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MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.
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Today’s Talk

• What’s Transfer Learning 

• Transfer Learning Techniques 

• Task transfer learning 

• Domain adaptation 

• Transfer bound on domain adaptation   

• How to avoid negative transfer? 

• Case study on feature transferability 

• Task transferability: empirical and theoretical methods 

• Discussions and Q&A



Single-Task Machine Learning 

Designed for solving a single task, trained from scratch

Example: image-based recognition task

Traditional machine learning flow

features

Traditional 
ML 

Algorithms

e.g. SVMfeature extractorinput

End-to-end learning with deep neural netes
input

“dome”

output

“dome”

output



Single-Task Machine Learning 

• ImageNet competition results over the years

IMAGE Net (2009)

1,034,908
labeled images

Top-5 Error Rate



Single-Task Machine Learning 

image credit: https://arxiv.org/abs/1605.07678  

# operations needed for one forward pass (G-Ops)

Most models are large 
and costly to train!

ImageNet classification models

https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1605.07678


Issues with Single-Task Learning

• Learn something new quickly: can’t train from scratch 
every time 

• Most classes/tasks have very few data samples 

• Training labels may be expensive to obtain

Example: pulmonary CT images

normal emphysema fibrosis

Feature Transfer Learning for Face Recognition with Under-Represented Data
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Abstract
Despite the large volume of face recognition datasets,

there is a significant portion of subjects, of which the sam-
ples are insufficient and thus under-represented. Ignoring
such significant portion results in insufficient training data.
Training with under-represented data leads to biased classi-
fiers in conventionally-trained deep networks. In this paper,
we propose a center-based feature transfer framework to
augment the feature space of under-represented subjects
from the regular subjects that have sufficiently diverse sam-
ples. A Gaussian prior of the variance is assumed across
all subjects and the variance from regular ones are trans-
ferred to the under-represented ones. This encourages the
under-represented distribution to be closer to the regular
distribution. Further, an alternating training regimen is pro-
posed to simultaneously achieve less biased classifiers and
a more discriminative feature representation. We conduct
ablative study to mimic the under-represented datasets by
varying the portion of under-represented classes on the MS-
Celeb-1M dataset. Advantageous results on LFW, IJB-A and
MS-Celeb-1M demonstrate the effectiveness of our feature
transfer and training strategy, compared to both general
baselines and state-of-the-art methods. Moreover, our fea-
ture transfer successfully presents smooth visual interpola-
tion, which conducts disentanglement to preserve identity of
a class while augmenting its feature space with non-identity
variations such as pose and lighting.

1. Introduction
Face recognition is one of the ongoing success stories in

the deep learning era, yielding very high accuracy on several
benchmarks [12, 20, 21]. However, it remains undetermined
how deep learning classifiers for fine-grained recognition
are trained to maximally exploit real-world data. While
it is known that recognition engines are data-hungry and

∗Main part of the work is done when Xi was an intern at NEC Laborato-
ries America.
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Figure 1. Illustration of the UR data problem and our proposed
solution. (a) The data distribution of CASIA-WebFace dataset [47].
(b) Classifier weight norm varies across classes in proportion to
their volume. (c) Weight norm for regular class 1008 is larger than
UR class 10449, causing a bias in the decision boundary (dashed
line) towards ID 10449. (d) Data re-sampling solves the classifier
bias to some extent. However, the variance of ID 1008 is much
larger than ID 10449. We augment the feature space of ID 1008
(dashed ellipsoid) and propose improved training strategies, which
corrects the classifier bias and learns a better feature representation.

keep improving with more volume, mechanisms to derive
benefits from the vast diverse data are relatively unexplored.
In particular, as discussed by [18], there is a non-negligible
part of data that is under-represented (UR), where only a few
samples are available for each class.

It is evident that classifiers that ignore this UR data
likely imbibe hidden biases. Consider CASIA-Webface [47]
dataset as an example (Figure 1 (a)). About 39% of the 10K
subjects have less than 20 images. A simple solution is to
discard the UR classes, which results in insufficient training
data. Besides reduction in the volume of data, the inherently
uneven sampling leads to bias in the weight norm distribu-
tion across regular and UR classes (Figure 1 (b,c)). Sampling

Face identification dataset 



Transfer learning

• Human learners can inherently transfer knowledge between 
tasks

Calculus

Statistics

Linear 
algebra

Machine 
Learning

How can machines recognize and apply relavent knowledge from 
previous learning experience?



Transfer Learning at 1000 feet

• Transfer knowledge from one or more source domains/tasks 
to a target domain/task.

Given

Data

Source-Task
Knowledge

Learn

Target Task

Fig. 1. Transfer learning is machine learning with an additional source of information
apart from the standard training data: knowledge from one or more related tasks.

The goal of transfer learning is to improve learning in the target task by
leveraging knowledge from the source task. There are three common measures by
which transfer might improve learning. First is the initial performance achievable
in the target task using only the transferred knowledge, before any further learn-
ing is done, compared to the initial performance of an ignorant agent. Second is
the amount of time it takes to fully learn the target task given the transferred
knowledge compared to the amount of time to learn it from scratch. Third is the
final performance level achievable in the target task compared to the final level
without transfer. Figure 2 illustrates these three measures.

If a transfer method actually decreases performance, then negative transfer
has occurred. One of the major challenges in developing transfer methods is
to produce positive transfer between appropriately related tasks while avoiding
negative transfer between tasks that are less related. A section of this chapter
discusses approaches for avoiding negative transfer.

When an agent applies knowledge from one task in another, it is often nec-
essary to map the characteristics of one task onto those of the other to specify
correspondences. In much of the work on transfer learning, a human provides
this mapping, but some methods provide ways to perform the mapping auto-
matically. Another section of the chapter discusses work in this area.
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Fig. 2. Three ways in which transfer might improve learning.
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How transfer might improve target learnring

Better final (asymptotic) 
performance

Given

Data

Source-Task
Knowledge

Learn

Target Task

Fig. 1. Transfer learning is machine learning with an additional source of information
apart from the standard training data: knowledge from one or more related tasks.

The goal of transfer learning is to improve learning in the target task by
leveraging knowledge from the source task. There are three common measures by
which transfer might improve learning. First is the initial performance achievable
in the target task using only the transferred knowledge, before any further learn-
ing is done, compared to the initial performance of an ignorant agent. Second is
the amount of time it takes to fully learn the target task given the transferred
knowledge compared to the amount of time to learn it from scratch. Third is the
final performance level achievable in the target task compared to the final level
without transfer. Figure 2 illustrates these three measures.

If a transfer method actually decreases performance, then negative transfer
has occurred. One of the major challenges in developing transfer methods is
to produce positive transfer between appropriately related tasks while avoiding
negative transfer between tasks that are less related. A section of this chapter
discusses approaches for avoiding negative transfer.

When an agent applies knowledge from one task in another, it is often nec-
essary to map the characteristics of one task onto those of the other to specify
correspondences. In much of the work on transfer learning, a human provides
this mapping, but some methods provide ways to perform the mapping auto-
matically. Another section of the chapter discusses work in this area.
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Better initial performance 

Less time to fully learn the 
target

Transfering might reduce target learning 
performance (negative transfer)



Two Branches of Transfer Learning Paradigms
Inductive Learning: Learn decision function f from training 
data, test on unseen data  

Reinforcement Learning: sequential decision making problems

fx y



Inductive Transfer Learning Examples

Yuqing Zhao et. al. Deep Transfer Learning for 
Image-Based Structural Damage Recognition 
  

• Domain-specific computer vision tasks   

• Common to transfer pre-trained features from ImageNet 

Deep transfer learning for image-based structural damage recognition 751
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Fig. 1. Hierarchy tree of Structural ImageNet.

analysis and decision making. As a pilot study, in this
article, we focus on one branch of the tree, starting
from the object level node and separating recognition
tasks independently to alleviate strong dependency on
large-scale labeled data. Therefore, we designed the
following: (1) binary classification task for component
type identification, (2) binary classification task for
spalling condition check, (3) three-classes classification
task for damage level evaluation, and (4) four-classes
classification task for damage type determination.
While in application, each image is labeled with four
tags as the four attributes according to these tasks.

Out of 10,000 images in the Structural ImageNet,
2,000 were selected, preprocessed, and labeled man-
ually with the above-mentioned four tags based on
domain knowledge, which forms a small data set for
experiments. While in the selection phase, we only
selected images on object level presenting moderate
distance from camera to object to avoid inconsistencies
in damage level task, for example, minor damage can
be seen as moderate damage if the distance is too close.
Moreover, we ruled out inappropriate images such as
axial damage and then carefully selected images which
can be easily labeled following well-defined criteria
with less controversy.

For preprocessing, several steps were preformed:
(1) to reduce possible inconsistency in classification,

we cropped the images to make structural components
be the major targets (instead of using some images on
structural level, we just cropped for subparts, for ex-
ample, beam, column, and wall), (2) to avoid significant
distortions to image features due to stretching since
rescaling is used in training, second round cropping was
applied to make the aspect ratio of the images roughly
around 1 or 1.05 for the sake of training, and (3) to
avoid too low quality of images, those with resolutions
lower than 448 × 448 were eliminated from data set.

For labeling, as mentioned above, to alleviate the
strong dependency of large-scale labeled data and lower
the task complexity, in the following experiments, four
different tasks corresponding to the four tags are ad-
dressed, and assumed as independent while in the train-
ing process. With more input to Structural ImageNet in
the future, the experiments will be conducted following
the sequence of the hierarchy tree.

2.1 Component type

Component type identification is a binary classifi-
cation task with two classes: beam/column and wall
(Figure 2). To prevent occurrence of dominating class
due to lack of images and possible label inconsistency
due to rotation action for data augmentation (refer to

Structural Damage Detection

ImageNet 1000-class 
classification task



Learning with Small Samples: K-Shot Learning

OMIGLOT dataset 

• When the training set of a task only has  k samples 

• e.g. one-shot alphabet classification:
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Figure 1: The Omniglot challenge of performing five concept learning tasks at a human level. A) Two trials of one-shot classification,
where a single image of a new character is presented (top) and the goal is to select another example of that character amongst other
characters from the same alphabet (in the grid below). In panels B)-E), human participants and Bayesian Program Learning (BPL) are
compared on four tasks. B) Nine human drawings (top) are shown with the ground truth parses (human) and the best model parses
(machine). C) Humans and BPL were given an image of a new character (top) and asked to produce new examples. D) Humans and
BPL were given a novel alphabet and asked to produce new characters for that alphabet. E) Humans and BPL produced new characters
from scratch. The grids generated by BPL are C (by row): 1, 2; D: 2, 2; E: 2, 2. Reprinted and modified from Lake et al. (2015).

has been widely adopted and that the challenge has been
well-received by the community. There has been genuine
progress on one-shot classification, but it has been dif-
ficult to gauge since researchers have adopted di↵erent
splits and training procedures that make the task easier.
The other four tasks have received less attention, and
critically, no new algorithm has attempted to perform
all of the tasks together. Human-level understanding re-
quires developing a single model that can do all of these
tasks, acquiring conceptual representations that support
fast and flexible, task-general learning. We conjectured
that compositionaliy and causality are essential to this
capability (Lake et al., 2017a) yet most new approaches
aim to “learn from scratch,” utilizing learning to learn
in ingenious new ways while incorporating composition-

ality and causality only to the extent that they can be
learned from images. People never learn anything from
scratch in this way, and thus the Omniglot challenge is
not just to learn from increasingly large amounts of back-
ground training (e.g., 30 alphabets, or more with aug-
mentation) and minimal inductive biases, only to tackle
one of many tasks. Instead, the challenge is to learn from
a small amount of background training (e.g., 5 alphabets)
and the kinds of inductive biases people bring to the do-
main (whatever one conjectures those biases are), with
the aim of tackling the full suite of tasks with a single
algorithm. To facilitate research in this direction, we are
re-releasing the Omniglot dataset with the drawing data
in a new format, and we highlight two more human-like
minimal splits containing only five alphabets for learn-
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Figure 1: The Omniglot challenge of performing five concept learning tasks at a human level. A) Two trials of one-shot classification,
where a single image of a new character is presented (top) and the goal is to select another example of that character amongst other
characters from the same alphabet (in the grid below). In panels B)-E), human participants and Bayesian Program Learning (BPL) are
compared on four tasks. B) Nine human drawings (top) are shown with the ground truth parses (human) and the best model parses
(machine). C) Humans and BPL were given an image of a new character (top) and asked to produce new examples. D) Humans and
BPL were given a novel alphabet and asked to produce new characters for that alphabet. E) Humans and BPL produced new characters
from scratch. The grids generated by BPL are C (by row): 1, 2; D: 2, 2; E: 2, 2. Reprinted and modified from Lake et al. (2015).

has been widely adopted and that the challenge has been
well-received by the community. There has been genuine
progress on one-shot classification, but it has been dif-
ficult to gauge since researchers have adopted di↵erent
splits and training procedures that make the task easier.
The other four tasks have received less attention, and
critically, no new algorithm has attempted to perform
all of the tasks together. Human-level understanding re-
quires developing a single model that can do all of these
tasks, acquiring conceptual representations that support
fast and flexible, task-general learning. We conjectured
that compositionaliy and causality are essential to this
capability (Lake et al., 2017a) yet most new approaches
aim to “learn from scratch,” utilizing learning to learn
in ingenious new ways while incorporating composition-

ality and causality only to the extent that they can be
learned from images. People never learn anything from
scratch in this way, and thus the Omniglot challenge is
not just to learn from increasingly large amounts of back-
ground training (e.g., 30 alphabets, or more with aug-
mentation) and minimal inductive biases, only to tackle
one of many tasks. Instead, the challenge is to learn from
a small amount of background training (e.g., 5 alphabets)
and the kinds of inductive biases people bring to the do-
main (whatever one conjectures those biases are), with
the aim of tackling the full suite of tasks with a single
algorithm. To facilitate research in this direction, we are
re-releasing the Omniglot dataset with the drawing data
in a new format, and we highlight two more human-like
minimal splits containing only five alphabets for learn-
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K-Shot Learning

