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Today’s Talk

What’s Transfer Learning

Transfer Learning Techniques
- Task transfer learning
- Domain adaptation

- Transfer bound on domain adaptation

How to avoid negative transfer?

- Case study on feature transferability

- Task transferability: empirical and theoretical methods

Discussions and Q&A



Single-Task Machine Learning

Designed for solving a single task, trained from scratch
Example: image-based recognition task

Traditional machine learning flow

73 73 Iy 2 Traditional
S ML — “dome”

AN L Algorithms
. inut | feature extractor features e.g. SVM output

IlII |\:i_
I o conlly “dome”
—— /
S ' Convolution

output

End-to-end learning with deep neural netes



Single-Task Machine Learning

- ImageNet competition results over the years

0.5{ © Top-5 Error Rate

0.4

00

9
w
(@)

Error rate
o)
o0

IMAGE Net (2009)

o
N

1,034,908 I
. (@)
labeled images 0. ° 8
© g
S °
0-05011 2012 2013 2014 2015 2016

Year



Single-Task Machine Learning

ImageNet classification models

Most models are large

and costly to train!

Inception-v4
0.
Incepti ception
DenseNetF-) ResNet-101 ResNet-152
gfnse'\'et'lﬁg i VGG-16 VGG-19
g ResNet-34
M | 2
= |IeNet vl
X 707 ResNet-18
o ’
@ NGoogLeNet
-
O 5 fd-MobileNet
o
o BN-NIN
- ShuffleNet
60 5M 35M 65M 95M 125M  155M
SqueezeNet
BN-AlexNet
55 AlexNet
50 T T T : .
0 10 20 30 40 50

# operations needed for one forward pass (G-Ops)

image credit: https://arxiv.org/abs/1605.07678



https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1605.07678

Issues with Single-Task Learning

- Learn something new quickly: can’t train from scratch
every time

- Most classes/tasks have very few data samples

- Training labels may be expensive to obtain

Face identification dataset
300 | | Example: pulmonary CT images

normal @ emphysema MM fibrosis

# 1mages
AN
S
-

54 \)
@

0 class ID 10000




Transfer learning

- Human learners can inherently transfer knowledge between

Clad ot

Linear Machine

algebra Learning

How can machines recognize and apply relavent knowledge from
previous learning experience?



Transfer Learning at 1000 feet

- Transfer knowledge from one or more source domains/tasks
to a target domain/task.

Given Learn

[
Data *
L N
Target Task

Source-Task /

Knowledge




How transfer might improve target learnring

Less time to fully learn the

Better final (asymptotic)
performance

higher slope higher asymptote

IIIIIIIIIIIIIIIIIIIII
a

anut®

at®

------ with transfer
— Without transfer

higher start Better initial performance

performance

training

Transfering might reduce target learning
performance (negative transfer)



Two Branches of Transfer Learning Paradigms

Inductive Learning: Learn decision function f from training
data, test on unseen data

—

Reinforcement Learning: sequential decision making problems

-
G
Environment

> Y

Action

Interpreter

NCIRCS

Agent



Inductive Transfer Learning Examples

- Domain-specific computer vision tasks

- Common to transfer pre-trained features from ImageNet

ImageNet 1000-class
classification task

Structural Damage Detection

Yuqing Zhao et. al. Deep Transfer Learning for
Image-Based Structural Damage Recognition



Learning with Small Samples: K-Shot Learning

- When the training set of a task only has k samples

- e.g. one-shot alphabet classification:

m B A | =]
& 7 B3
Alh i n
EIKIRIE

Which letter ?

