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Abstract

Load prediction is important for power system design which guarantees the
safety, stability and economic efficiency. Gaussian process regression model is
employed to predict the electricity consumption of the campus building GUND
based on historical weather information. Zero mean function and SEard covariance
function are chosen to perform Gaussian process. The prediction results showed
high accuracy rate with R2 values of train set and test set at 0.9947 and 0.8398,
respectively. The proposed Gaussian process regression model is found feasible for
the energy consumption prediction with the given dataset.

1 Introduction
Load prediction of power system is an important part for the planning of power system.
It can guarantee the safety, stability and economic efficiency of power system [1]. To
do load prediction, we start from historical data of electricity demand. Combining with
the data related to weather, economy, population and so on, the prediction of future
power demand can be derived. Precise and accurate load prediction would be helpful
to the controlling and operation of power grid dispatch. To be more specific, we can
place and plan the usage of battery energy storage system on the user side according to
predicted electricity demand. Battery energy storage system has the ability of allocating
and reserving power. By reasonably placing and planning it on the user side, the goals
of saving the electricity cost for users and saving the energy for the whole human beings
can be achieved at the same time.

In this project, the input to our algorithm is the cooling and heating electricity
consumption data of a certain building called GUND at Harvard college as well as several
related factors data which may affect usage of electricity consumption. Those factors
include month, day, hour, weekday, occupancy, cooling degree, heating degree of air-
conditioners, humidity, solar-radiation, air pressure as well as wind-speed. For example,
different hours of the day may contribute to different number of students in the building.
To hold the specific temperature for the building, the cooling and heating electricity
consumption of the building must be adjusted. We use Gaussian process regression to
output a predicted electricity consumption of a certain period of future time, based on
the historical data.
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2 Related work
Load forecasting methods can be roughly divided into two types. The first type is
the model-based forecasting method represented by Time-series method and Regression
analysis method, the latter of which fits historical load data with certain parameters.
The second is the artificial intelligence methods represented by Expert systems, Neural
networks, and Fuzzy logic systems.

The historical data of power load is a time series of sampling and recording according
to a certain time interval. It has strong randomness. Literature [2] introduces the Time-
series model. It is an effective method for dealing with random sequences. By analyzing
historical load data information and establishing mathematical models, it comes up
with the rules of the changing of random variables, and then determines mathematical
expressions to predict future loads. Literature [3] describes a method based on Grey
system theory. It mostly works well in the case of insufficient data. The GM (1,1)
gray forecasting model can better simulate the exponential growth curve and obtain
good forecasting accuracy. Recently, more researchers tend to combine several methods
together to rise the accuracy of load prediction. In [4] , the load is decomposed into
low frequency components and high frequency components by wavelet decomposition,
and the law of each frequency component of the load is found out. The similar days of
the load to be predicted are selected by the fuzzy gray correlation clustering method.
Different neural networks are used for different frequency band loads. However, neural
network is a typical global approximation network. Weights of the network have an
impact on each output, resulting in a slow learning rate. In addition, the network
has randomness in determining the weights, and the determination of the number of
network layers and the number of hidden layer nodes lacks theoretical guidance. Gaussian
process regression as a regression method in supervised learning [5] has been widely
used in various fields [6, 7, 8]. Gaussian process regression has the advantages of easy
implementation, probabilistic significance of output, and good adaptability to nonlinear
problems. It is a non-parametric Bayesian machine learning technique that provides a
flexible prior distribution over functions, enjoys analytical tractability, and has a fully
probabilistic work-flow that returns robust posterior variance estimates, which quantify
uncertainty in a natural way [7].

3 Dataset and features
In this project, the data we have is an integration data including all usage and environ-
ment conditions of a building called GUND in Harvard University between 2016/2/1 to
2016/4/30. All the data samples used in the model are on an hourly basis and it includes
2154 points. Every point consists of the electricity consumption at that hour and the
corresponding features data. Those features include the information of month, day, hour,
weekday, occupancy rate, cooling degrees and heating degrees of air-conditioners, humid-
ity ratio(kg/kg), solar-radiation rate(W/m2), air pressure(mbar) and wind speed(m/s).
The original data we received are weather data of several years, as well as the occu-
pancy and electricity data of several years. We just pick three months and integrate
them together into one excel profile. Some missing points were canceled. A part of the
excel profile is shown below. (First column is just for time recording, for the reading
convenience, so the xlsread of this excel starts from the second column.)
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Table 1: Data sample of GUND