OMIGLOT dataset 

• Transfer latent knowledge of handwritten characters from 
other tasks

50 classification tasks in different alphabets
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Figure 1: The Omniglot challenge of performing five concept learning tasks at a human level. A) Two trials of one-shot classification,
where a single image of a new character is presented (top) and the goal is to select another example of that character amongst other
characters from the same alphabet (in the grid below). In panels B)-E), human participants and Bayesian Program Learning (BPL) are
compared on four tasks. B) Nine human drawings (top) are shown with the ground truth parses (human) and the best model parses
(machine). C) Humans and BPL were given an image of a new character (top) and asked to produce new examples. D) Humans and
BPL were given a novel alphabet and asked to produce new characters for that alphabet. E) Humans and BPL produced new characters
from scratch. The grids generated by BPL are C (by row): 1, 2; D: 2, 2; E: 2, 2. Reprinted and modified from Lake et al. (2015).

has been widely adopted and that the challenge has been
well-received by the community. There has been genuine
progress on one-shot classification, but it has been dif-
ficult to gauge since researchers have adopted di↵erent
splits and training procedures that make the task easier.
The other four tasks have received less attention, and
critically, no new algorithm has attempted to perform
all of the tasks together. Human-level understanding re-
quires developing a single model that can do all of these
tasks, acquiring conceptual representations that support
fast and flexible, task-general learning. We conjectured
that compositionaliy and causality are essential to this
capability (Lake et al., 2017a) yet most new approaches
aim to “learn from scratch,” utilizing learning to learn
in ingenious new ways while incorporating composition-

ality and causality only to the extent that they can be
learned from images. People never learn anything from
scratch in this way, and thus the Omniglot challenge is
not just to learn from increasingly large amounts of back-
ground training (e.g., 30 alphabets, or more with aug-
mentation) and minimal inductive biases, only to tackle
one of many tasks. Instead, the challenge is to learn from
a small amount of background training (e.g., 5 alphabets)
and the kinds of inductive biases people bring to the do-
main (whatever one conjectures those biases are), with
the aim of tackling the full suite of tasks with a single
algorithm. To facilitate research in this direction, we are
re-releasing the Omniglot dataset with the drawing data
in a new format, and we highlight two more human-like
minimal splits containing only five alphabets for learn-
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Figure 1: The Omniglot challenge of performing five concept learning tasks at a human level. A) Two trials of one-shot classification,
where a single image of a new character is presented (top) and the goal is to select another example of that character amongst other
characters from the same alphabet (in the grid below). In panels B)-E), human participants and Bayesian Program Learning (BPL) are
compared on four tasks. B) Nine human drawings (top) are shown with the ground truth parses (human) and the best model parses
(machine). C) Humans and BPL were given an image of a new character (top) and asked to produce new examples. D) Humans and
BPL were given a novel alphabet and asked to produce new characters for that alphabet. E) Humans and BPL produced new characters
from scratch. The grids generated by BPL are C (by row): 1, 2; D: 2, 2; E: 2, 2. Reprinted and modified from Lake et al. (2015).

has been widely adopted and that the challenge has been
well-received by the community. There has been genuine
progress on one-shot classification, but it has been dif-
ficult to gauge since researchers have adopted di↵erent
splits and training procedures that make the task easier.
The other four tasks have received less attention, and
critically, no new algorithm has attempted to perform
all of the tasks together. Human-level understanding re-
quires developing a single model that can do all of these
tasks, acquiring conceptual representations that support
fast and flexible, task-general learning. We conjectured
that compositionaliy and causality are essential to this
capability (Lake et al., 2017a) yet most new approaches
aim to “learn from scratch,” utilizing learning to learn
in ingenious new ways while incorporating composition-

ality and causality only to the extent that they can be
learned from images. People never learn anything from
scratch in this way, and thus the Omniglot challenge is
not just to learn from increasingly large amounts of back-
ground training (e.g., 30 alphabets, or more with aug-
mentation) and minimal inductive biases, only to tackle
one of many tasks. Instead, the challenge is to learn from
a small amount of background training (e.g., 5 alphabets)
and the kinds of inductive biases people bring to the do-
main (whatever one conjectures those biases are), with
the aim of tackling the full suite of tasks with a single
algorithm. To facilitate research in this direction, we are
re-releasing the Omniglot dataset with the drawing data
in a new format, and we highlight two more human-like
minimal splits containing only five alphabets for learn-
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K-Shot Learning

• One-shot person re-identification from video

Learn to classify 
characters with one 

training sample per classBak et. al. (2017) One-Shot Metric Learning for Person Re-
identification  

Domain-Adversarial Neural Networks

VIPER PRID CUHK

Figure 8: Matching and non-matching pairs of probe-gallery images from di↵erent person
re-identification data sets. The three data sets are treated as di↵erent domains
in our experiments.

Recently, several papers with significantly improved re-identification performance (Zhang
and Saligrama, 2014; Zhao et al., 2014; Paisitkriangkrai et al., 2015) have been presented,
with Ma et al. (2015) reporting good results in cross-data-set evaluation scenario. At the
moment, deep learning methods (Yi et al., 2014) do not achieve state-of-the-art results prob-
ably because of the limited size of the training sets. Domain adaptation thus represents a
viable direction for improving deep re-identification descriptors.

5.3.1 Data Sets and Protocols

Following Ma et al. (2015), we use PRID (Hirzer et al., 2011), VIPeR (Gray et al., 2007),
CUHK (Li and Wang, 2013) as target data sets for our experiments. The PRID data set
exists in two versions, and as in Ma et al. (2015) we use a single-shot variant. It contains
images of 385 persons viewed from camera A and images of 749 persons viewed from camera
B, 200 persons appear in both cameras. The VIPeR data set also contains images taken
with two cameras, and in total 632 persons are captured, for every person there is one image
for each of the two camera views. The CUHK data set consists of images from five pairs of
cameras, two images for each person from each of the two cameras. We refer to the subset
of this data set that includes the first pair of cameras only as CUHK/p1 (as most papers
use this subset). See Figure 8 for samples of these data sets.

We perform extensive experiments for various pairs of data sets, where one data set
serves as a source domain, i.e., it is used to train a descriptor mapping in a supervised
way with known correspondences between probe and gallery images. The second data set is
used as a target domain, so that images from that data set are used without probe-gallery
correspondence.

In more detail, CUHK/p1 is used for experiments when CUHK serves as a target domain
and two settings (“whole CUHK” and CUHK/p1) are used for experiments when CUHK
serves as a source domain. Given PRID as a target data set, we randomly choose 100 persons
appearing in both camera views as training set. The images of the other 100 persons from
camera A are used as probe, all images from camera B excluding those used in training (649
in total) are used as gallery at test time. For VIPeR, we use random 316 persons for training
and all others for testing. For CUHK, 971 persons are split into 485 for training and 486
for testing. Unlike Ma et al. (2015), we use all images in the first pair of cameras of CUHK
instead of choosing one image of a person from each camera view. We also performed two
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Domain-Adversarial Neural Networks

VIPER PRID CUHK
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Recently, several papers with significantly improved re-identification performance (Zhang
and Saligrama, 2014; Zhao et al., 2014; Paisitkriangkrai et al., 2015) have been presented,
with Ma et al. (2015) reporting good results in cross-data-set evaluation scenario. At the
moment, deep learning methods (Yi et al., 2014) do not achieve state-of-the-art results prob-
ably because of the limited size of the training sets. Domain adaptation thus represents a
viable direction for improving deep re-identification descriptors.

5.3.1 Data Sets and Protocols

Following Ma et al. (2015), we use PRID (Hirzer et al., 2011), VIPeR (Gray et al., 2007),
CUHK (Li and Wang, 2013) as target data sets for our experiments. The PRID data set
exists in two versions, and as in Ma et al. (2015) we use a single-shot variant. It contains
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B, 200 persons appear in both cameras. The VIPeR data set also contains images taken
with two cameras, and in total 632 persons are captured, for every person there is one image
for each of the two camera views. The CUHK data set consists of images from five pairs of
cameras, two images for each person from each of the two cameras. We refer to the subset
of this data set that includes the first pair of cameras only as CUHK/p1 (as most papers
use this subset). See Figure 8 for samples of these data sets.

We perform extensive experiments for various pairs of data sets, where one data set
serves as a source domain, i.e., it is used to train a descriptor mapping in a supervised
way with known correspondences between probe and gallery images. The second data set is
used as a target domain, so that images from that data set are used without probe-gallery
correspondence.

In more detail, CUHK/p1 is used for experiments when CUHK serves as a target domain
and two settings (“whole CUHK” and CUHK/p1) are used for experiments when CUHK
serves as a source domain. Given PRID as a target data set, we randomly choose 100 persons
appearing in both camera views as training set. The images of the other 100 persons from
camera A are used as probe, all images from camera B excluding those used in training (649
in total) are used as gallery at test time. For VIPeR, we use random 316 persons for training
and all others for testing. For CUHK, 971 persons are split into 485 for training and 486
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Figure 3: Spatial variations: (a) learned background distor-
tion coefficients α(n); (b) N ×N cost matrix, which is used
as an input to the Hungarian algorithm for finding optimal
patch correspondence.

ment of patches. These spring constraints were learned di-
rectly from data using structural SVMs. [47] assumed the
correspondence structure to be fixed and learned it using a
boosting-like approach. Instead, we define the patch corre-
spondence task as a linear assignment problem. Given N
patches from bounding box image i and N patches from
bounding box image j we create a N ×N cost matrix that
contains patch similarity scores within a fixed neighborhood
(see Fig 3(b)). To avoid patches freely changing their loca-
tion, we introduce a global one-to-one matching constraint
and solve a linear assignment problem

Ω
∗

ij = argmin
Ωij

(

N
∑

n=1

Φ2(c
Ωij(n)
i , cnj ;G

(n)) +∆
(

Ωij(n), n
)

)

,

s.t. ∆
(

Ωij(n), n
)

=

{

∞, η(Ωij(n), n) > δ;

0, otherwise,
(12)

where Ωij is a permutation vector mapping patches c
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to patches cnj and Ωij(n) and n determine patch locations,
∆(·, ·) is a spatial regularization term that constrains the
search neighborhood, where η corresponds to distance be-
tween two patch locations and threshold δ determines the al-
lowed displacement (different δ’s are evaluated in Fig 7(a)).
We find the optimal assignment Ω∗

ij (patch correspondence)
using the Kuhn-Munkres (Hungarian) algorithm [29]. This
yields the color dissimilarity:
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3.3. Total dissimilarity

By incorporating patches, Eq. (2) becomes
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In the next section, we extensively evaluate both texture and
color components as well as hyper-parameter γ.

Figure 4: Sample images from the CCH dataset: the top
and bottom lines correspond to images from different cam-
eras; columns illustrate the same person and the last column
shows images of our ColorChecker chart.

4. Experiments

We carried out experiments on 5 datasets: VIPeR [20],
iLIDS [61], CUHK01 [31], PRID2011 [23] and our new
dataset, CCH. To learn a texture representation (fc7 of
JSTLI ) and α(n)’s, we additionally used CUHK03 [32].
Re-identification results are reported using the CMC curve
[20] and its rank-1 accuracy. The CMC curve provides the
probability of finding the correct match in the top r ranks.

4.1. Datasets and evaluation protocols

CCH (ColorCHecker) is our new dataset that consists of
23 individuals with 3379 images registered by two cameras
in significantly different lighting conditions (see Fig. 4). A
single pair of images of our ColorChecker chart was used
to compute Σ+

σ .
VIPeR [20] is one of the most popular person re-
identification datasets. It contains 632 image pairs of pedes-
trians captured by two outdoor cameras. VIPeR images
contain large variations in lighting conditions, background
and viewpoint (see Fig. 5(a)).
CUHK01 [31] contains 971 people captured with two cam-
eras. The first camera captures the side view of pedestrians
and the second camera captures the front or back view ( see
Fig. 5(b)).
i-LIDS [61] consists of 476 images with 119 individuals.
The images come from airport surveillance cameras. This
dataset is very challenging because there are many occlu-
sions due to luggage and crowds (see Fig. 5(c)).
PRID2011 [23] consists of person images recorded from
two different static surveillance cameras. Characteristic
challenges of this dataset are significant differences in il-
lumination (see Fig. 5(d)). Although there are two camera
views containing 385 and 749 identities, respectively, only
200 people appear in both cameras.
CUHK03 [32] is one of the largest published person re-
identification datasets. It contains 1467 identities, so it fits
very well for learning the JSTL model [55]. We used this
dataset as an auxiliary dataset for training both deep texture
representation and background distortion coefficients.
Evaluation protocols We fixed the evaluation protocol
across all datasets. For computing color dissimilarity, all
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Fig. 1. Marble maze game. (Left) Top view of the marble maze after a plexiglass top has been removed (leaving holes in the outermost edge). A paper
rim is used to cover the holes. The black dots in each gate between rings are used for alignment. The view also shows the world aligned x and y axes.
(Middle) The marble maze mounted on the robot arm. (Right) A rendering of the simulated marble maze under some chosen lighting conditions (without
added noise).

(beyond) human level performance on a variety of tasks [1]–
[4].