4

OMIGLOT dataset



K-Shot Learning

- Transfer latent knowledge of handwritten characters from

other tasks

50 classification tasks in different alphabets
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K-Shot Learning

- One-shot person re-identification from video

VIPeR PRID2011

Key Idea: Transfer knowledge from multiple domains (datasets)

Bak et. al. (2017) One-Shot Metric Learning for Person Re-
identification



Reinforcement Transfer Learning Examples

- Reinforcement learning for robotic control, e.g

- SIMtoReal : transfer knowledge from simulated robot to
physical robot

*L

Simulated marble Real maze on robotic arm
maze game




Applications of Transfer Learning

- Reinforcement learning for robotic control, e.g

- Transfer between robots and between tasks
Robot 1 (3-link) Robot 2 (4-link)

Open drawer

Push box

Devin (2016) Learning Modular Neural Network Policies for Multi-Task Multi-
Robot Transfer



Transfer Learning vs Multi-Task Learning

TL is more likely to encounter in real world than MTL

Transfer Learning Multi-task Learning

;

;

e

.

Sequential learning: Joint learning:
focus on target task focus on all tasks

’




Today’s Talk

- What’s Transfer Learning
- Transfer Learning Techniques
- Task transfer learning
- Domain adaptation
- Transfer bound on domain adaptation

- How to avoid negative transfer?

- Case study on feature transferability
- Task transferability: empirical and theoretical methods

 Discussions and Q&A



Transfer Learning Definition

Source Domai

nDS

, -
Input

N\

Terminologies features

)

v
Domain: D = {X, Py}
input

Task: T=1Y,f} ‘\distribution
X

labels  predictive

Learning Task

-

2

function Py x

)

Learning Task

/

Target Domain Dt

Transfer learning: improve the performance of predictive

function f, for T, by discover and transfer latent knowledge

from (D,,T,) , where D # D,and/or T, # T,

Transfer
Learning



Transfer Learning

D

Domain
adaptation

I, #T,

Hybrid Task tra.nsfer
learning

Task Transfer Learning: adapt source hypothesis or feature to
target task

Ts: scene classification

living room

Tt object detecti?n sofa, table,

lamp, ...




Transfer Learning

D

S
Domain
adaptation

. LiF1

Hybrid Task tra.nsfer
learning

Domain adaptation: Learn domain agnostic representations

Ts/Tt: Vehicle Detection

domain
shift

D: (night)



Transfer Learning

Task Transfer Learning: adapt source hypothesis or feature
to target task

Domain adaptation: Learn domain agnostic representations

Most transfer learning problems in practice are hybrid!



Task Transfer Learning

- Pretrained Model + Fine Tuning

e.g object classification -> scene classification

o o o ® o o o
"0 "0 "0 "0 "0 o
® ® o o o o @

Itransfer weights  fine tuning
N :

intuition: low level features are shared across most vision tasks



Heterogeneous Task Transfer Learning

- Heterogeneous task transfer learning using encoder-decoder
network

N
L= |1y~ DEC)II
i=1

source
encoder

source
decoder

source task

N output
franster L= 3 11yl - ) |1
i=1
1d order | 1ransfer Function
3w order - .

|
20d order-j;
JL—

Represéntations
source target task
CFrozen encoder output



Today’s Talk

- What’s Transfer Learning
- Transfer Learning Techniques
- Task transfer learning
- Domain adaptation
- Transfer bound on domain adaptation

- How to avoid negative transfer?

- Case study on feature transferability
- Task transferability: empirical and theoretical methods

 Discussions and Q&A



Domain Adaptation Techniques

- Instance-based approach

- Mapping-based approach

- Adversarial-based approach

~_ Target Domain

Target Domain

|
° e o
° e o /
[ ]
[ ] [ ] /
e 7 Sourc

~ Mapping_| *

L

New Data Space

e Domain

—

1

—

e

O
4

b A —P | creees
>
Ny e F YT
| Iamngl o [

EP Target label



Instance-based approaches

- select partial instances from the source domain as supplements to
the training set in the target domain

Target Domaln . . . .
p ® o o °
XS
\ . _> . _> . ------ .
| | _ | ®
| [ _ [ ®

Partial instances in the source domain can be utilized by
the target domain with appropriate weights



Boosting for instance-based transfer

- TrAdaBoost (Dai 2007)

« Use AdaBoost to filter out source domain instances that are
dissimilar to target domain

- Reweight source domain instances to resemble target domain
distribution

- Train model with reweighted source + target domain instances
h]gher . .. Target.Domain\.
weights : N\ e :
~ * .
\.. o . .0//

- TaskTrAdaBoost (2010): a boosting technique for transferring from
multiple sources



Mapping-based approach

- Mapping instances from the source domain and target domain
into a new data space

Target Domain

a space where Xs and X; are
distributed similarly

..!..
...l..
:

New Data Space

Source Domain

P(X)

How to measure domain similarity?




