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Today’s Lecture

Correlation Analysis

▶ Review: CCA

▶ HGR maximal correlation

Spectral Graph Theory

▶ Similarity graphs

▶ Spectral clustering



3/29

Review: CCA Algorithm

Goal: Learn (linear) dependence between two sets of variables.
Input: Covariance matrices for centered data X and Y :

▶ ΣXY , invertible ΣXX and ΣYY

▶ Dimension k ≤ min(n1, n2)

Output: CCA projection matrices Ak and Bk :

▶ Compute Ω = Σ
− 1

2
XXΣXYΣ

− 1
2

YY

▶ Compute SVD decomposition of Ω

Ω =

 | . . . |
c1 . . . cn1
| . . . |
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T
1 −
...

−dT
n2−


▶ Ak = Σ

− 1
2

XX [c1, . . . , ck ] and Bk = Σ
− 1

2
YY [d1, . . . , dk ]
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Review: Discussion of CCA

▶ Applications:

▶ Co-clustering
▶ Multi-view regression

▶ CCA only measures linear
dependencies

▶ Non-linear generalizations:
▶ Kernel CCA (KCCA)
▶ Deep CCA (DCCA)
▶ Maximal HGR Correlation

x2

Chapter 2 The Preliminary

Figure 2.1 The HGR transformation results: the title of subplots is in the form of “y-axis vs.
x-axis”

Table 2.1 The value of correlations in the GMC solutions

1
d�1E[

Õ
i,j( fi(xi))T( fj(xj))] 0.642
E[ f1(x1) f2(x2)] -0.066
E[ f1(x1) f3(x3)] 0.631
E[ f2(x2) f3(x3)] 0.718

The value of correlations varies from di�erent variable pairs and it seems to be
reasonable. The correlation between f1(x1) and f2(x2) is very small because x1 and x2 are
independent. The subplots (f) ~(h) in Fig 2.2 can also indicate the degree of correlation
between each transformation pairs. Again the transformations on those variables clearly
reflect the true structure among them, they are all in the form fi(xi) = log |xi | as shown
in the subplots (c)~(e) in Fig 2.2. As a consequence, they satisfy the liner relationship of

11

x1

Non-linear dependency between x1
and x2
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Maximal HGR Correlation Analysis
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A Non-linear Measure of Dependence

Hirschfeld-Gebelein-Renyi (HGR) maximal correlation

Given random variables X ,Y , the HGR maximal correlation is

ρ(X ;Y ) = max
f (X ),g(Y )

E[f (X )g(Y )]

s.t.E[f (X )] = E[g(Y )] = 0

E[f 2(X )] = E[g2(Y )] = 1

where f : X → R and g : Y → R are real-valued functions
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Example of HGR maximal correlation
Synthesized data:y (i) = exp

(
sin
(
2πx (i) + ϵ(i)

2

))
, e(i) ≈ N (0, 1)

for i = 1, . . . , 200

Chapter 2 The Preliminary

Figure 2.1 The HGR transformation results: the title of subplots is in the form of “y-axis vs.
x-axis”

Table 2.1 The value of correlations in the GMC solutions

1
d�1E[

Õ
i,j( fi(xi))T( fj(xj))] 0.642
E[ f1(x1) f2(x2)] -0.066
E[ f1(x1) f3(x3)] 0.631
E[ f2(x2) f3(x3)] 0.718

The value of correlations varies from di�erent variable pairs and it seems to be
reasonable. The correlation between f1(x1) and f2(x2) is very small because x1 and x2 are
independent. The subplots (f) ~(h) in Fig 2.2 can also indicate the degree of correlation
between each transformation pairs. Again the transformations on those variables clearly
reflect the true structure among them, they are all in the form fi(xi) = log |xi | as shown
in the subplots (c)~(e) in Fig 2.2. As a consequence, they satisfy the liner relationship of

11

ρ(X ;Y ) = 0.902
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Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn
unsupervised features from MNIST.
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Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn
unsupervised features from MNIST.

f1(x) vs f2(x) g1(y) vs g2(y)
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How to solve it?

Assume X and Y are both discrete with alphabet X , Y.

E[f (x)g(y)] =
∑

x∈X ,y∈Y
PX ,Y (x , y)f (x)g(y)

Define ϕ(x) ≜
√

PX (x)f (x), ψ(y) ≜
√

PY (y)g(y), then

E[f (x)g(y)] =
∑

x∈X ,y∈Y

PX ,Y (x , y)√
PX (x)PY (y)

ϕ(x)ψ(y) = ψTBϕ

▶ Matrix B ∈ R|Y|×|X | , where B(y , x) ≜ PX ,Y (x ,y)√
PX (x)PY (y)

▶ Vectors ϕ ∈ R|X |, ψ ∈ R|Y|

How to represent the constraints using ϕ and ψ?