TL has been an active area of research in the context of
deep learning. For example, tasks such as object detection
and classification can avoid costly training time by using
pre-trained networks and fine-tuning [5], [6], where typically
only the weights in the last couple of layers are updated. TL
from simulated to real has also been applied to learn robot
tasks [7]–[11]. To reduce the time required for fine-tuning in
TL, the authors in [12] propose to make simulated data look
more like the real world. In [13] the authors propose a form of
fine-tuning where the inverse dynamics for the real robot are
recovered. It requires a simulator and training which produces
reasonable estimates of the real world situation. The drawback
of this method is that it requires long online training times,
whereas our goal is to minimize the duration of the online
training time. The authors in [14] propose model-based RL,
where some of the physics parameters are estimated online.
The difficulty of the task we aim to solve is in the fact that the
motion of the marbles is controlled via tilting of the platform.
Estimating physics in our case is thus very challenging.

By randomization of the appearance, the learning can
become robust against appearance changes and readily transfer
to the real world domain [15], [16]. The method proposed
in [17] exploits an ensemble of simulated source domains
and adversarial training to obtain robust policies. This policy
search approach relies on trajectories and roll-outs which
solve the task. The approach proposed in [18] uses model-
based RL to learn a controller entirely in simulation, allowing
for zero-shot TL. Since we are considering tasks involving
(much) more complex dynamics, we instead follow a similar
approach as [19], and perform randomization of appearance,
physics and system parameters with model-free RL.

Model-agnostic meta-learning (MAML) [20], aims to learn
a meta-policy that can be quickly adapted to new (but similar)
tasks. In the case of complex dynamics it is not clear how

easily MAML could be applied. Appearance and dynamics
randomization can be considered as forms of meta-learning.
Other approaches aim to learn new tasks, or refine previously
learned tasks, without ”forgetting”, e.g., [21]. Our emphasis
instead is on reducing the amount of time required for fine-
tuning in TL.

Our simulator provides observations of the state in simu-
lation, similar to the real world. In [22] the critic receives
full states, whereas the actor receives observations of states.
Coupled with appearance randomization, zero-shot transfer
can be achieved. The full state requires that the physics
parameters to produce complex dynamics match those of
the real world. However, precisely determining the physics
parameters is non-trivial.

Formulating reward functions is not straightforward. The
authors in [23] propose to discover robust rewards to enable
the learning of complicated tasks. Adding additional goals
(sub-goals), basically a form of curriculum learning [24], can
improve the learning as well [25]. The latter approach may
be applied to break up the goal of a marble maze into stages.
However, in this paper we show that a simple reward function
which governs the overall goal of the game is sufficient.

The authors in [26] propose a game-like environment for
generating synthetic data for benchmark problems related to
reinforcement learning. We developed our simulator along
the same lines as [26].

In [27] the authors propose to model both the dynamics
and control in order to solve the marble maze game. This is
a complementary approach to the TL approach proposed in
this paper, and we believe that each approach has its own
strengths and weaknesses.

III. PRELIMINARIES

We briefly review some concepts from (deep) reinforcement
learning (RL) using model-free asynchronous actor-critic, and
define some terminology that we will use in the remainder of
this paper. In the next section we will discuss our approach.
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Fig. 1. Marble maze game. (Left) Top view of the marble maze after a plexiglass top has been removed (leaving holes in the outermost edge). A paper
rim is used to cover the holes. The black dots in each gate between rings are used for alignment. The view also shows the world aligned x and y axes.
(Middle) The marble maze mounted on the robot arm. (Right) A rendering of the simulated marble maze under some chosen lighting conditions (without
added noise).

(beyond) human level performance on a variety of tasks [1]–
[4].

TL has been an active area of research in the context of
deep learning. For example, tasks such as object detection
and classification can avoid costly training time by using
pre-trained networks and fine-tuning [5], [6], where typically
only the weights in the last couple of layers are updated. TL
from simulated to real has also been applied to learn robot
tasks [7]–[11]. To reduce the time required for fine-tuning in
TL, the authors in [12] propose to make simulated data look
more like the real world. In [13] the authors propose a form of
fine-tuning where the inverse dynamics for the real robot are
recovered. It requires a simulator and training which produces
reasonable estimates of the real world situation. The drawback
of this method is that it requires long online training times,
whereas our goal is to minimize the duration of the online
training time. The authors in [14] propose model-based RL,
where some of the physics parameters are estimated online.
The difficulty of the task we aim to solve is in the fact that the
motion of the marbles is controlled via tilting of the platform.
Estimating physics in our case is thus very challenging.

By randomization of the appearance, the learning can
become robust against appearance changes and readily transfer
to the real world domain [15], [16]. The method proposed
in [17] exploits an ensemble of simulated source domains
and adversarial training to obtain robust policies. This policy
search approach relies on trajectories and roll-outs which
solve the task. The approach proposed in [18] uses model-
based RL to learn a controller entirely in simulation, allowing
for zero-shot TL. Since we are considering tasks involving
(much) more complex dynamics, we instead follow a similar
approach as [19], and perform randomization of appearance,
physics and system parameters with model-free RL.

Model-agnostic meta-learning (MAML) [20], aims to learn
a meta-policy that can be quickly adapted to new (but similar)
tasks. In the case of complex dynamics it is not clear how

easily MAML could be applied. Appearance and dynamics
randomization can be considered as forms of meta-learning.
Other approaches aim to learn new tasks, or refine previously
learned tasks, without ”forgetting”, e.g., [21]. Our emphasis
instead is on reducing the amount of time required for fine-
tuning in TL.

Our simulator provides observations of the state in simu-
lation, similar to the real world. In [22] the critic receives
full states, whereas the actor receives observations of states.
Coupled with appearance randomization, zero-shot transfer
can be achieved. The full state requires that the physics
parameters to produce complex dynamics match those of
the real world. However, precisely determining the physics
parameters is non-trivial.

Formulating reward functions is not straightforward. The
authors in [23] propose to discover robust rewards to enable
the learning of complicated tasks. Adding additional goals
(sub-goals), basically a form of curriculum learning [24], can
improve the learning as well [25]. The latter approach may
be applied to break up the goal of a marble maze into stages.
However, in this paper we show that a simple reward function
which governs the overall goal of the game is sufficient.

The authors in [26] propose a game-like environment for
generating synthetic data for benchmark problems related to
reinforcement learning. We developed our simulator along
the same lines as [26].

In [27] the authors propose to model both the dynamics
and control in order to solve the marble maze game. This is
a complementary approach to the TL approach proposed in
this paper, and we believe that each approach has its own
strengths and weaknesses.

III. PRELIMINARIES

We briefly review some concepts from (deep) reinforcement
learning (RL) using model-free asynchronous actor-critic, and
define some terminology that we will use in the remainder of
this paper. In the next section we will discuss our approach.
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3) We present a detailed evaluation of our method on a
range of simulated tasks for both visual and non-visual
policies.

To the best of our knowledge, this is the first method
to decompose policy neural networks into interchangeable
modules than can perform zero-shot transfer with novel
module combinations.

II. RELATED WORK

Robotic skill learning via reinforcement learning has been
studied extensively in recent years [5], [6], [7], [8], and
transfer learning in particular has been recognized for some
time as an important direction in robotic learning [9], [10],
[11], [12], [13], due to its potential for reducing the burden
of expensive on-policy data collection for learning large
repertoires of complex skills. [14] and [15] transfer between
tasks by storing symbolic knowledge in knowledge bases.
Work by Guestrin et al. learned to play many versions
of a computer strategy game by decomposing the value
function into different domains [16]. The PG-Ella algorithm
uses policy gradients for sequential multitask learning [17].
Past work in transfer on robotics domains includes shaping
the target reward function from the source policy [18],
[19] and learning a mapping between tasks [20]. Another
transfer approach used by [21] is to split each task into
sub-tasks and transfer the sub-tasks between tasks. An early
work by Caruana uses backpropagation to learn many tasks
jointly [10]. Our work differs from these prior methods in
that we explicitly consider transfer across tasks with two
factors of variation, which in our experiments are robot
identity and task identity. This allows us to decompose the
policy into robot-specific and task-specific modules, which
perform zero-shot transfer by recombining novel pairs of
modules. Our method is complementary to prior transfer
learning techniques in that we address primarily the ques-
tion of policy representation, while prior methods focus on
algorithmic questions.

Beyond robotic learning, recent work in computer vision
and other passive perception domains has explored both
transfer learning and recombination of neural network mod-
ules. Pretraining is a common transfer learning technique
in deep learning [22]. However, pretraining cannot provided
zero-shot generalization, and finetuning is ill-defined outside
of supervised learning. Domain adaptation techniques have
been used to adapt training data in the face of systematic
domain shift [23], and more recently, work on modular net-
works for visual question answering has been demonstrated
with good results [24]. Our method differs from these prior
approaches by directly considering robotic policy learning,
where the policy must consider both the invariances and task-
relevant differences across domains.

Although our method is largely agnostic to the choice of
policy learning algorithm, we use the guided policy search
method in our experiments [4]. This algorithm allows us to
train high-dimensional neural network policy representations,
which can be readily decomposed into multiple intercon-
nected modules. Other recent work on high-dimensional

Fig. 1: The 3DoF and a 4DoF robot which specify one degree of

variation (robots) in the universe described in Section III as well

as the tasks of opening a drawer and pushing a block which specify

the other degree of variation (tasks) in the universe.

Fig. 2: The possible worlds enumerated for all combinations of

tasks and robots for the universe described in Section III

neural network policy search has studied continuous control
tasks for simulated robots [2], [25], playing Atari games
[1], and other tasks [26]. Recent work on progressive neural
network also proposes a representation suitable for transfer
across Atari games [27], but does not provide for zero-shot
generalization to new domains, and work by Braylen et al.
used evolutionary algorithms to recombine networks trained
for different Atari games, but again did not demonstrate
direct zero-shot generalization [28]. We further emphasize
that our approach is not in fact specific to neural networks,
and our presentation of the method describes a generic
framework of composable policy modules that can easily be
extended to other representations.

III. MODULAR POLICY NETWORKS

The problem setting that this work addresses is enabling
transfer across situations that can vary along some predefined
discrete degrees of variation (DoVs). These DoVs can be
different robot morphologies, different task goals, different
object characteristics, and so forth. We define a “world” w

to be an instantiation of these DoVs, and our “universe”
U to be the set of all possible worlds. To illustrate this
formalism, consider a universe with the following 2 DoVs:
robot structure (3 DoF and 4 DoF), and task (open drawer
and pushing a block). This universe would have 4 possible
worlds: 3 DoF arm opening a drawer, 3 DoF arm pushing a

Push box

Robot 1 (3-link) Robot 2 (4-link)



Transfer Learning vs Multi-Task Learning

Source 
Task

Target 
Task

Task   
1

Task   
2

Task   
3

Task   
4

Transfer Learning Multi-task Learning

Fig. 3. As we define transfer learning, the information flows in one direction only, from
the source task to the target task. In multi-task learning, information can flow freely
among all tasks.

We will make a distinction between transfer learning and multi-task learn-
ing [5], in which several tasks are learned simultaneously (see Figure 3). Multi-
task learning is clearly closely related to transfer, but it does not involve des-
ignated source and target tasks; instead the learning agent receives information
about several tasks at once. In contrast, by our definition of transfer learning,
the agent knows nothing about a target task (or even that there will be a target
task) when it learns a source task. It may be possible to approach a multi-task
learning problem with a transfer-learning method, but the reverse is not possi-
ble. It is useful to make this distinction because a learning agent in a real-world
setting is more likely to encounter transfer scenarios than multi-task scenarios.

TRANSFER IN INDUCTIVE LEARNING

In an inductive learning task, the objective is to induce a predictive model from a
set of training examples [28]. Often the goal is classification, i.e. assigning class la-
bels to examples. Examples of classification systems are artificial neural networks
and symbolic rule-learners. Another type of inductive learning involves model-
ing probability distributions over interrelated variables, usually with graphical
models. Examples of these systems are Bayesian networks and Markov Logic
Networks [34].

The predictive model learned by an inductive learning algorithm should make
accurate predictions not just on the training examples, but also on future exam-
ples that come from the same distribution. In order to produce a model with this
generalization capability, a learning algorithm must have an inductive bias [28]
– a set of assumptions about the true distribution of the training data.

The bias of an algorithm is often based on the hypothesis space of possible
models that it considers. For example, the hypothesis space of the Naive Bayes
model is limited by the assumption that example characteristics are condition-
ally independent given the class of an example. The bias of an algorithm can also
be determined by its search process through the hypothesis space, which deter-
mines the order in which hypotheses are considered. For example, rule-learning
algorithms typically construct rules one predicate at a time, which reflects the

3

TL is more likely to encounter in real world than MTL

Sequential learning: 
focus on target task

Joint learning: 
focus on all tasks
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Transfer Learning Definition

 Terminologies 

• Domain: 

• Task:

D = {X, PX}

T = {Y, f}

Transfer learning: improve the performance of predictive 
function      for      by discover and transfer latent knowledge 
from             , where              and/or

ft Tt
(Ds, Ts) Ds ≠ Dt Ts ≠ Tt

task    . Transfer learning aims to

input 
features

input 
distribution

predictive 
function PY|X

labels
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Learning Task

Learning Task

Knowledge Transfer 
Learning

Target Domain

Source Domain

Fig. 1. Learning process of transfer learning.

Definition 1. (Transfer Learning). Given a learning task Tt based on Dt,
and we can get the help from Ds for the learning task Ts. Transfer learning aims
to improve the performance of predictive function fT (·) for learning task Tt by
discover and transfer latent knowledge from Ds and Ts, where Ds 6= Dt and/or
Ts 6= Tt. In addition, in the most case, the size of Ds is much larger than the
size of Dt, Ns � Nt.

Surveys [19] and [25] divide the transfer learning methods into three major

categories with the relationship between the source domain and the target do-

main, which has been widely accepted. These suverys are good summary of the

past works on transfer learning, which introduced a number of classic transfer

learning methods. Further more, many newer and better methods have been pro-

posed recently. In recent years, transfer learning research community are mainly

focused on the following two aspects: domain adaption and multi-source domains

transfer.