Maximal Mean Discrepency (MMD)

- Maximal Mean Discrepency : a kernel-based 2 sample test for
the null hypothesis P=Q (Fortet and Mourier, 1953)

DypplP, Q1 £ sup (Ep[dp(X)] = Eglep(Y)])

peF

- where X~ P, Y~ Q
- feature map ¢( )

- Used in Transfer Component Analysis (TCA) (Yang, 2018) to
correct domain shift

1 1
Diypip(Xs» X1) = FS Z P(xy) — VT Z P(x;)

xX,EXg X, EXr




Use MMD as a Domain Regularization Term

- Given pre-trained source model, train an adpation network
that minimizes classification error and domain MMD

L=LAX;,y)+ /1D1\2/1MD(XSa X7)

Source

Minimize classification
error

Source

Maximize domain
confusion

Target

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance



Use MMD as a Domain Regularization Term

Training step:

- 1. Select the layer to transfer from using MMD metric

- 2. Train an adaptation layer fa on source and target data

using MMD as a regularizer

classification
loss

domain
loss

Testing step: -~

fc8

- Transform target input by fa(Xt)

1)

(1

fc8

~

fc_adapt

fc7

fc6

convb

conv1

\

/

L=LA(X;,y)+ /1D]\24MD(X59 X7)

Labeled Images

fc_adapt

fc7

fc6

convb

conv1

\

/

Unlabeled
Images

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance



Variations with MMD-based domain adaptation

- Deep Adaptation Network (Long et.al. 2015):

- Use multi-kernel MMD (MK-MMD)
DyyplP, O, K1 2 [(Ep[p(X)] = Epld(X)Dl 5,

- Fine-tune source task jointly with MMD constraints on multiple
layers

(OOOOOOO)
Y
OQeee OO0
v
00++0O0
Vi
OQeee OO0
)
OQeee OO0
v
OQeee OO0

ooooooooooooooo

- Joint Adaptation (2018): adapt joint distributions instead of
P(XS)) Q(Xt)



Comparisons of MMD-based domain adaptation
methods

- Office+Caltech Benchmark
Amazon DSLR Webcam Caltech-2

Y :
= i
T 4
‘ .
. e o
[ .
-~

Table 1. Classification accuracy (%) on Office-31 dataset for unsupervised domain adaptation (AlexNet and ResNet)

l~‘.
ety ;
WL R 2
3 Bldr, P ¥
< “
PR -
. o~
’

P,

Method A—W D—-W W —=D A—D D—A W= A Avg

® AlexNet (Krizhevsky et al., 2012) 61.6£0.5 954403 99.0+£0.2  63.8£0.5 51.1£0.6  49.8404  70.1
TCA (Pan et al., 2011) 61.0£0.0 932+00  952+0.0 60.80.0 51.6£0.0 50.9+0.0  68.8

GFK (Gong et al., 2012) 60.4+0.0  95.6+0.0  95.0+£0.0 60.6£0.0 52.44+0.0  48.1£0.0  68.7

DDC (Tzeng et al., 2014) 61.8£0.4  95.0£0.5 98.5£0.4  64.4£0.3 52.1£0.6 522404  70.6

DAN (Long et al., 2015) 68.5£0.5  96.0£0.3 99.0£0.3 67.0£0.4  54.0£0.5 53.1£0.5 729

