussion on VC Dimension

More VC results of common #:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) =1, X =R

+ o+

|
» VC(Intervals) =2, X =R
» VC(LTF inR")=n+1,X =R" « prove this at home!

Proposition 2
If H is finite, VC dimension is related to the cardinality of H.:

VC(H) < log|H|

Proof. Let d = VC|H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then || > 29
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Learning bound for infinite H

Theorem 6
Given H, let d = VC(H).
» With probability at least 1 — &, we have that for all h

le(h) — é(h |<O(\/—Iogd Iog5>
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Learning Theory

Learning bound for infinite H

Theorem 6
Given H, let d = VC(H).
» With probability at least 1 — &, we have that for all h

le(h) — é(h |<O<\/—Iogd Iog(S)

» Thus, with probability at least 1 — ¢, we also have

e(h) < e(h*)+ 0 (\/— Iog 7T Iog ;)

Yang Li
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Learning bound for infinite H

Corollary 7

For |e(h) — €(h)| < v to hold for all h € H with probability at least 1 — 0,
it suffices that m = O, 5(d).
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Learning bound for infinite H

Corollary 7

For |e(h) — €(h)| < v to hold for all h € H with probability at least 1 — 0,
it suffices that m = O, 5(d).

Remarks
» Sample complexity using # is linear in VC(H)
» For “most”? hypothesis classes, the VC dimension is linear in terms
of parameters
» For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

?Not always true for deep neural networks
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).

Recent progress

» For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and / be
the number of layers, VC(N) = O(w/log(w)) [Bartlett et. al., 2017]

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets

Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).

Recent progress

» For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and / be
the number of layers, VC(N) = O(w/log(w)) [Bartlett et. al., 2017]

> Among all networks with the same size (number of weights), more
layers have larger VC dimension , thus more training samples are
needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets

Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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