Nowadays, deep learning has achieved dominating situation in many research

fields in recent years. It is important to find how to e↵ectively transfer knowledge

by deep neural network, which called deep transfer learning that defined as

follows:

Definition 2. (Deep Transfer Learning). Given a transfer learning task de-
fined by hDs, Ts,Dt, Tt, fT (·)i. It is a deep transfer learning task where fT (·) is
a non-linear function that reflected a deep neural network.

3 Categories

Deep transfer learning studies how to utilize knowledge from other fields by

deep neural networks. Since deep neural networks have become popular in var-

ious fields, a considerable amount of deep transfer learning methods have been

proposed that it is very important to classify and summarize them. Based on the

techniques used in deep transfer learning, this paper classifies deep transfer learn-

ing into four categories: instances-based deep transfer learning, mapping-based

Ds

Dt



Transfer Learning

Task Transfer Learning: adapt source hypothesis or feature to 
target task 

Ds ≠ Dt Ts ≠ Tt
Domain 

adaptation
Task transfer 

learning
Hybrid

living room

Ts: scene classification

Tt: object detection sofa, table, 
lamp, …
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Transfer Learning

Domain adaptation: Learn domain agnostic representations

Ds (day) Dt (night)

Ds ≠ Dt Ts ≠ Tt
Domain 

adaptation
Task transfer 

learning
Hybrid

Ts/Tt: Vehicle Detection

domain 
shift



Transfer Learning

Most transfer learning problems in practice are hybrid!

Ds ≠ Dt Ts ≠ Tt
Domain 

adaptation
Task transfer 

learning
Hybrid

Task Transfer Learning: adapt source hypothesis or feature 
to target task 

Domain adaptation: Learn domain agnostic representations 



Task Transfer Learning 

• Pretrained Model + Fine Tuning
A Survey on Deep Transfer Learning 7
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Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.

fine tuningtransfer weights

e.g  object classification ->  scene classification

freeze 

intuition: low level features are shared across most vision tasks



Heterogeneous Task Transfer Learning

• Heterogeneous task transfer learning using encoder-decoder 
network
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Domain Adaptation Techniques

• Instance-based approach  

• Mapping-based approach  

• Adversarial-based approach 
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deep transfer learning, network-based deep transfer learning, and adversarial-

based deep transfer learning, which are shown in Table 1.

Table 1. Categorizing of deep transfer learning.

Approach category Brief description Some related works
Instances-based Utilize instances in source domain by appro-

priate weight.
[4], [27], [20], [24],
[10], [26], [11]

Mapping-based Mapping instances from two domains into a
new data space with better similarity.

[23], [12], [8], [14], [2]

Network-based Reuse the partial of network pre-trained in
the source domain.

[9], [17], [15], [30],
[3], [6], [28]

Adversarial-based Use adversarial technology to find transfer-
able features that both suitable for two do-
mains.

[1], [5], [21], [22],
[13], [16]

3.1 Instances-based deep transfer learning

Instances-based deep transfer learning refers to use a specific weight adjust-

ment strategy, select partial instances from the source domain as supplements

to the training set in the target domain by assigning appropriate weight values

to these selected instances. It is based on the assumption that ”Although there
are di↵erent between two domains, partial instances in the source domain can
be utilized by the target domain with appropriate weights.”. The sketch map of

instances-based deep transfer learning are shown in Fig. 2.

^ŽƵƌĐĞ��ŽŵĂŝŶ dĂƌŐĞƚ��ŽŵĂŝŶ

ĊĊ

Fig. 2. Sketch map of instances-based deep transfer learning. Instances with light blue
color in source domain meanings dissimilar with target domain are exclude from train-
ing dataset; Instances with dark blue color in source domain meanings similar with
target domain are include in training dataset with appropriate weight.

TrAdaBoost proposed by [4] use AdaBoost-based technology to filter out in-

stances that are dissimilar to the target domain in source domains. Re-weighted

A Survey on Deep Transfer Learning 5

instances in source domain to compose a distribution similar to target domain.

Finally, training model by using the re-weighted instances from source domain

and origin instances from target domain. It can reduce the weighted training er-

ror on di↵erent distribution domains that preserving the properties of AdaBoost.

TaskTrAdaBoost proposed by [27] is a fast algorithm promote rapid retraining

over new targets. Unlike TrAdaBoost is designed for classification problems,

ExpBoost.R2 and TrAdaBoost.R2 were proposed by [20] to cover the regression

problem. Bi-weighting domain adaptation (BIW) proposed [24] can aligns the

feature spaces of two domains into the common coordinate system, and then

assign an appropriate weight of the instances from source domain. [10] propose

a enhanced TrAdaBoost to handle the problem of interregional sandstone mi-

croscopic image classification. [26] propose a metric transfer learning framework

to learn instance weights and a distance of two di↵erent domains in a parallel

framework to make knowledge transfer across domains more e↵ective. [11] in-

troduce an ensemble transfer learning to deep neural network that can utilize

instances from source domain.

3.2 Mapping-based deep transfer learning

Mapping-based deep transfer learning refers to mapping instances from the

source domain and target domain into a new data space. In this new data space,

instances from two domains are similarly and suitable for a union deep neural

network. It is based on the assumption that ”Although there are di↵erent between
two origin domains, they can be more similarly in an elaborate new data space.”.
The sketch map of instances-based deep transfer learning are shown in Fig. 3.
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Fig. 3. Sketch map of mapping-based deep transfer learning. Simultaneously, instances
from source domain and target domain are mapping to a new data space with more
similarly. Consider all instances in the new data space as the training set of the neural
network.
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Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small di↵erence between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

The adversarial-based deep transfer learning has obtained the flourishing

development in recent years due to its good e↵ect and strong practicality. [1]

introduce adversarial technology to transfer learning for domain adaption, by

using a domain adaptation regularization term in the loss function. [5] proposed

an adversarial training method that suitable for most any feed-forward neural

model by augmenting it with few standard layers and a simple new gradient

reversal layer. [21] proposed a approach transfer knowledge cross-domain and

cross-task simultaneity for sparsely labeled target domain data. A special joint

loss function was used in this work to force CNN to optimize both the distance

between domains which defined as LD = Lc+�Ladver, where Lc is classification

loss, Ladver is domain adversarial loss. Because the two losses stand in direct

opposition to one another, an iterative optimize algorithm are introduced to

update one loss when fixed another. [22] proposed a new GAN loss and com-

bine with discriminative modeling to a new domain adaptation method. [13]

proposed a randomized multi-linear adversarial networks to exploit multiple fea-

ture layers and the classifier layer based on a randomized multi-linear adversary

to enable both deep and discriminative adversarial adaptation. [16] utilize a

domain adversarial loss, and generalizes the embedding to novel task using a

metric learning-based approach to find more tractable features in deep transfer

learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep

transfer learning. Deep transfer learning is classified into four categories for the



Instance-based approaches

• select partial instances from the source domain as supplements to 
the training set in the target domain
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deep transfer learning, network-based deep transfer learning, and adversarial-

based deep transfer learning, which are shown in Table 1.

Table 1. Categorizing of deep transfer learning.

Approach category Brief description Some related works
Instances-based Utilize instances in source domain by appro-

priate weight.
[4], [27], [20], [24],
[10], [26], [11]

Mapping-based Mapping instances from two domains into a
new data space with better similarity.

[23], [12], [8], [14], [2]

Network-based Reuse the partial of network pre-trained in
the source domain.

[9], [17], [15], [30],
[3], [6], [28]

Adversarial-based Use adversarial technology to find transfer-
able features that both suitable for two do-
mains.

[1], [5], [21], [22],
[13], [16]

3.1 Instances-based deep transfer learning

Instances-based deep transfer learning refers to use a specific weight adjust-

ment strategy, select partial instances from the source domain as supplements

to the training set in the target domain by assigning appropriate weight values

to these selected instances. It is based on the assumption that ”Although there
are di↵erent between two domains, partial instances in the source domain can
be utilized by the target domain with appropriate weights.”. The sketch map of

instances-based deep transfer learning are shown in Fig. 2.
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Fig. 2. Sketch map of instances-based deep transfer learning. Instances with light blue
color in source domain meanings dissimilar with target domain are exclude from train-
ing dataset; Instances with dark blue color in source domain meanings similar with
target domain are include in training dataset with appropriate weight.

TrAdaBoost proposed by [4] use AdaBoost-based technology to filter out in-

stances that are dissimilar to the target domain in source domains. Re-weighted

PXS

Partial instances in the source domain can be utilized by 
the target domain with appropriate weights



Boosting for instance-based transfer

• TrAdaBoost (Dai 2007) 
• Use AdaBoost to filter out source domain instances that are 

dissimilar to target domain   

• Reweight source domain instances to resemble target domain 
distribution 

• Train model with reweighted source + target domain instances 

• TaskTrAdaBoost (2010): a boosting technique for transferring from 
multiple sources
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deep transfer learning, network-based deep transfer learning, and adversarial-

based deep transfer learning, which are shown in Table 1.

Table 1. Categorizing of deep transfer learning.

Approach category Brief description Some related works
Instances-based Utilize instances in source domain by appro-

priate weight.
[4], [27], [20], [24],
[10], [26], [11]

Mapping-based Mapping instances from two domains into a
new data space with better similarity.

[23], [12], [8], [14], [2]

Network-based Reuse the partial of network pre-trained in
the source domain.

[9], [17], [15], [30],
[3], [6], [28]

Adversarial-based Use adversarial technology to find transfer-
able features that both suitable for two do-
mains.

[1], [5], [21], [22],
[13], [16]

3.1 Instances-based deep transfer learning

Instances-based deep transfer learning refers to use a specific weight adjust-

ment strategy, select partial instances from the source domain as supplements

to the training set in the target domain by assigning appropriate weight values

to these selected instances. It is based on the assumption that ”Although there
are di↵erent between two domains, partial instances in the source domain can
be utilized by the target domain with appropriate weights.”. The sketch map of

instances-based deep transfer learning are shown in Fig. 2.
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Fig. 2. Sketch map of instances-based deep transfer learning. Instances with light blue
color in source domain meanings dissimilar with target domain are exclude from train-
ing dataset; Instances with dark blue color in source domain meanings similar with
target domain are include in training dataset with appropriate weight.

TrAdaBoost proposed by [4] use AdaBoost-based technology to filter out in-

stances that are dissimilar to the target domain in source domains. Re-weighted

higher 
weights



Mapping-based approach

• Mapping instances from the source domain and target domain 
into a new data space
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instances in source domain to compose a distribution similar to target domain.

Finally, training model by using the re-weighted instances from source domain

and origin instances from target domain. It can reduce the weighted training er-

ror on di↵erent distribution domains that preserving the properties of AdaBoost.

TaskTrAdaBoost proposed by [27] is a fast algorithm promote rapid retraining

over new targets. Unlike TrAdaBoost is designed for classification problems,

ExpBoost.R2 and TrAdaBoost.R2 were proposed by [20] to cover the regression

problem. Bi-weighting domain adaptation (BIW) proposed [24] can aligns the

feature spaces of two domains into the common coordinate system, and then

assign an appropriate weight of the instances from source domain. [10] propose

a enhanced TrAdaBoost to handle the problem of interregional sandstone mi-

croscopic image classification. [26] propose a metric transfer learning framework

to learn instance weights and a distance of two di↵erent domains in a parallel

framework to make knowledge transfer across domains more e↵ective. [11] in-

troduce an ensemble transfer learning to deep neural network that can utilize

instances from source domain.

3.2 Mapping-based deep transfer learning

Mapping-based deep transfer learning refers to mapping instances from the

source domain and target domain into a new data space. In this new data space,

instances from two domains are similarly and suitable for a union deep neural

network. It is based on the assumption that ”Although there are di↵erent between
two origin domains, they can be more similarly in an elaborate new data space.”.
The sketch map of instances-based deep transfer learning are shown in Fig. 3.
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Fig. 3. Sketch map of mapping-based deep transfer learning. Simultaneously, instances
from source domain and target domain are mapping to a new data space with more
similarly. Consider all instances in the new data space as the training set of the neural
network.

How to measure domain similarity?

a space where Xs and Xt are 
distributed similarly

P(XS)

Q(XT)



Maximal Mean Discrepency (MMD)

• Maximal Mean Discrepency : a kernel-based 2 sample test for 
the null hypothesis P=Q  (Fortet and Mourier, 1953)  

• where 
• feature map 

• Used in Transfer Component Analysis (TCA) (Yang, 2018) to 
correct domain shift 

DMMD(XS, XT) =
1
NS ∑

xs∈XS

ϕ(xs) −
1

NT ∑
xt∈XT

ϕ(xt)

ℋ

ϕ( ⋅ )

DMMD[P, Q] ≜ sup
ϕ∈ℱ

(𝔼P[ϕ(X)] − 𝔼Q[ϕ(Y )])

X ∼ P, Y ∼ Q



Use MMD as a Domain Regularization Term

• Given pre-trained source model, train an adpation network 
that minimizes classification error and domain MMD

mains appear as similar as possible. This principle forms
the essence of our proposed approach. We learn deep rep-
resentations by optimizing over a loss which includes both
classification error on the labeled data as well as a domain

confusion loss which seeks to make the domains indistin-
guishable.

We propose a new CNN architecture, outlined in Fig-
ure 1, which uses an adaptation layer along with a do-
main confusion loss based on maximum mean discrepancy
(MMD) [6] to automatically learn a representation jointly
trained to optimize for classification and domain invariance.
We show that our domain confusion metric can be used both
to select the dimension of the adaptation layers, choose an
effective placement for a new adaptation layer within a pre-
trained CNN architecture, and fine-tune the representation.