RTN (Long et al., 2016) 73.3£03  96.840.2  99.6+0.1 71.0£0.2  50.5£0.3 51.0+£0.1 73.7
RevGrad (Ganin & Lempitsky, 2015)  73.0+£0.5  96.4+0.3 99.21+0.3 72.31+0.3 53.4+04 512405 743
JAN (ours) 74.9£0.3 96.6+0.2  99.5+0.2  71.84£0.2  58.3+0.3 55.0+£04  76.0

JAN-A (ours) 75204  96.6+0.2  99.6+0.1 72.8£0.3 57.5£0.2  56.3+0.2  76.3

ResNet (He et al., 2016) 68.4+0.2  96.7£0.1 99.3+0.1 68.9+£0.2  62.5£0.3 60.7£0.3  76.1

TCA (Panetal., 2011) 72.7£0.0  96.7£0.0  99.6+£0.0 74.1£0.0 61.7£0.0  60.9+0.0 77.6

GFK (Gong et al., 2012) 72.8£0.0  95.0£0.0  98.2+0.0 74.5£0.0 634+00  61.0+£0.0 775

DDC (Tzeng et al., 2014) 75.6£0.2  96.0£0.2  98.2+0.1 76.5£0.3 62.2+04  61.5£05 783
DAN (Long et al., 2015) 80.5£04  97.1+£0.2  99.6+0.1 78.6£0.2  63.6+0.3 62.8+0.2 804

RTN (Long et al., 2016) 84.5£0.2  96.84+0.1 99.440.1 77.5%+0.3 66.21+0.2  64.8+£0.3 81.6
RevGrad (Ganin & Lempitsky, 2015) 82.0£04  96.9£0.2  99.1+0.1 79.7£0.4  68.2+04  67.4+0.5 82.2
JAN (ours) 85.4+03  974£02 998402  84.7£0.3 68.6+0.3 70.0£0.4  84.3

JAN-A (ours) 86.0£0.4  96.7£0.3 99.7£0.1 85.1+04  69.2+04  70.7£0.5 84.6

Long et. al. (2017). Deep Transfer Learning with Joint Adaptation Networks.



Adversarial-based approach

- Adopt adversarial training in learning transferable
representation.

Source Domain

Target Domain

—)

@ ==p

® — CIXIZD

\
/

Adversarial Layer

)

Effective features should be discriminative for the main learning task and
indiscriminative between the source domain and target domain.



Adversarial-based approach

Ajakan et al. (2014) Domain-adversarial neural networks.

- Standard deep neural network training

forward pass

@ | ® @ | | @ \
m—' e "0 "0 "0 0 "0 ® | L(/(x),y)
@ @ @ @ @ @ o /
< back-propagation oL

50,



Domain Adversarial Neural Networks

Ajakan et al. (2014) Domain-adversarial neural networks.

- Gradient Reversal

SL feature ;7
50, v
—  — L(f(x), )
Source Domain | @ : ) : ® @ =) source label
P oD
_> «
® o o - O mmb (Bl ]
® D(f(x),y)
® ® o Aersarial Layer
Target Domain | @ F () F o @ =) Torget label

— — L(f(x),y,)
oL oL

50, 50,



Domain Adversarial Neural Networks (DANN)

Ajakan et al. (2014) Domain-adversarial neural networks.

- DNN adapted feature distribution

@ source domain (MINIST)
@ target domain (MNIST-M) 1

TSNE visualization of CNN gxtracted featurqs

)

s Seo
L & )

o o wl

Non-Adapted Adapted



Domain Adaptation Discussion

- Instance-based approach: select and reweight instances in the
source domain to be similar to the target distribution

easy to implement, work with any base classifiers

- Mapping-based approach: map source and target data to
latent space where source and target domains are similar

easy to incorporate to neural network training

- Adversarial-based approach: find features that are
indiscriminative between source and target domains

good performance in computer vision

Why does such methods work?