Date/Time Month Day Hour Weekday Occupancy Cooling degree Heating degree Humidity ratio Solar radiation Pressure Wind speed Electricity

2016/2/1 1:00 2 1 1 1 1 0 7.87 0.01 1.00 1004 1.46 142.51
2016/2/1 2:00 2 1 2 1 1 0 7.59 0.01 1.00 1004 2.02 139.26
2016/2/1 3:00 2 1 3 1 1 0 7.50 0.01 1.00 1003 1.75 136.13

We assign the first two-month data (the data of February and March) as training data
and the third-month data as testing data (the data of April). The training accuracy and
testing accuracy are obtained accordingly. Because this load prediction is the first step
for the planning and operation of battery energy storage system which is the topic we
are doing now in 1C laboratory. The data we used is from our supervisor who obtained
the data from his colleagues he once worked with.

In the preprocessing step, data normalization is employed to ensure that all features
are weighted equally, i.e. avoid biases, and speed up the calculations in gradient descent
convergency. The features are normalized by the max mean value to the range of [-1, 1]:

x′ =
x

|max(x)|
,

where x is an original value, x′ is the normalized value.

4 Methods
In this project, Gaussian process regression is applied to predict the building cooling
and heating electricity consumption. The GPML Toolbox, written by Carl Edward
Rasmussen and Hannes Nickisch, is utilized to complete the relevant algorithms [9].

According to the study by Rasmussen and Williams, a Gaussian process is speci-
fied by a mean function µ(x) and a covariance function k(x,x′) consisting of a set of
hyperparameters θ respectively, which can be learned during the training process [10].
Accordingly, the prediction can be conducted with the learned hyperparameters:

f(x) ∼ GP(µ(x), k(x,x′)).

Firstly, the form of the mean function and covariance function is determined. The
mean function µ(x) reflects the expected function value at input x:

µ(x) = E[f(x)].

In this project, The mean function µ(x) is set to 0 in order to simplify the computations.
The covariance function k(x,x′) models the dependence between the function values

at different input points x and x′:

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))].

The covariance function takes two hyperparameters: a characteristic length-scale ell and
the standard deviation of the signal sf . A widely used covariance function in Gaus-
sian process is the squared exponential (SE). However, SE assumes that a single, global
characteristic length scale ell can appropriately evaluate proximity in all input dimen-
sions. Since there are several features for input x, a squared exponential with automatic
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relevance determination (SEard) covariance function is chosen in this project, whose
length-scale parameters elli differs for every input dimensions:

kSEard(x,x′) = s2fexp(−(x − x)′Θ−1(x − x)
2

),

where Θ is the diagonal matrix with diagonal elements elli.
Therefore, the predictive distribution of f(x) is normal with mean µ(x̂) and variavce

σ2(x̂) for a noise-free new input x̂:

µ(x̂) = K(x, x̂)′(K(x,x) + σ2
nI)−1y

Σ(x̂) = K(x̂, x̂)− K(x, x̂)′(K(x,x) + σ2
nI)−1K(x, x̂),

where K is the covariance functions, σ2
n is the variance of Gaussian noise in training

target y.
Based on Bayes Formula, hyperparameters are trained by maximizing the marginal

likelihood of the training data, i.e. minimizing the negative log marginal likelihood.

P (ŷ|x̂,x,y) =
∫

P (ŷ|x̂,θ,x,y)P (θ|x,y)dθ = N (µ̂θ, Σ̂θ + σ2
nI)

L = −logP (y|x,θ) = 1

2
y′Σ−1

θ y +
1

2
|Σθ|+

n

2
log2π

∂L
∂θ

=
1

2
tr(Σ−1

θ

∂Σθ

∂θ
)− 1

2
y′Σ−1

θ

∂Σθ

∂θ
Σ−1

θ y

Relevant algorithm is shown as follows:
1 %% Train
2 % The covfunc, likfunc and gp are from GPML Toolbox
3 % covSEard: k(x^p,x^q) = sf^2 * exp(−(x^p − x^q)'*inv(P)*(x^p − x^q)/2)
4 covfunc = @covSEard;
5 % likGauss: likGauss(t) = exp(−(t−y)^2/2*sn^2) / sqrt(2*pi*sn^2)
6 likfunc = @likGauss;
7
8 % Initialize hyperparameters
9 % The covSEard takes n+1 parameters: log of ell_i and log of sf