Our architecture can be used to solve both supervised

adaptation, when a small amount of target labeled data is
available, and unsupervised adaptation, when no labeled
target training data is available. We provide a comprehen-
sive evaluation on the popular Office benchmark for classi-
fication across visually distinct domains [29]. We demon-
strate that by jointly optimizing for domain confusion and
classification, we are able to significantly outperform the
current state-of-the-art visual domain adaptation results. In
fact, for the case of minor pose, resolution, and lighting
changes, our algorithm is able to achieve 96% accuracy
on the target domain, demonstrating that we have in fact
learned a representation that is invariant to these biases.

2. Related work
The concept of visual dataset bias was popularized

in [32]. There have been many approaches proposed in
recent years to solve the visual domain adaptation prob-
lem. All recognize that there is a shift in the distribu-
tion of the source and target data representations. In fact,
the size of a domain shift is often measured by the dis-
tance between the source and target subspace representa-
tions [6, 13, 23, 26, 28]. A large number of methods have
sought to overcome this difference by learning a feature
space transformation to align the source and target represen-
tations [29, 25, 13, 16]. For the supervised adaptation sce-
nario, when a limited amount of labeled data is available in
the target domain, some approaches have been proposed to
learn a target classifier regularized against the source clas-
sifier [33, 2, 1]. Others have sought to both learn a feature
transformation and regularize a target classifier simultane-
ously [20, 12].

Recently, supervised convolutional neural network
(CNN) based feature representations have been shown to
be extremely effective for a variety of visual recognition
tasks [24, 11, 15, 30]. In particular, using deep representa-
tions dramatically reduce the effect of resolution and light-
ing on domain shifts [11, 21].
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Figure 2: For biased datasets (left), classifiers learned in a
source domain do not necessarily transfer well to target do-
mains. By optimizing an objective that simultaneously min-
imizes classification error and maximizes domain confusion

(right), we can learn representations that are discriminative
and domain invariant.

Parallel CNN architectures such as Siamese networks
have been shown to be effective for learning invariant repre-
sentations [7, 9]. However, training these networks requires
labels for each training instance, so it is unclear how to ex-
tend these methods to unsupervised settings.

Multimodal deep learning architectures have also been
explored to learn representations that are invariant to dif-
ferent input modalities [27]. However, this method oper-
ated primarily in a generative context and therefore did not
leverage the full representational power of supervised CNN
representations.

Training a joint source and target CNN architecture was
proposed by [8], but was limited to two layers and so was
significantly outperformed by the methods which used a
deeper architecture [24], pre-trained on a large auxiliary
data source (ex: ImageNet [4]).

[14] proposed pre-training with a denoising auto en-
coder, then training a two-layer network simultaneously
with the MMD domain confusion loss. This effectively
learns a domain invariant representation, but again, because
the learned network is relatively shallow, it lacks the strong
semantic representation that is learned by directly optimiz-
ing a classification objective with a supervised deep CNN.

3. Training CNN-based domain invariant rep-
resentations

We introduce a new convolutional neural network (CNN)
architecture which we use to learn a visual representation
that is both domain invariant and which offers strong se-
mantic separation. It has been shown that a pre-trained
CNN can be adapted for a new task through fine-tuning [15,

L = LC(XL, y) + λD2
MMD(XS, XT)

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance 
 



Use MMD as a Domain Regularization Term

• Training step: 
• 1. Select the layer to transfer from using MMD metric 
• 2. Train an adaptation layer fa on source and target data 

using MMD as a regularizer 
• Testing step:  

• Transform target input by  fa(XT) 

L = LC(XL, y) + λD2
MMD(XS, XT)

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance 
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Abstract

Recent reports suggest that a generic supervised deep

CNN model trained on a large-scale dataset reduces, but

does not remove, dataset bias on a standard benchmark.

Fine-tuning deep models in a new domain can require a

significant amount of data, which for many applications is

simply not available. We propose a new CNN architecture

which introduces an adaptation layer and an additional do-

main confusion loss, to learn a representation that is both

semantically meaningful and domain invariant. We addi-

tionally show that a domain confusion metric can be used

for model selection to determine the dimension of an adap-

tation layer and the best position for the layer in the CNN

architecture. Our proposed adaptation method offers em-

pirical performance which exceeds previously published re-

sults on a standard benchmark visual domain adaptation

task.

1. Introduction
Dataset bias is a well known problem with traditional

supervised approaches to image recognition [32]. A num-
ber of recent theoretical and empirical results have shown
that supervised methods’ test error increases in proportion
to the difference between the test and training input distri-
bution [3, 5, 29, 32]. In the last few years several methods
for visual domain adaptation have been suggested to over-
come this issue [10, 33, 2, 29, 25, 22, 17, 16, 19, 20], but
were limited to shallow models. The traditional approach
to adapting deep models has been fine-tuning; see [15] for
a recent example.

Directly fine-tuning a deep network’s parameters on a
small amount of labeled target data turns out to be prob-
lematic. Fortunately, pre-trained deep models do perform
well in novel domains. Recently, [11, 21] showed that using
the deep mid-level features learned on ImageNet, instead
of the more conventional bag-of-words features, effectively
removed the bias in some of the domain adaptation settings
in the Office dataset [29]. These algorithms transferred the
representation from a large scale domain, ImageNet, as well
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Figure 1: Our architecture optimizes a deep CNN for both
classification loss as well as domain invariance. The model
can be trained for supervised adaptation, when there is a
small amount of target labels available, or unsupervised

adaptation, when no target labels are available. We intro-
duce domain invariance through domain confusion guided
selection of the depth and width of the adaptation layer, as
well as an additional domain loss term during fine-tuning
that directly minimizes the distance between source and tar-
get representations.

as using all of the data in that domain as source data for ap-
propriate categories. However, these methods have no way
to select a representation from the deep architecture and in-
stead report results across multiple layer selection choices.

Dataset bias was classically illustrated in computer vi-
sion by way of the “name the dataset” game of Torralba and
Efros [32]. Indeed, this turns out to be formally connected
to measures of domain discrepancy [23, 6]. Optimizing for
domain invariance, therefore, can be considered equivalent
to the task of learning to predict the class labels while si-
multaneously finding a representation that makes the do-
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Variations with MMD-based domain adaptation

• Deep Adaptation Network (Long et.al. 2015): 
• Use multi-kernel MMD (MK-MMD) 

• Fine-tune source task jointly with MMD constraints on multiple 
layers 

• Joint Adaptation (2018): adapt joint distributions instead of 
P(Xs), Q(Xt)

L = LC(XL, y) + λD2
MMD(XS, XT)

Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks
In unsupervised domain adaptation, we are given a source
domainDs = {(xs

i , y
s
i )}

ns

i=1 with ns labeled examples, and
a target domain Dt = {xt

j}
nt

j=1 with nt unlabeled exam-
ples. The source domain and target domain are charac-
terized by probability distributions p and q, respectively.
We aim to construct a deep neural network which is able
to learn transferable features that bridge the cross-domain
discrepancy, and build a classifier y = θ(x) which can
minimize target risk εt (θ) = Pr(x,y)∼q [θ (x) != y] using
source supervision. In semi-supervised adaptation where
the target has a small number of labeled examples, we de-
note by Da = {(xa

i , y
a
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the
target domain has no (or only limited) labeled information.
To approach this problem, many existing methods aim to
bound the target error by the source error plus a discrepancy
metric between the source and the target (Ben-David et al.,
2010). Two classes of statistics have been explored for
the two-sample testing, where acceptance or rejection deci-
sions are made for a null hypothesis p = q, given samples
generated respectively from p and q: energy distances and
maximum mean discrepancies (MMD) (Sejdinovic et al.,
2013). In this paper, we focus on the multiple kernel variant
of MMD (MK-MMD) proposed by Gretton et al. (2012b),
which is formalized to jointly maximize the two-sample
test power and minimize the Type II error, i.e., the failure
of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k. The mean
embedding of distribution p in Hk is a unique element
µk(p) such that Ex∼pf (x) = 〈f (x) , µk (p)〉Hk

for all
f ∈ Hk. The MK-MMD dk (p, q) between probability dis-
tributions p and q is defined as the RKHS distance between
the mean embeddings of p and q. The squared formulation
of MK-MMD is defined as

d2k (p, q) !
∥

∥Ep [φ (xs)]−Eq

[

φ
(

xt
)]
∥

∥

2

Hk
. (1)

The most important property is that p = q iff d2k (p, q) = 0
(Gretton et al., 2012a). The characteristic kernel associated
with the feature map φ, k (xs,xt) = 〈φ (xs) ,φ (xt)〉, is
defined as the convex combination of m PSD kernels {ku},

K !

{

k =
m
∑

u=1

βuku :
m
∑

u=1

βu = 1,βu " 0, ∀u

}

, (2)

where the constraints on coefficients {βu} are imposed to
guarantee that the derived multi-kernel k is characteristic.
As studied theoretically in Gretton et al. (2012b), the kernel
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MMD
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MMD

MK-
MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source
output

target
output

frozen frozenfrozen fine-
tune

fine-
tune

learn learnlearn learn

Figure 1. The DAN architecture for learning transferable features.
Since deep features eventually transition from general to specific
along the network, (1) the features extracted by convolutional lay-
ers conv1–conv3 are general, hence these layers are frozen, (2)
the features extracted by layers conv4–conv5 are slightly less
transferable, hence these layers are learned via fine-tuning, and
(3) fully connected layers fc6–fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with
MK-MMD.

adopted for the mean embeddings of p and q is critical to
ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test,
leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain
discrepancy is to find an abstract feature representation
through which the source and target domains are simi-
lar (Ben-David et al., 2010). Although this idea has been
explored in several papers (Pan et al., 2011; Zhang et al.,
2013; Wang & Schneider, 2014), to date there has been no
attempt to enhance the transferability of feature representa-
tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-
plore the idea of MK-MMD-based adaptation for learning
transferable features in deep networks. We start with deep
convolutional neural networks (CNN) (Krizhevsky et al.,
2012), a strong model when it is adapted to novel tasks
(Donahue et al., 2014; Hoffman et al., 2014). The main
challenge is that the target domain has no or just limited
labeled information, hence directly adapting CNN to the
target domain via fine-tuning is impossible or is prone to
over-fitting. With the idea of domain adaptation, we are
targeting a deep adaptation network (DAN) that can exploit
both source-labeled data and target-unlabeled data. Fig-
ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,
2012), which is comprised of five convolutional layers
(conv1–conv5) and three fully connected layers (fc6–
fc8). Each fc layer % learns a nonlinear mapping h!

i =
f !
(

W!h!−1
i + b!

)

, where h!
i is the %th layer hidden rep-

resentation of point xi, W! and b! are the weights and bias
of the %th layer, and f ! is the activation, taking as recti-
fier units f !(x) = max(0,x) for hidden layers or softmax
units f ! (x) = ex/

∑|x|
j=1 e

xj for the output layer. Letting

DMMD[P, Q, K] ≜ ∥(𝔼P[ϕ(X)] − 𝔼Q[ϕ(Y )])∥ℋK



Comparisons of MMD-based domain adaptation 
methods

• Office+Caltech Benchmark 

•

Deep Transfer Learning with Joint Adaptation Networks

Table 1. Classification accuracy (%) on Office-31 dataset for unsupervised domain adaptation (AlexNet and ResNet)
Method A ! W D ! W W ! D A ! D D ! A W ! A Avg

AlexNet (Krizhevsky et al., 2012) 61.6±0.5 95.4±0.3 99.0±0.2 63.8±0.5 51.1±0.6 49.8±0.4 70.1
TCA (Pan et al., 2011) 61.0±0.0 93.2±0.0 95.2±0.0 60.8±0.0 51.6±0.0 50.9±0.0 68.8

GFK (Gong et al., 2012) 60.4±0.0 95.6±0.0 95.0±0.0 60.6±0.0 52.4±0.0 48.1±0.0 68.7
DDC (Tzeng et al., 2014) 61.8±0.4 95.0±0.5 98.5±0.4 64.4±0.3 52.1±0.6 52.2±0.4 70.6
DAN (Long et al., 2015) 68.5±0.5 96.0±0.3 99.0±0.3 67.0±0.4 54.0±0.5 53.1±0.5 72.9
RTN (Long et al., 2016) 73.3±0.3 96.8±0.2 99.6±0.1 71.0±0.2 50.5±0.3 51.0±0.1 73.7

RevGrad (Ganin & Lempitsky, 2015) 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3
JAN (ours) 74.9±0.3 96.6±0.2 99.5±0.2 71.8±0.2 58.3±0.3 55.0±0.4 76.0

JAN-A (ours) 75.2±0.4 96.6±0.2 99.6±0.1 72.8±0.3 57.5±0.2 56.3±0.2 76.3
ResNet (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
TCA (Pan et al., 2011) 72.7±0.0 96.7±0.0 99.6±0.0 74.1±0.0 61.7±0.0 60.9±0.0 77.6

GFK (Gong et al., 2012) 72.8±0.0 95.0±0.0 98.2±0.0 74.5±0.0 63.4±0.0 61.0±0.0 77.5
DDC (Tzeng et al., 2014) 75.6±0.2 96.0±0.2 98.2±0.1 76.5±0.3 62.2±0.4 61.5±0.5 78.3
DAN (Long et al., 2015) 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
RTN (Long et al., 2016) 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

RevGrad (Ganin & Lempitsky, 2015) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN (ours) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

JAN-A (ours) 86.0±0.4 96.7±0.3 99.7±0.1 85.1±0.4 69.2±0.4 70.7±0.5 84.6

Table 2. Classification accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (AlexNet and ResNet)
Method I ! P P ! I I ! C C ! I C ! P P ! C Avg

AlexNet (Krizhevsky et al., 2012) 66.2±0.2 70.0±0.2 84.3±0.2 71.3±0.4 59.3±0.5 84.5±0.3 73.9
DAN (Long et al., 2015) 67.3±0.2 80.5±0.3 87.7±0.3 76.0±0.3 61.6±0.3 88.4±0.2 76.9
RTN (Long et al., 2016) 67.4±0.3 81.3±0.3 89.5±0.4 78.0±0.2 62.0±0.2 89.1±0.1 77.9

JAN (ours) 67.2±0.5 82.8±0.4 91.3±0.5 80.0±0.5 63.5±0.4 91.0±0.4 79.3
ResNet (He et al., 2016) 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN (Long et al., 2015) 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
RTN (Long et al., 2016) 74.6±0.3 85.8±0.1 94.3±0.1 85.9±0.3 71.7±0.3 91.2±0.4 83.9

JAN (ours) 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8

tions of network activations in all domain-specific layers to
fully correct the shifts in joint distributions across domains.
Although both JAN and DAN (Long et al., 2015) adapt mul-
tiple domain-specific layers, the improvement from DAN to
JAN is crucial for the domain adaptation performance: JAN
uses a JMMD penalty to reduce the shift in the joint distribu-
tions of multiple task-specific layers, which reflects the shift
in the joint distributions of input features and output labels;
DAN needs multiple MMD penalties, each independently
reducing the shift in the marginal distribution of each layer,
assuming feature layers and classifier layer are independent.