Transfer Bounds for Domain Adaptation

. Given input x ~ D with discrete alphabet 2 and label y € {0,1}
+ A hypothesis is a function / : & — {0,1}
- Error (risk) of hypothesis A :

e(h) = E, pl[h(x) —y]]

- Empirical risk of hypothesis } given N samples (x;y;) drawn
i.i.d. from D:

1 N
e(h) = N}; | h(x;) — v, ]

. Source risk: €s(h) = E, _pl[A(xg) — yg|]
- Target risk: ep(h) =E, ol |h(xr) — yr|]



Transfer Bounds for Domain Adaptation

Ben-David et.al. (2010). A theory of learning from different domains

Theorem. Leth € # be a hypothesis, eq(h) and e;(h) be risks of
source and target respectively, then

Co: a constant for the
<
er(h) < €5(h) Hdz(P, Q) [+ Co “ complexity of H’

dy(P, Q) £ 2 sup |Prn(xg) = 11 — Prn(xy) = 1]
neH P 0

where

is the H-divergence between P and Q.

Lemma. The H-divergence can be bounded by the empirical estimate:

ds(P, Q) + C

Make P and Q as 0 Decrease the upper bound
indistinguishable as possible on target risk !
e.g. minimize MMD, MK-MMD, domain
discriminative loss, etc




Today’s Talk

- What’s Transfer Learning
- Transfer Learning Techniques
- Task transfer learning
- Domain adaptation
- Transfer bound on domain adaptation

- How to avoid negative transfer?

- Case study on feature transferability in vision
- Task transferability: empirical and theoretical methods

 Discussions and Q&A



Where to start fine-tuning?

- Use pre-trained model
as a fixed feature
extractor

most efficient, but with
limited performance

- Fine-tune all the way

labels are few

- Fine-tune first k layers

How to choose k?

l Transfer

l Transfer

traditional

ML

method

® © o o o o
slow, easy to overfit when target o—0—"0—0—"0—6e

l Transfer
o @

—> output




Which layers to transfer?

Yosinski et.al. (2014) How transferable are features in deep neural networks?

A case study using ImageNet classification tasks (trained on 7
CNN layers + output layer)

Dissimilar tasks
- Task A: Man-made object classification
- Task B: Natural object classification

baseline

train from _

(scratch) 7 Man-made/Natural split
2 0. A->B
S
S 0.5
©
—
0.4 i
3 5> A softmax
0.3 classification (no

0 1 2 3 4 5 6 7 fine-tuning)

When target supervision is sufficient, performance

degrades when more layers are frozen



Which layers to transfer?

Yosinski et.al. (2014) How transferable are features in deep neural networks?

A case study using ImageNet classification tasks (trained on 7
CNN layers + output layer)

- Similar tasks: Random A/B split (500 classes in each task)
- Dissimilar tasks: Man-made (A) -> Natural (B)

0.00¢ :
—0.05¢ \ \ 4

relative
top-1 —0.10}
accuracy /
. —0.15}
comparing random
to baseline _ .| source O reference
features —— mean AnB, random splits
—0.25} —@— mean AnB, m/n split
—V— random features
03075 1 2 3 4 5 6 7

- transferability gap grows as the distance between tasks increases

« features transferred from distant tasks are better than random features!



Fine-Tune Selected Layers

Guo et.al. (2019) SpotTune: Transfer Learning through Adaptive Fine-tuning
for each training instance, adaptively decide which sets of

layers to fine tune

-

-

Source
Task
Transfer pre-trained
parameters to new task
Target Which layers to freeze ond which layers to fine-tune?
Task per instance)
Training
Example
Freeze Freeze Fine-tune Fine-tune
Training
Example

Fine-tune Freeze Fine-tune Freeze



How to Measure Task Transferability?

Zamir et.al. (2018) Taskonomy: Disentangling Task Transfer Learning

investigated the transferability gy Suftomuy Pl Diunee OWCs - Seene G
among 26 image-based indoor scene g | noon

o studio couch, day bed
« china cabinet, china closet
« entertainment center

understanding tasks on low-data
scenario

Main steps:

1. train task-specific networks
(source models) on all data

2. For each S-T task pair, train a

transfer network on a small B
Validation dataset (Z0,000 3D Curvature  Image Reshading  In-painting Denoising Autoencoding

images)

Jigsaw puzzle Colorization 2D Segm. 2.5D Segm. Semantic Segm.