10/29

How to solve it?

Given ϕ(x) =
√

PX (x)f (x), ψ(y) =
√

PY (y)g(y)

Unit-variance constraints

▶ E[f (x)2] = 1 =⇒∑
x PX (x)

(
ϕ(x)√
PX (x)

)2

=
∑

x ϕ(x)
2 = ||ϕ||2 = 1

▶ Similarly, E[g(y)2] = 1 =⇒ ||ψ||2 = 1

Zero-mean constraints
▶ E[f (x)] = 0 =⇒∑

x PX (x)
ϕ(x)√
PX (x)

=
∑

x ϕ(x)
√
PX (x) = ⟨ϕ,

√
PX ⟩ = 0, i.e.

(ϕ ⊥
√
PX )

▶ Similarly, E[g(y)] = 0 =⇒ ⟨ψ,
√
PY ⟩ = 0 , i.e. (ψ ⊥

√
PY )
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HGR Maximal Correlation as an SVD problem

Alternative definition for HGR Maximal Correlation

ρ(X ,Y ) = max
ϕ∈R|X|,ψ∈R|Y|

ψTBϕ

s.t.||ϕ||2 = ||ψ||2 = 1

ϕ ⊥
√
PX , ψ ⊥

√
PY

Proposition 1

(u1, v1) = argmax||u||=||v ||=1 u
TBv are the largest left and right

singular vector of B.

Proposition 2

The largest left and right singular vectors are
√
PY and

√
PX

Proposition 3

ψ∗ and ϕ∗ are the 2nd largest left and right singular vectors of B,
respectively.

▶
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Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples x (1), . . . , x (m)

Result: compute f ∗(x), g∗(y)
Randomly choose g(y), y ∈ Y such that E[g(Y )] = 0 ;
while σ not converged do

f (x)← Em[g(Y )|X = x ]

// Em[·]: sample expectation ;

Normalize f (x) ∀x ∈ X ;
g(y)← Em[f (X )|Y = y ] ;
Normalize g(y) ∀y ∈ Y;
σ ← Em[f (X )g(Y )];

end

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple
regression and correlation. J. Am. Stat. Assoc., 80(391),1985b
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Extension to high dimension case

k-dimensional HGR Maximal Correlation

ρ(X ;Y ) = max
f : X → Rk

g : Y → Rk

E[f (X )Tg(Y )]← optimize k values in parallel

s.t. E[fi (X )] = E[gi (Y )] = 0, ∀i = 1, . . . , k

E[fi (X )T fj(X )] = E[gi (Y )Tgj(Y )] = 1{i = j}, ∀i , j = 1, . . . , k

ACE algorithm for k-d data

Data: Discrete data samples
x(1), . . . , x(m)

Result: compute f ∗(x), g∗(y)
Randomly choose g(y), y ∈ Y
such that E[g(Y )] = 0 ;
while σ not converged do

f (x)← Em[g(Y )|X = x] ;
Normalize f (x) ∀x ∈ X ;
g(y)← Em[f (X )|Y = y ] ;
Normalize g(y) ∀y ∈ Y;
σ ← Em[f (X )T g(Y )];

end

Normalize k-d feature: for all x ∈ X ,
▶ f (x)← f (x)− Em[f (X )]

▶ f (x)← f (x)Em[f (X )f (X )T ]−
1
2

g(y) is normalized similarly for all
y ∈ Y.
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Discussion on HGR Maximal Correlation

▶ Useful for modal estimation from data

▶ ACE in Python: https://github.com/mace-cream/xyace
( limited to discrete X and Y )

▶ Extension to continuous case: a deep neural network
implementation of HGR maximal correlation [Wang et. al.
2018]

Loss(f , g) = −Ê[f (X )Tg(Y )] +
1

2
tr(Cov(f (X ))Cov(g(Y )))

An Efficient Approach to Informative Feature Extraction from Multimodal Data,
Wang, Lichen, et al. AAAI (2018).

https://github.com/mace-cream/xyace
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Spectral Graph Theory
Graph Terminologies and Similarity Graphs
Spectral Clustering
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K-Means vs Spectral Clustering

K-Means Spectral Clustering

[Shi & Malik 00; Ng, Jordan, Weiss NIPS 01]
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Graph Terminologies

W =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0



▶ An undirect graph G = (V ,E )
consists of nodes V = {v1, . . . , vn}
and edges E = {e1, . . . , em}

▶ Edge eij connects vi and vj if they are
adjacent or neighbors.