By going from AlexNet to extremely deep ResNet, we can
attain a more in-depth understanding of feature transferabil-
ity. (1) ResNet-based methods outperform AlexNet-based
methods by large margins. This validates that very deep
convolutional networks, e.g. VGGnet (Simonyan & Zisser-
man, 2015), GoogLeNet (Szegedy et al., 2015), and ResNet,
not only learn better representations for general vision tasks
but also learn more transferable representations for domain
adaptation. (2) The JAN models significantly outperform
ResNet-based methods, revealing that even very deep net-
works can only reduce, but not remove, the domain discrep-
ancy. (3) The boost of JAN over ResNet is more significant
than the improvement of JAN over AlexNet. This implies

that JAN can benefit from more transferable representations.

The great aspect of JAN is that via the kernel trick there is
no need to train a separate network to maximize the MMD
criterion (5) for the ball of a RKHS. However, this has the
disadvantage that some kernels used in practice are unsuit-
able for capturing very complex distances in high dimen-
sional spaces such as natural images (Arjovsky et al., 2017).
The JAN-A model significantly outperforms the previous do-
main adversarial deep network (Ganin & Lempitsky, 2015).
The improvement from JAN to JAN-A also demonstrates the
benefit of adversarial training for optimizing the JMMD in
a richer function class. By maximizing the JMMD criterion
with respect to a separate network, JAN-A can maximize the
distinguishability of source and target distributions. Adapt-
ing domains against deep features where their distributions
maximally differ, we can enhance the feature transferability.

The three domains in ImageCLEF-DA are more balanced
than those of Office-31. With these more balanced transfer
tasks, we are expecting to testify whether transfer learning
improves when domain sizes do not change. The classifica-
tion accuracy results based on both AlexNet and ResNet are
shown in Table 2. The JAN models outperform comparison
methods on most transfer tasks, but by less improvements.
This means the difference in domain sizes may cause shift.

Long et. al. (2017). Deep Transfer Learning with Joint Adaptation Networks.



Adversarial-based approach

• Adopt adversarial training in learning transferable 
representation.8 Chuanqi Tan et al.
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Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small di↵erence between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

The adversarial-based deep transfer learning has obtained the flourishing

development in recent years due to its good e↵ect and strong practicality. [1]

introduce adversarial technology to transfer learning for domain adaption, by

using a domain adaptation regularization term in the loss function. [5] proposed

an adversarial training method that suitable for most any feed-forward neural

model by augmenting it with few standard layers and a simple new gradient

reversal layer. [21] proposed a approach transfer knowledge cross-domain and

cross-task simultaneity for sparsely labeled target domain data. A special joint

loss function was used in this work to force CNN to optimize both the distance

between domains which defined as LD = Lc+�Ladver, where Lc is classification

loss, Ladver is domain adversarial loss. Because the two losses stand in direct

opposition to one another, an iterative optimize algorithm are introduced to

update one loss when fixed another. [22] proposed a new GAN loss and com-

bine with discriminative modeling to a new domain adaptation method. [13]

proposed a randomized multi-linear adversarial networks to exploit multiple fea-

ture layers and the classifier layer based on a randomized multi-linear adversary

to enable both deep and discriminative adversarial adaptation. [16] utilize a

domain adversarial loss, and generalizes the embedding to novel task using a

metric learning-based approach to find more tractable features in deep transfer

learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep

transfer learning. Deep transfer learning is classified into four categories for the

Effective features  should be discriminative for the main learning task and 
 indiscriminative between the source domain and target domain.



Adversarial-based approach

• Standard deep neural network training

A Survey on Deep Transfer Learning 7
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Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.

forward pass

back-propagation

L( f(x), y)Input

δL
δθy

 Ajakan et al. (2014) Domain-adversarial neural networks.



Domain Adversarial Neural Networks

• Gradient Reversal

L( f(xs), ys)

Input

8 Chuanqi Tan et al.
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Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small di↵erence between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

The adversarial-based deep transfer learning has obtained the flourishing

development in recent years due to its good e↵ect and strong practicality. [1]

introduce adversarial technology to transfer learning for domain adaption, by

using a domain adaptation regularization term in the loss function. [5] proposed

an adversarial training method that suitable for most any feed-forward neural

model by augmenting it with few standard layers and a simple new gradient

reversal layer. [21] proposed a approach transfer knowledge cross-domain and

cross-task simultaneity for sparsely labeled target domain data. A special joint

loss function was used in this work to force CNN to optimize both the distance

between domains which defined as LD = Lc+�Ladver, where Lc is classification

loss, Ladver is domain adversarial loss. Because the two losses stand in direct

opposition to one another, an iterative optimize algorithm are introduced to

update one loss when fixed another. [22] proposed a new GAN loss and com-

bine with discriminative modeling to a new domain adaptation method. [13]

proposed a randomized multi-linear adversarial networks to exploit multiple fea-

ture layers and the classifier layer based on a randomized multi-linear adversary

to enable both deep and discriminative adversarial adaptation. [16] utilize a

domain adversarial loss, and generalizes the embedding to novel task using a

metric learning-based approach to find more tractable features in deep transfer

learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep

transfer learning. Deep transfer learning is classified into four categories for the
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Domain Adversarial Neural Networks (DANN)

• DNN adapted feature distribution

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.

22

source domain (MINIST)

target domain (MNIST-M)

TSNE visualization of CNN extracted features

Non-Adapted Adapted

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.

24

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.

24

 Ajakan et al. (2014) Domain-adversarial neural networks.



Domain Adaptation Discussion

• Instance-based approach: select and reweight instances in the 
source domain to be similar to the target distribution 

• Mapping-based approach: map source and target data to 
latent space where source and target domains are similar 

• Adversarial-based approach: find features that are 
indiscriminative between source and target domains 

Why does such methods work? A detour to learning theory

easy to implement, work with any base classifiers

easy to incorporate to neural network training

good performance in computer vision



Transfer Bounds for Domain Adaptation

• Given input            with discrete alphabet     and label  

• A hypothesis is a function                  

• Error (risk) of hypothesis    : 

• Empirical risk of hypothesis      given N samples            drawn 
i.i.d. from    : 

• Source risk:  

• Target risk: 

{(xi, yi); i = 1,…, N}

y ∈ {0,1}

ϵ(h) = 𝔼x∼D[ |h(x) − y | ]

x ∼ D

h : 𝒳 → {0,1}
h

h

̂ϵ(h) =
1
N

N

∑
i=1

|h(xi) − yi |

D
(xi, yi)

ϵS(h) = 𝔼xS∼P[ |h(xS) − yS | ]

ϵT(h) = 𝔼xT∼Q[ |h(xT) − yT | ]

𝒳



Transfer Bounds for Domain Adaptation

Theorem. Let            be a hypothesis,         and          be risks of 
source and target respectively, then 

where              

  

is the H-divergence between P and Q.

h ∈ ℋ ϵS(h) ϵT(h)

ϵT(h) ≤ ϵS(h) + dℋ(P, Q) + C0

dℋ(P, Q) ≜ 2 sup
η∈ℋ

Pr
P

[η(xS) = 1] − Pr
Q

[η(xT) = 1]

C0: a constant for the 
complexity of H 

Make P and Q as 
indistinguishable as possible 

Decrease the upper bound 
on target risk !

e.g. minimize MMD, MK-MMD, domain 
discriminative loss, etc

Ben-David et.al. (2010). A theory of learning from different domains

Lemma. The H-divergence can be bounded by the empirical estimate:

dℋ(P, Q) ≤ ̂dℋ(P, Q) + C1



Today’s Talk

• What’s Transfer Learning 

• Transfer Learning Techniques 

• Task transfer learning 

• Domain adaptation 

• Transfer bound on domain adaptation   

• How to avoid negative transfer?   

• Case study on feature transferability in vision 

• Task transferability: empirical and theoretical methods 

• Discussions and Q&A



Where to start fine-tuning?

• Use pre-trained model 
as a fixed feature 
extractor  

• Fine-tune all the way 

• Fine-tune first k layers

A Survey on Deep Transfer Learning 7

^ŽƵƌĐĞ��ŽŵĂŝŶ

dĂƌŐĞƚ��ŽŵĂŝŶ

dƌĂŶƐĨĞƌ

ĊĊ

ĊĊ

Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.
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Which layers to transfer?

A case study using ImageNet classification tasks (trained on 7  
CNN layers + output layer) 
 Dissimilar tasks 
• Task A: Man-made object classification   
• Task B: Natural object classification 

 Yosinski et.al. (2014)  How transferable are features in deep neural networks?   
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Figure 3: Performance degradation vs. layer. Top left: Degradation when transferring between dis-
similar tasks (from man-made classes of ImageNet to natural classes or vice versa). The upper line
connects networks trained to the “natural” target task, and the lower line connects those trained to-
ward the “man-made” target task. Top right: Performance when the first n layers consist of random,
untrained weights. Bottom: The top two plots compared to the random A/B split from Section 4.1
(red diamonds), all normalized by subtracting their base level performance.

dataset, making their random filters perform better by comparison. In the supplementary material,
we provide an extra experiment indicating the extent to which our networks are overfit.

5 Conclusions
We have demonstrated a method for quantifying the transferability of features from each layer of
a neural network, which reveals their generality or specificity. We showed how transferability is
negatively affected by two distinct issues: optimization difficulties related to splitting networks in
the middle of fragilely co-adapted layers and the specialization of higher layer features to the original
task at the expense of performance on the target task. We observed that either of these two issues
may dominate, depending on whether features are transferred from the bottom, middle, or top of
the network. We also quantified how the transferability gap grows as the distance between tasks
increases, particularly when transferring higher layers, but found that even features transferred from
distant tasks are better than random weights. Finally, we found that initializing with transferred
features can improve generalization performance even after substantial fine-tuning on a new task,
which could be a generally useful technique for improving deep neural network performance.
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Which layers to transfer?

A case study using ImageNet classification tasks (trained on 7  
CNN layers + output layer) 
• Similar tasks: Random A/B split (500 classes in each task) 
• Dissimilar tasks: Man-made (A) -> Natural (B) 
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We have demonstrated a method for quantifying the transferability of features from each layer of
a neural network, which reveals their generality or specificity. We showed how transferability is
negatively affected by two distinct issues: optimization difficulties related to splitting networks in
the middle of fragilely co-adapted layers and the specialization of higher layer features to the original
task at the expense of performance on the target task. We observed that either of these two issues
may dominate, depending on whether features are transferred from the bottom, middle, or top of
the network. We also quantified how the transferability gap grows as the distance between tasks
increases, particularly when transferring higher layers, but found that even features transferred from
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which could be a generally useful technique for improving deep neural network performance.
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Fine-Tune Selected Layers

Guo et.al. (2019) SpotTune: Transfer Learning through Adaptive Fine-tuning 

• for each training instance, adaptively decide which sets of 
layers to fine tune

SpotTune: Transfer Learning through Adaptive Fine-tuning

Yunhui Guo⇤1,2, Honghui Shi1, Abhishek Kumar†, Kristen Grauman3, Tajana Rosing2, Rogerio Feris1
1IBM Research & MIT-IBM Watson AI Lab, 2University of California, San Diego, 3The University of Texas at Austin

Abstract

Transfer learning, which allows a source task to affect

the inductive bias of the target task, is widely used in com-

puter vision. The typical way of conducting transfer learn-

ing with deep neural networks is to fine-tune a model pre-

trained on the source task using data from the target task.

In this paper, we propose an adaptive fine-tuning approach,

called SpotTune, which finds the optimal fine-tuning strat-

egy per instance for the target data. In SpotTune, given

an image from the target task, a policy network is used

to make routing decisions on whether to pass the image

through the fine-tuned layers or the pre-trained layers. We

conduct extensive experiments to demonstrate the effective-

ness of the proposed approach. Our method outperforms

the traditional fine-tuning approach on 12 out of 14 stan-

dard datasets. We also compare SpotTune with other state-

of-the-art fine-tuning strategies, showing superior perfor-

mance. On the Visual Decathlon datasets, our method

achieves the highest score across the board without bells

and whistles.