10 % The mean function is empty
11 hyp.cov = log(1) * ones((size(train.X, 2) + 1),1);
12 hyp.lik = log(100);
13 hyp.mean = [];
14
15 % Train hyperparameters
16 % The minimize function returns the solution
17 % parameters
18 % hyp initial guess
19 % @gp the function to be minimized. The function return
20 % two arguments: the value of the function and the
21 % partial derivatives wrt hyp
22 % −3000 maximum length of the run
23 % others parameters passed to gp
24 % @infExact the inference method
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25 hyp = minimize(hyp, @gp, −3000, @infExact, [], covfunc, likfunc, train.X,
train.Y);

26
27 % Output predictive mean to test the train accuracy
28 % parameters
29 % train.m predictive output means
30 % train.s2 predictive output variances
31 % train.X training inputs
32 % train.Y training targets
33 % train.X test inputs
34 [train.m, train.s2] = gp(hyp, @infExact, [], covfunc, likfunc, train.X,

train.Y, train.X);

Secondly, prediction is conducted with the trained hyperparameters. Relevant algo-
rithm is shown as follows:

1 %% Predict
2 % parameters
3 % test.m predictive output means
4 % test.s2 predictive output variances
5 % train.X training inputs
6 % train.Y training targets
7 % test.X test inputs
8 [test.m, test.s2] = gp(hyp, @infExact, [], covfunc, likfunc, train.X,

train.Y, test.X);
9

10 % Reverse normalization
11 train.m = train.m * scale.Y;
12 test.m = test.m * scale.Y;
13 test.s2 = test.s2 * scale.Y * scale.Y;
14 train.Y= train.Y * scale.Y;
15 test.Y = test.Y * scale.Y;

5 Results and discussion
In this project, the Gaussian process prediction of building cooling and heating consump-
tion is conducted based on the historical weather information in February and March.
The prediction results made by Gaussian process is stated in the form of probabilis-
tic distribution. Therefore, the comparison with the train set is provided by predictive
mean, which is presented in Figure 1.

In order to evaluate the accuracy of the prediction, the coefficient of determination
R2 is measured. In regression, R2 demonstrates the extent of how well the predictions
approximate the observed data. Normally, R2 ranges from 0 to 1. An R2 of 1 indicates
a perfect fit to the data. R2 can be calculated as follows:

R2 = 1− Σ(yi − ŷi)
2

Σ(yi − ȳ)2
.
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Figure 1: Prediction results for train set

where y is the observed value, ŷ is the predicted value, ȳ is the mean value of the observed
value.

According to the prediction results, the R2 value of the train set reaches 0.9947. In
this sense, it can be concluded that the utilized Gaussian process model shows good
predictive ability on the training data.

Apply the Gaussian process model to the test data, and the results is depicted in
Figure 2. The red solid line indicates the predictive mean, the blue area presents a 95%
confidence region of the prediction results, the observed values are described as dots. As
shown in Figure 2, the majority of the observed values are in the 95% confidence region.
Additionally, the R2 value of the test set reaches 0.8398.

As we discussed in the method part, the result of Gaussian process regression can be
shown as a probability form, which is the biggest difference from the other supervised
method. This means that the target values of input testing data are not some fixed value.
Instead, by changing the multiplication parameters of mean and variance of target y,
different confidence region can be obtained.

In the planning strategy of battery energy storage system problem, we could use
the load prediction region from Gaussian process regression to come up with strategies
with different conservative levels. In other words, if we want to do a more conservative
planning of battery energy storage system, we would utilize the higher bound of the
predictive region as the predictive load value. This could guarantee that the capacity
of battery energy storage system could be enough for users even if the actual load of
users is really high in real-time operation. This is also one of the advantages of Gaussian
process regression for load prediction.
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Figure 2: 1-month prediction of electricity consumption

6 Conclusion
In this project, we successfully showed that the kernel-based Gaussian process regres-
sion model we proposed can predict electricity consumption of a certain building with
high accuracy rate. Firstly, several relevant features are selected to predict electricity
consumption of the campus building GUND. In the preprocessing step, data normal-
ization is conducted to avoid biases and speed up the calculations in gradient descent
convergency. Secondly, zero mean function and SEard covariance function are chosen to
perform Gaussian process. The corresponding hyperparameters of the utilized covariance
function are trained by maximizing the marginal likelihood function. Finally, prediction
is conducted with the trained hyperparameters.