Wi -y
=& s

Vanishing Points 2D Edges 3D Edges 2D Keypoints 3D Keypoints

Cam. Pose wonfae  Cam. Posemaeg  Triplet Cam. Pose  Room Layout  Point Matching
in bounding box space with bounding box 3

ane



How to Measure Task Transferability?

Zamir et.al. (2018) Taskonomy: Disentangling Task Transfer Learning

Visual transferability results

On Validation Dataset (1/60 training data)

C%ﬁ}iﬂd sggilfﬁc Reshade @ Layout 2D Segm. Autoenc. Scratch

\ 0 0 0

0

50 50 50 50 50

100 100 100 100 100

150 150 150 150 150

200 200 200 200 200

Estimation

250
0 100 200 0 100 200

20 250 250 250

0 100 200 0 100 200

Surface Normal

(:Ilrful?ﬁd Sggilfﬁc Reshade  Layout 2D Segm. Autoenc. Scratch

250
250 0 50 100 150 200 250

Transfers Results (2k training images)

2.5D
Segmentation

best worst
performance



How to Measure Task Transferability?

Zamir et.al. (2018) Taskonomy: Disentangling Task Transfer Learning

- Raw losses from transfer functions have different scales

Autoencoding
Object Class. (1000)
Scene Class
Curvature
Denoising

2D Edges
Occlusion Edges

Egomotion NN HN "HT "HEN BN ENEEYTEE =

Cam. Pose (fix)

10.0

73 2D Keypoint
3D Keypoint
Cam. Pose (nonfix)
0 Matching
4 Reshading
,s D Z-Depth
- O Distance
el
© Normals
— Layout
2.5D Segm.
2D Segm.
Semantic Segm.
Vanishing Pts.
WP WL LSS 0%
SISLESTSE
CEIYY IS
S5 SIS NI
@Q’ oQ ™ §Q% %’Q«
< TV
S

« Naive solution: linear rescale

performance increases at different
speed with respective to loss !




How to Measure Task Transferability?

Zamir et.al. (2018) Taskonomy: Disentangling Task Transfer Learning

- Analytic Hierarchy Process (AHP): an ordinal normalization

approach (Saaty 1987)

Autoencoding
Object Class. (1000)
Scene Class
Curvature
Denoising

2D Edges
Occlusion Edges
Egomotion
Cam. Pose (fix)
= 2D Keypoint
3D Keypoint

Cam. Pose (nonfix)

0 Matching
Reshading
Z-Depth
Distance
Normals
Layout

2.5D Segm.

2D Segm.
Semantic Segm.
Vanishing Pts.

10.0

2.5

Target

normalized results

Can we estimate transferability without

relying on gradient descent?

0.8

0.6

0.4

0.2



Measure Task Transferability Analytically

Bao & Li et.al. (2019) An Information-Theoretic Metric for Task Transfera
Learning

A simple task transfer learning model (with linear fine-tuning)

softmax target task
layer output
Ye
Transferability from Task S to Task T
(%(S,T) =1
T(S.T) & Target Performance of f Lo <s(s.7) < 1©
’ Optimal Target Performance  (3(s,7)=0 @

How to measure feature performance ?