1. Introduction

Deep learning has shown remarkable success in many
computer vision tasks, but current methods often rely on
large amounts of labeled training data [22, 15, 16]. Trans-

fer learning, where the goal is to transfer knowledge from
a related source task, is commonly used to compensate for
the lack of sufficient training data in the target task [35, 3].
Fine-tuning is arguably the most widely used approach for
transfer learning when working with deep learning mod-
els. It starts with a pre-trained model on the source task
and trains it further on the target task. For computer vision
tasks, it is a common practice to work with ImageNet pre-
trained models for fine-tuning [20]. Compared with training
from scratch, fine-tuning a pre-trained convolutional neural
network on a target dataset can significantly improve per-
formance, while reducing the target labeled data require-
ments [14, 51, 44, 20].

⇤This work was done when Yunhui Guo was an intern at IBM Research.
†Abhishek Kumar is now with Google Brain. The work was done when he
was at IBM Research.

Figure 1: Given a deep neural network pre-trained on a
source task, we address the question of where to fine-tune

its parameters with examples of the target task. We propose
a novel method that decides, per training example, which
layers of the pre-trained model should have their parame-
ters fixed, i.e., shared with the source task, and which layers
should be fine-tuned to improve the accuracy of the model
in the target domain.

There are several choices when it comes to realizing the
idea of fine-tuning of deep networks in practice. A natural
approach is to optimize all the parameters of the deep net-
work using the target training data (after initializing them
with the parameters of the pre-trained model). However, if
the target dataset is small and the number of parameters is
huge, fine-tuning the whole network may result in overfit-
ting [51]. Alternatively, the last few layers of the deep net-
work can be fine-tuned while freezing the parameters of the
remaining initial layers to their pre-trained values [44, 1].
This is driven by a combination of limited training data in
the target task and the empirical evidence that initial layers
learn low-level features that can be directly shared across
various computer vision tasks. However, the number of ini-
tial layers to freeze during fine-tuning still remains a man-

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.



How to Measure Task Transferability?

investigated the transferability 
among 26 image-based indoor scene 
understanding tasks on low-data 
scenario   
Main steps: 
1. train task-specific networks 

(source models) on all data 
2. For each S-T task pair, train a 

transfer network on a small 
validation dataset (20,000 
images) 

 Zamir et.al. (2018)  Taskonomy: Disentangling Task Transfer Learning   
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Figure 2: Computational modeling of task relations and creating the taxonomy. From left to right: I. Train task-specific networks. II. Train (first
order and higher) transfer functions among tasks in a latent space. III. Get normalized transfer affinities using AHP (Analytic Hierarchy Process). IV. Find
global transfer taxonomy using BIP (Binary Integer Program).

to map a hypothesis for one task onto a hypothesis for an-
other [7], through information-based approaches [60], or
through modeling inductive bias [6]. For these guarantees,
learning theoretic approaches usually rely on intractable
computations, or avoid such computations by restricting the
model or task. Our method draws inspiration from theoreti-
cal approaches but eschews (for now) theoretical guarantees
in order to use modern neural machinery.

3. Method
We define the problem as follows: we want to max-

imize the collective performance on a set of tasks T =
{t1, ..., tn}, subject to the constraint that we have a limited
supervision budget � (due to financial, computational, or
time constraints). We define our supervision budget � to be
the maximum allowable number of tasks that we are willing
to train from scratch (i.e. source tasks). The task dictionary
is defined as V=T [S where T is the set of tasks which we
want solved (target), and S is the set of tasks that can be
trained (source). Therefore, T � T \ S are the tasks that
we want solved but cannot train (“target-only”), T \ S are
the tasks that we want solved but could play as source too,
and S � T \ S are the “source-only” tasks which we may
not directly care about to solve (e.g. jigsaw puzzle) but can
be optionally used if they increase the performance on T .

The task taxonomy (taskonomy) is a computationally
found directed hypergraph that captures the notion of task
transferability over any given task dictionary. An edge be-
tween a group of source tasks and a target task represents a
feasible transfer case and its weight is the prediction of its
performance. We use these edges to estimate the globally
optimal transfer policy to solve T . Taxonomy produces a
family of such graphs, parameterized by the available su-
pervision budget, chosen tasks, transfer orders, and transfer
functions’ expressiveness.

Taxonomy is built using a four step process depicted in
Fig. 2. In stage I, a task-specific network for each task in S

Query Image

AutoencodingIn-painting

Object Class. Scene Class.

Jigsaw puzzle Colorization 2D Segm. 2.5D Segm. Semantic Segm.
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Top 2 prediction:
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television room

Figure 3: Task Dictionary. Outputs of 24 (of 26) task-specific networks
for a query (top left). See results of applying frame-wise on a video here.

is trained. In stage II, all feasible transfers between sources
and targets are trained. We include higher-order transfers
which use multiple inputs task to transfer to one target. In
stage III, the task affinities acquired from transfer function
performances are normalized, and in stage IV, we synthe-
size a hypergraph which can predict the performance of any
transfer policy and optimize for the optimal one.

A vision task is an abstraction read from a raw image.
We denote a task t more formally as a function ft which
maps image I to ft(I). Our dataset, D, contains for each
task t a set of training pairs (I, ft(I)), e.g. (image, depth).

3



How to Measure Task Transferability?

• Visual transferability results
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Source Task Encoder Target Task Output
(e.g., curvature)Frozen

Representation Transfer Function

2nd order
3rd order

...

(e.g., surface normal)

I sE s→tD

sE (I)

Figure 4: Transfer Function. A small readout function is trained to map
representations of source task’s frozen encoder to target task’s labels. If
order> 1, transfer function receives representations from multiple sources.

Task Dictionary: Our mapping of task space is done
via (26) tasks included in the dictionary, so we ensure they
cover common themes in computer vision (2D, 3D, seman-
tics, etc) to elucidate fine-grained structures of task space.
See Fig. 3 for some of the tasks with detailed definition of
each task provided in the supplementary material. We in-
clude tasks with various levels of abstraction, ranging from
solvable by a simple kernel convolved over the image (e.g.
edge detection) to tasks requiring basic understanding of
scene geometry (e.g. vanishing points) and more abstract
ones involving semantics (e.g. scene classification).

It is critical to note the task dictionary is meant to be a
sampled set, not an exhaustive list, from a denser space of
all conceivable visual tasks/abstractions. Sampling gives us
a tractable way to sparsely model a dense space, and the hy-
pothesis is that (subject to a proper sampling) the derived
model should generalize to out-of-dictionary tasks. The
more regular / better sampled the space, the better the gen-
eralization. We evaluate this in Sec. 4.2 with supportive
results. For evaluation of the robustness of results w.r.t the
choice of dictionary, see the supplementary material.

Dataset: We need a dataset that has annotations for ev-

ery task on every image. Training all of our tasks on exactly
the same pixels eliminates the possibility that the observed
transferabilities are affected by different input data pecu-
liarities rather than only task intrinsics. There has not been
such a dataset of scale made of real images, so we created
a dataset of 4 million images of indoor scenes from about
600 buildings; every image has an annotation for every task.
The images are registered on and aligned with building-
wide meshes similar to [3, 101, 14] enabling us to program-
matically compute the ground truth for many tasks without
human labeling. For the tasks that still require labels (e.g.
scene classes), we generate them using Knowledge Distil-
lation [43] from known methods [104, 57, 56, 78]. See the
supplementary material for full details of the process and
a user study on the final quality of labels generated using
Knowledge Distillation (showing < 7% error).

3.1. Step I: Task-Specific Modeling
We train a fully supervised task-specific network for

each task in S . Task-specific networks have an encoder-
decoder architecture homogeneous across all tasks, where
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this case. Task-specific networks were trained on 60x more data. “Scratch”
was trained from scratch without transfer learning.

the encoder is large enough to extract powerful represen-
tations, and the decoder is large enough to achieve a good
performance but is much smaller than the encoder.

3.2. Step II: Transfer Modeling
Given a source task s and a target task t, where s 2 S

and t 2 T , a transfer network learns a small readout func-
tion for t given a statistic computed for s (see Fig 4). The
statistic is the representation for image I from the encoder
of s: Es(I). The readout function (Ds!t) is parameterized
by ✓s!t minimizing the loss Lt:

Ds!t := argmin
✓

EI2D

h
Lt

⇣
D✓

�
Es(I)

�
, ft(I)

⌘i
, (1)

where ft(I) is ground truth of t for image I . Es(I) may or
may not be sufficient for solving t depending on the relation
between t and s (examples in Fig. 5). Thus, the performance
of Ds!t is a useful metric as task affinity. We train transfer
functions for all feasible source-target combinations.

Accessibility: For a transfer to be successful, the latent
representation of the source should both be inclusive of suf-
ficient information for solving the target and have the in-
formation accessible, i.e. easily extractable (otherwise, the
raw image or its compression based representations would
be optimal). Thus, it is crucial for us to adopt a low-capacity
(small) architecture as transfer function trained with a small
amount of data, in order to measure transferability condi-
tioned on being highly accessible. We use a shallow fully
convolutional network and train it with little data (8x to
120x less than task-specific networks).

Higher-Order Transfers: Multiple source tasks can
contain complementary information for solving a target task
(see examples in Fig 6). We include higher-order transfers
which are the same as first order but receive multiple rep-
resentations in the input. Thus, our transfers are functions
D : }(S) ! T , where } is the powerset operator.

As there is a combinatorial explosion in the number of
feasible higher-order transfers (|T | ⇥

�|S|
k

�
for kth order),

we employ a sampling procedure with the goal of filtering
out higher-order transfers that are less likely to yield good
results, without training them. We use a beam search: for

4

On Validation Dataset (1/60 training data)
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How to Measure Task Transferability?

• Raw losses from transfer functions have different scales
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Image GT (Normals) Fully Supervised Image GT (Reshade) Fully Supervised

{ 3D Keypoints Surface Normals } 2
nd

 order transfer+ ={ Occlusion Edges Curvature } 2
nd

 order transfer+ =

Figure 6: Higher-Order Transfers. Representations can contain com-
plementary information. E.g. by transferring simultaneously from 3D
Edges and Curvature individual stairs were brought out. See our publicly
available interactive transfer visualization page for more examples.

transfers of order k  5 to a target, we select its 5 best
sources (according to 1st order performances) and include
all of their order-k combination. For k � 5, we use a beam
of size 1 and compute the transfer from the top k sources.

Transitive Transfers: We examined if transitive task
transfers (s ! t1 ! t2) could improve the performance
over their direct counterpart (a ! t2), but found that the
two had equal performance in almost all cases in both high-
data and low-data scenarios. The experiment is provided in
the supplementary material. Therefore, we need not con-
sider the cases where branching would be more than one
level deep when searching for the optimal transfer path.

3.3. Step III: Ordinal Normalization using Analytic
Hierarchy Process (AHP)

We want to have an affinity matrix of transferabilities
across tasks. Aggregating the raw losses/evaluations Ls!t

from transfer functions into a matrix is obviously problem-
atic as they have vastly different scales and live in different
spaces (see Fig. 7-left). Hence, a proper normalization is
needed. A naive solution would be to linearly rescale each
row of the matrix to the range [0, 1]. This approach fails
when the actual output quality increases at different speeds
w.r.t. the loss. As the loss-quality curve is generally un-
known, such approaches to normalization are ineffective.

Instead, we use an ordinal approach in which the output
quality and loss are only assumed to change monotonically.
For each t, we construct Wt a pairwise tournament matrix
between all feasible sources for transferring to t. The ele-
ment at (i, j) is the percentage of images in a held-out test
set, Dtest, on which si transfered to t better than sj did (i.e.
Dsi!t(I) > Dsj!t(I)).

We clip this intermediate pairwise matrix Wt to be in
[0.001, 0.999] as a form of Laplace smoothing. Then we
divide W 0

t = Wt/WT
t so that the matrix shows how many

times better si is compared to sj . The final tournament ratio
matrix is positive reciprocal with each element w0

i,j of W 0
t :

w0
i,j =

EI2Dtest
[Dsi!t(I) > Dsj!t(I)]

EI2Dtest
[Dsi!t(I) < Dsj!t(I)]

. (2)

We quantify the final transferability of si to t as the cor-

A
ut

oe
nc

od
in

g

Sc
en

e 
C

la
ss

C
ur

va
tu

re
D

en
oi

si
ng

2D
 E

dg
es

O
cc

lu
si

on
 E

dg
es

2D
 K

ey
po

in
t

3D
 K

ey
po

in
t

R
es

ha
di

ng
Z

-D
ep

th
D

is
ta

nc
e

N
or

m
al

s
E

go
m

ot
io

n

V
an

is
hi

ng
 P

ts
.

2D
 S

eg
m

.
2.

5D
 S

eg
m

.

C
am

. P
os

e 
(f

ix
)

C
am

. P
os

e 
(n

on
fi

x)
L

ay
ou

t
M

at
ch

in
g

Se
m

an
tic

 S
eg

m
.

Ji
gs

aw

In
-P

ai
nt

in
g

C
ol

or
iz

at
io

n

R
an

do
m

 P
ro

j.

Ta
sk

-S
pe

ci
fi

c

O
bj

ec
t C

la
ss

 (
10

0)

A
ut

oe
nc

od
in

g
Sc

en
e 

C
la

ss

O
bj

ec
t C

la
ss

 (
10

0)

C
ol

or
iz

at
io

n
C

ur
va

tu
re

D
en

oi
si

ng
O

cc
lu

si
on

 E
dg

es

2D
 E

dg
es

E
go

m
ot

io
n

C
am

. P
os

e 
(f

ix
)

In
-P

ai
nt

in
g

Ji
gs

aw

2D
 K

ey
po

in
t

3D
 K

ey
po

in
t

C
am

. P
os

e 
(n

on
fi

x)
M

at
ch

in
g

R
an

do
m

 P
ro

j.
R

es
ha

di
ng

Z
-D

ep
th

D
is

ta
nc

e

2D
 S

eg
m

.

2.
5D

 S
eg

m
.

L
ay

ou
t

N
or

m
al

s

Se
m

an
tic

 S
eg

m
.