The prediction results show that the majority of the predictive mean are in the 95%
confidence region of the observed values. The accuracy of prediction is also evaluated
by R2 value. The R2 values of train set and test set are 0.9947 and 0.8398, respectively.
Therefore, the proposed Gaussian process regression model is found feasible for the
energy consumption prediction, and additional comparison to other machine learning
methods will be conducted to demonstrate the effectiveness of Gaussian process in the
future.
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A Source code
Source code for this project is shown as follows:

1 clear all;
2 clc;
3
4 %% Load data
5 rawtemp = csvread('DataforGP_Gund.csv', 1, 1);
6
7 temp=rawtemp(rawtemp(:,12)>0,:);
8
9 month =temp(:,1);

10 day = temp(:,2);
11 hour = temp(:,3);
12 weekday = temp(:,4);
13 occupancy = temp(:,5);
14 CoolD = temp(:,6);
15 HeatD = temp(:,7);
16 HumiRatio=temp(:,8);
17 Solar=temp(:,9);
18 Pressure=temp(:,10);
19 Wind=temp(:,11);
20
21 totalElectricity = temp(:,12);
22
23 Y = totalElectricity;
24
25 X = [day, hour, weekday, occupancy, CoolD, HeatD, HumiRatio, Solar,

Pressure, Wind];
26
27 %% Preprocess data
28 % Split train and test sets
29
30 train.index = (month <= 3);
31 test.index = (month > 3);
32
33 train.X = X(train.index, :);
34 train.Y = Y(train.index);
35
36 test.X = X(test.index, :);
37 test.Y = Y(test.index);
38
39 % Normalize data to [−1, 1]
40 scale.Y = max(abs(train.Y));
41 scale.X = max(abs(train.X));
42
43 numTrain = length(train.Y);
44 numTest = length(test.Y);
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45
46 test.X = test.X ./ scale.X;
47 test.Y = test.Y ./ scale.Y;
48 train.X = train.X ./ scale.X;
49 train.Y = train.Y ./ scale.Y;
50
51 %% Train
52 covfunc = @covSEard;
53 likfunc = @likGauss;
54
55 % Initialize hyp
56 hyp.cov = log(1) * ones((size(train.X, 2) + 1),1);
57 hyp.lik = log(100);
58 hyp.mean = [];
59
60 % Train hyperparameters
61 hyp = minimize(hyp, @gp, −3000, @infExact, [], covfunc, likfunc, train.X,

train.Y);
62
63 % Output predictive mean
64 [train.m, train.s2] = gp(hyp, @infExact, [], covfunc, likfunc, train.X,

train.Y, train.X);
65
66 % Output training accuracy (R2)
67 train_accuracy = detcoeff(train.Y, train.m);
68
69 %% Predict
70 [test.m, test.s2] = gp(hyp, @infExact, [], covfunc, likfunc, train.X,

train.Y, test.X);
71
72 % Reverse normalization
73 train.m = train.m * scale.Y;
74 test.m = test.m * scale.Y;
75 test.s2 = test.s2 * scale.Y * scale.Y;
76 train.Y= train.Y * scale.Y;
77 test.Y = test.Y * scale.Y;
78
79 % plot
80 figure(1)
81 plot(train.Y, train.m, 'o');
82 xlabel('Observed value'),ylabel('Predictive mean');
83
84 figure(2)
85 f = [test.m + 1.96*sqrt(test.s2); flipdim(test.m − 1.96*sqrt(test.s2), 1)

]; % Confidence region: 95%=1.96, 98%=2.326, 99%=2.576
86 test_m_up=test.m+1.96*sqrt(test.s2);test_m_low=test.m−1.96*sqrt(test.s2);
87 z = [1 : numTest]';
88 fill([z; flipdim(z,1)], f, [5 5 7]/8);

9



89 hold on;
90 plot(test.m, '−','LineWidth', 2);
91 plot(test.Y, '+r', 'MarkerSize', 6);
92 grid on;
93 hold off;
94 legend('95% confidence region','Predictive mean','Observed value');
95 xlabel('Time (day)'),ylabel('Electricity consumption (kW)');
96 set(gca,'XTick',0:24*5:30*24);
97 set(gca,'XTickLabel',{'0','5','10','15','20','25','30'})
98 xlim([0 30*24])
99

100 %% Accuracy (R2)
101 train_accuracy
102 test_accuracy = detcoeff(test.Y, test.m)
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