Feature performance via local information geometry

— a statistical view of binary classification

Binary hypothesis testing of m observations of x:

Ho:x ~ Px|y—o, Hi:x~ Pxjy=1

Error exponent Er: the asymptotic rate at
which the error probability of f(x) decays 8
as m increases

1

lim ——log(P.) =F

m—00 m

CrT—

Probability

Theorem. (Huang et al. 2015) When Py,y_ ,
Pxy=1, and Py are locally distributed, for
some constant ¢ > 0

Ef — CH(f) type Il error
H-score of f(X)

Observation

H(f) = tr(cov(f (X)) cov(Epy , [f(X)[Y]))



An Information-Theoretic Metric for Transferability
Target Performance of f;  7#;(fy)

C’Z(Sa T) é . —
Optimal Target Performance  7;(f%)
H-score of source feature %7 .(f) det Hscore(£,Y): Python Code
Covf=np.cov(f) for H-Score
. Easy to Compute alphabetY=list(set(Y))
g=np.zeros_like(¥)
. O(mk?) time complexity for z In alphabetY:
g[Y==y]=np.mean(f[Y==y,:], axis=0)
Covg=np.cov(g)
score=np.trace(np.dot(np.linalg.pinv(Covf,
. rcond=1e-15), Covg))
Maximal H-score: Z(f*) return score

- Discrete X: Alternating Conditional Expectation (ACE) algorithm
Makur et. al. (2015) An Efficient algorithm for information decomposition and
extraction

« Continuous X: Neural network formulation

Wang et. al. (2018) An Efficient Approatsdaraisimatiimmsmm s
Multimodal Data In source feature task selection

problems, only need to compute Hr(fs) !



An Information-Theoretic Metric for
Transferability

- Source task: ImageNet 1000 classification
(ResNet50 features from 6 layers 4a-4f)

- Target task: Cifar 100-class classification on
20,000 images

4f 4a
30
—~ training accuracy

0651 - testing accuracy 28 1

060 - - 4b

0.55 1 4c z 24 -
=
2 050 22 4c
o |
g 045 =-20- 4d

- 1‘8 .

0.40 4a 4e

0.35 16 p

0.30 - , Bl

22 23 24 75 % 2 23 24 % %

H-score H-score



An Information-Theoretic Metric for

Transferability

2D Edges 3D (Occlusion) Edges 2D Keypoints

Comparison with Task Affinity Score on 8
vision tasks.

« > 6 times faster

- top three most transferable source
tasks are consistent with Task Affinity
on most target tasks

3D Keypoints Image Reshading Depth

edge2d
keypoint2d
edge3d
keypoint3d
reshade
depth
object class.

scene class.

Spearman DCG

Rank Comparison

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4

-0.3



Other Analytical Transferability Metrics

- Transferability metrics for different transfer settings

Al ith Different Tasks Different Instance Different Domain
gorttim — p(ys| Xy) # P(Yr| Xy) Xg # Xp P(Xs) # P(Xy)
NCE (Tran et v 9 9
al. 2019) *
H-Score (Bao
et al. 2019) v v x
LEEP (Nguyen
et al. 2020)** v v *
OTCE (Y. Tan
et al. under v v v
review)

*Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transfer- ability and hardness of supervised classification tasks. ICCV, 2019.

** Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate trans- 953
ferability of learned representations.|ICML, 2020.



Today’s Talk

- What’s Transfer Learning
- Transfer Learning Techniques
- Task transfer learning
- Domain adaptation
- Transfer bound on domain adaptation

- How to avoid negative transfer?

- Case study on feature transferability
- Task transferability: empirical and theoretical methods

 Discussions and Q&A



Open Theoretical Questions

Can we find a transferability metric that ...
- accounts for domain difference

- depends on target sample-size

- Rademacher complexity for computable transfer bound
(Maurer 2009)

- depends on learning algorithm

- Kolmogorov complexity-based task relatedness (Mahmud
2007)



Beyond Transfer Learning

- Multi-source transfer learning: how to efficiently, adaptively
combine features from multiple source tasks in transfer
learning?

- Meta learning: given data/experience on previous tasks, learn
a new task more quickly

known tasks

- transfer learning is one common approach in meta learning

» X

challenge: efficient meta learning for heterogeneous tasks
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Related web links:

- An Information-Theoretic Metric for Task Transfer Learning: http://yangli-feasibility.com/home/
ttl.html

Disentangling Task Transfer Learning: http://taskonomy.stanford.edu/

lhank Vou/
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