Ta
sk

-S
pe

ci
fi

c

V
an

is
hi

ng
 P

ts
.

Autoencoding
Object Class. (1000)

Scene Class
Curvature

Occlusion Edges
Egomotion

Cam. Pose (fix)
2D Keypoint

Layout

Matching

2D Segm.

Distance

2.5D Segm.

Z-Depth

Normals

3D Keypoint

Denoising
2D Edges

Cam. Pose (nonfix)

Reshading

Semantic Segm.
Vanishing Pts.

O
bj

ec
t C

la
ss

. (
10

00
)

O
bj

ec
t C

la
ss

. (
10

00
)

Figure 7: First-order task affinity matrix before (left) and after (right)
Analytic Hierarchy Process (AHP) normalization. Lower means better
transfered. For visualization, we use standard affinity-distance method
dist = e��·P (where � = 20 and e is element-wise matrix exponential).
See supplementary material for the full matrix with higher-order transfers.

responding (ith) component of the principal eigenvector of
W 0

t (normalized to sum to 1). The elements of the principal
eigenvector are a measure of centrality, and are proportional
to the amount of time that an infinite-length random walk on
W 0

t will spend at any given source [62]. We stack the prin-
cipal eigenvectors of W 0

t for all t 2 T , to get an affinity
matrix P (‘p’ for performance)—see Fig. 7, right.

This approach is derived from Analytic Hierarchy Pro-
cess [79], a method widely used in operations research to
create a total order based on multiple pairwise comparisons.

3.4. Step IV: Computing the Global Taxonomy
Given the normalized task affinity matrix, we need to

devise a global transfer policy which maximizes collective
performance across all tasks, while minimizing the used su-
pervision. This problem can be formulated as subgraph se-
lection where tasks are nodes and transfers are edges. The
optimal subgraph picks the ideal source nodes and the best
edges from these sources to targets while satisfying that
the number of source nodes does not exceed the supervi-
sion budget. We solve this subgraph selection problem us-
ing Boolean Integer Programming (BIP), described below,
which can be solved optimally and efficiently [41, 16].

Our transfers (edges), E, are indexed by i with the form
({si1, . . . , simi

}, ti) where {si1, . . . , simi
} ⇢ S and ti 2 T .

We define operators returning target and sources of an edge:

�
{si1, . . . , simi

}, ti
� sources7�����! {si1, . . . , simi

}
�
{si1, . . . , simi

}, ti
� target7����! ti.

Solving a task t by fully supervising it is denoted as
�
{t}, t

�
.

We also index the targets T with j so that in this section, i
is an edge and j is a target.

The parameters of the problem are: the supervision bud-
get (�) and a measure of performance on a target from each
of its transfers (pi), i.e. the affinities from P . We can also
optionally include additional parameters of: rj specifying
the relative importance of each target task and `i specifying
the relative cost of acquiring labels for each task.

5

 performance increases at different 
speed with respective to loss !

• Naive solution: linear rescale



How to Measure Task Transferability?

• Analytic Hierarchy Process (AHP): an ordinal normalization 
approach (Saaty 1987)
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Image GT (Normals) Fully Supervised Image GT (Reshade) Fully Supervised

{ 3D Keypoints Surface Normals } 2
nd

 order transfer+ ={ Occlusion Edges Curvature } 2
nd

 order transfer+ =

Figure 6: Higher-Order Transfers. Representations can contain com-
plementary information. E.g. by transferring simultaneously from 3D
Edges and Curvature individual stairs were brought out. See our publicly
available interactive transfer visualization page for more examples.

transfers of order k  5 to a target, we select its 5 best
sources (according to 1st order performances) and include
all of their order-k combination. For k � 5, we use a beam
of size 1 and compute the transfer from the top k sources.

Transitive Transfers: We examined if transitive task
transfers (s ! t1 ! t2) could improve the performance
over their direct counterpart (a ! t2), but found that the
two had equal performance in almost all cases in both high-
data and low-data scenarios. The experiment is provided in
the supplementary material. Therefore, we need not con-
sider the cases where branching would be more than one
level deep when searching for the optimal transfer path.

3.3. Step III: Ordinal Normalization using Analytic
Hierarchy Process (AHP)

We want to have an affinity matrix of transferabilities
across tasks. Aggregating the raw losses/evaluations Ls!t

from transfer functions into a matrix is obviously problem-
atic as they have vastly different scales and live in different
spaces (see Fig. 7-left). Hence, a proper normalization is
needed. A naive solution would be to linearly rescale each
row of the matrix to the range [0, 1]. This approach fails
when the actual output quality increases at different speeds
w.r.t. the loss. As the loss-quality curve is generally un-
known, such approaches to normalization are ineffective.

Instead, we use an ordinal approach in which the output
quality and loss are only assumed to change monotonically.
For each t, we construct Wt a pairwise tournament matrix
between all feasible sources for transferring to t. The ele-
ment at (i, j) is the percentage of images in a held-out test
set, Dtest, on which si transfered to t better than sj did (i.e.
Dsi!t(I) > Dsj!t(I)).

We clip this intermediate pairwise matrix Wt to be in
[0.001, 0.999] as a form of Laplace smoothing. Then we
divide W 0

t = Wt/WT
t so that the matrix shows how many

times better si is compared to sj . The final tournament ratio
matrix is positive reciprocal with each element w0

i,j of W 0
t :

w0
i,j =

EI2Dtest
[Dsi!t(I) > Dsj!t(I)]

EI2Dtest
[Dsi!t(I) < Dsj!t(I)]

. (2)

We quantify the final transferability of si to t as the cor-
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Figure 7: First-order task affinity matrix before (left) and after (right)
Analytic Hierarchy Process (AHP) normalization. Lower means better
transfered. For visualization, we use standard affinity-distance method
dist = e��·P (where � = 20 and e is element-wise matrix exponential).
See supplementary material for the full matrix with higher-order transfers.

responding (ith) component of the principal eigenvector of
W 0

t (normalized to sum to 1). The elements of the principal
eigenvector are a measure of centrality, and are proportional
to the amount of time that an infinite-length random walk on
W 0

t will spend at any given source [62]. We stack the prin-
cipal eigenvectors of W 0

t for all t 2 T , to get an affinity
matrix P (‘p’ for performance)—see Fig. 7, right.

This approach is derived from Analytic Hierarchy Pro-
cess [79], a method widely used in operations research to
create a total order based on multiple pairwise comparisons.

3.4. Step IV: Computing the Global Taxonomy
Given the normalized task affinity matrix, we need to

devise a global transfer policy which maximizes collective
performance across all tasks, while minimizing the used su-
pervision. This problem can be formulated as subgraph se-
lection where tasks are nodes and transfers are edges. The
optimal subgraph picks the ideal source nodes and the best
edges from these sources to targets while satisfying that
the number of source nodes does not exceed the supervi-
sion budget. We solve this subgraph selection problem us-
ing Boolean Integer Programming (BIP), described below,
which can be solved optimally and efficiently [41, 16].

Our transfers (edges), E, are indexed by i with the form
({si1, . . . , simi

}, ti) where {si1, . . . , simi
} ⇢ S and ti 2 T .

We define operators returning target and sources of an edge:

�
{si1, . . . , simi

}, ti
� sources7�����! {si1, . . . , simi

}
�
{si1, . . . , simi

}, ti
� target7����! ti.

Solving a task t by fully supervising it is denoted as
�
{t}, t

�
.

We also index the targets T with j so that in this section, i
is an edge and j is a target.

The parameters of the problem are: the supervision bud-
get (�) and a measure of performance on a target from each
of its transfers (pi), i.e. the affinities from P . We can also
optionally include additional parameters of: rj specifying
the relative importance of each target task and `i specifying
the relative cost of acquiring labels for each task.

5

normalized results

Can we estimate transferability without 
relying on gradient descent?



Measure Task Transferability Analytically

A simple task transfer learning model (with linear fine-tuning)

 Bao & Li et.al. (2019)  An Information-Theoretic Metric for Task Transfera 
Learning  

Source task 
label YS

Target task label 
YT

A Survey on Deep Transfer Learning 7

^ŽƵƌĐĞ��ŽŵĂŝŶ

dĂƌŐĞƚ��ŽŵĂŝŶ

dƌĂŶƐĨĞƌ

ĊĊ

ĊĊ

Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.

freeze 
softmax 

layer
target task 

outputW

fS(Xt) 

Transferability from Task S to Task T

𝔗(S, T ) ≜
Target Performance of fS

Optimal Target Performance ☹︎
☺︎8

><

>:

T(S, T ) = 1

0  T(S, T )  1

T(S, T ) = 0

Xt

Yt

How to measure feature performance ?



• Error exponent Ef : the asymptotic rate at 
which the error probability of f(x) decays 
as m increases   

Feature performance via local information geometry

• Binary hypothesis testing of m observations of x:

— a statistical view of binary classification 

H0 : x ⇠ PX|Y=0, H1 : x ⇠ PX|Y=1

H0 H1

type II error

lim
m!1

� 1

m
log(Pe) = E

Theorem. (Huang et al. 2015) When          ,     
.          , and       are locally distributed,  for 
some constant   

Ef = cH(f)

PX|Y=1

PX|Y=0
PX

c > 0

H-score of f(X)

H(f) = tr(cov(f(X))�1cov(EPX|Y [f(X)|Y ]))



An Information-Theoretic Metric for Transferability

H-score of source feature 

• Easy to compute  

• O(mk2) time complexity

def Hscore(f,Y): 
    Covf=np.cov(f) 
    alphabetY=list(set(Y)) 
    g=np.zeros_like(f) 
    for z in alphabetY: 
        g[Y==y]=np.mean(f[Y==y,:], axis=0) 
    Covg=np.cov(g) 
    score=np.trace(np.dot(np.linalg.pinv(Covf, 

 rcond=1e-15), Covg)) 
return score 

𝔗(S, T ) ≜
Target Performance of fS

Optimal Target Performance
=

ℋT( fS)
ℋT( f*T )

Python Code 
for H-Score 

Maximal H-score:  

• Discrete X: Alternating Conditional Expectation (ACE) algorithm 

• Continuous X: Neural network formulation 

ℋT( f*T )

Makur et. al. (2015) An Efficient algorithm for information decomposition and 
extraction

Wang et. al. (2018) An Efficient Approach to Informative Feature Extraction from 
Multimodal Data

ℋT( fS)

In source feature task selection 
problems, only need to compute HT(fS) !



An Information-Theoretic Metric for 
Transferability

• Source task: ImageNet 1000 classification 
(ResNet50 features from 6 layers 4a-4f) 

• Target task: Cifar 100-class classification on 
20,000 images

H-score H-score

Lo
g 

4a

4b

4c

4d
4e

4f 4a

4b

4c
4d

4e
4f



An Information-Theoretic Metric for 
Transferability

Comparison with Task Affinity Score on 8 
vision tasks. 

• > 6 times faster  

• top three most transferable source 
tasks are consistent with Task Affinity 
on most target tasks

=
Transferability Affinity Rank Comparison

DCG

Transferability Affinity Rank Comparison

DCG

easy-to-compute, efficient 
transferability metric with strong 

operational meaning!



Other Analytical Transferability Metrics

• Transferability metrics for different transfer settings

Algorithm Different Tasks Different Instance Different Domain 

NCE (Tran et 
al. 2019) * ✓	 ⨯ ⨯

H-Score (Bao 
et al. 2019) ✓	 ✓	 ⨯

LEEP (Nguyen 
et al. 2020)** ✓	 ✓	 ⨯

OTCE (Y. Tan 
et al. under 

review) 
✓	 ✓	 ✓	

P(YS |XS) ≠ P(YT |XT) XS ≠ XT P(XS) ≠ P(XT)

** Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate trans- 953 
ferability of learned representations.ICML, 2020. 

* Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transfer- ability and hardness of supervised classification tasks. ICCV, 2019.



Today’s Talk

• What’s Transfer Learning 

• Transfer Learning Techniques 

• Task transfer learning 

• Domain adaptation 

• Transfer bound on domain adaptation   

• How to avoid negative transfer? 

• Case study on feature transferability 

• Task transferability: empirical and theoretical methods 

• Discussions and Q&A



Open Theoretical Questions

Can we find a transferability metric that … 

• accounts for domain difference 

• depends on target sample-size 

• Rademacher complexity for computable transfer bound 
(Maurer 2009) 

• depends on learning algorithm 

• Kolmogorov complexity-based task relatedness (Mahmud 
2007)



• Multi-source transfer learning: how to efficiently, adaptively 
combine features from multiple source tasks in transfer 
learning?  

Beyond Transfer Learning

challenge: efficient meta learning for heterogeneous tasks

known tasks

task A

task B

task C

task D

task E

• Meta learning: given data/experience on previous tasks, learn 
a new task more quickly   

• transfer learning is one common approach in meta learning



Book 

• Yang, Q  et al. (2019). Transfer Learning. Cambridge University Press 

Survey papers 

• Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. 
Lecture Notes in Computer Science, 11141 LNCS, 270–279.  

• Lisa Torrey and Jude Shavlik (2009). Transfer learning. Handbook of Research on Machine Learning 
Applications 

• Pan, S.J., Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowledge and data 
engineering 22(10), 1345–1359 

Related web links:  

• An Information-Theoretic Metric for Task Transfer Learning: http://yangli-feasibility.com/home/
ttl.html  

• Disentangling Task Transfer Learning: http://taskonomy.stanford.edu/

References & Resources

Lee, J. K., & Wornell, G. W. (2019). Learning New Tricks From Old Dogs : 
Multi-Source Transfer Learning From Pre-Trained Networks. 

Thank You!

http://yangli-feasibility.com/home/ttl.html
http://yangli-feasibility.com/home/ttl.html
http://taskonomy.stanford.edu/
http://yangli-feasibility.com/home/ttl.html
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