▶ Adjacency matrix

Wij =

{
1 if there is an edge eij

0 otherwise

▶ Degree di of node vi is the number of
neighbors of vi .

di =
n∑

j=1

wij
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Graph Terminologies

W =


0 0.2 1.2 0
0.2 0 0.5 0.9
1.2 0.5 0 0
0 0.9 0 0



▶ Weigthed undirect graph
G = (V ,E ,W )

▶ Edge weight wij ∈ R between vi and vj
▶ Weighted adjacency matrix

W = [wij ]

▶ Vertex degree di =
∑n

j=1 wij

▶ Degree matrix D = diag(d1, . . . , dn)
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Graph Terminologies

A

▶ Given vertex subset A ⊂ V , let
Ā = V \A be the complement of A in
the graph

▶ Subset indicator function 1A ∈ Rn:

1A{i} =

{
1 if vi ∈ A

0 if vi /∈ A

▶ Sets A1, . . . ,Ak form a partition of
the graph if Ai ∩ Aj = ∅ for all i ̸= j
and A1 ∪ . . . ∪ Ak = V
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Represent data using a graph

Some data are naturally represented by a graph e.g. social
networks, 3D mesh etc

Use graph to represent similarity in data
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Clustering from a graph point of view

▶ Given data points x (1), . . . , x (n) and similarity measure
sij ≥ 0 for all x (i), x (j)

▶ A typical similarity graph G = (V ,E ) is
▶ vi ↔ x (i)

▶ vi and vj are connected if sij ≥ δ for some threshold δ

▶ Clustering: Divide data into groups such that points in the
same group are similar and points in different groups are
dissimilar

▶ Spectral Clustering (informal): Find a partition of G such
that edges between the same group have high weight and
edges between different groups have very low weight.
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Building similarity graphs from data

ϵ-neighborhood

Add edges to all points inside a ball of radius f
centered at v

Drawbacks: sensitive to e, edge weights are on
similar scale

k-Nearest Neighbors

Add edges between v ’s k-nearest neighbors.

Drawbacks: may result in asymmetric and
irregular graph

Fully connected graph

Often, Gaussian similarity is used

Wi ,j = exp

(
−||x

(i) − x (j)||22
2σ2

)
for i , j = 1, . . . ,m

Drawbacks: W is not sparse

Neighborhood Methods

• k-Nearest Neighbor Graph (k-NNG)
• add edges between an instance and its       

k-nearest neighbors

• e-Neighborhood
• add edges to all instances inside a ball of 

radius e

e

k = 3

12

Neighborhood Methods

• k-Nearest Neighbor Graph (k-NNG)
• add edges between an instance and its       

k-nearest neighbors
k = 3

12
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Similarity graphs examples

that in such a case, the data point should be considered an outlier anyway, and then it does not really matter in
which cluster the point will end up.

To summarize, the conclusion is that both unnormalized spectral clustering and normalized spectral clustering
with Lrw are well justified by the perturbation theory approach. Normalized spectral clustering with Lsym can also
be justified by perturbation theory, but it should be treated with more care if the graph contains vertices with very
low degrees.

8 Practical details

In this section we will briefly discuss some of the issues which come up when actually implementing spectral
clustering. There are several choices to be made and parameters to be set. However, the short discussion in this
section is mainly meant to raise awareness about the general problems which can occur. We will look at toy
examples only. For thorough studies on the behavior of spectral clustering for various real world tasks we refer to
the literature.

8.1 Constructing the similarity graph

Choosing the similarity graph and its parameters for spectral clustering is not a trivial task. This already starts with
the choice of the similarity function sij itself. In general one should try to ensure that the local neighborhoods
induced by this similarity function are “meaningful”, but in particular in a clustering setting this is very difficult
to assess. Ultimately, the choice of the similarity function depends on the domain the data comes from, and no
general rules can be given. The second choice concerns the construction of the similarity graph, that is which type
of graph we choose and how we set the parameter which governs its connectedness (e.g., the parameter " of the
"-neighborhood graph or the parameter k of the k-nearest neighbor graph).

−1 0 1 2
−3

−2

−1

0

1

Data points

−1 0 1 2
−3

−2

−1

0

1

epsilon−graph, epsilon=0.3

−1 0 1 2
−3

−2

−1

0

1

kNN graph, k = 5

−1 0 1 2
−3

−2

−1

0

1

Mutual kNN graph, k = 5

Figure 3: Different similarity graphs, see text for details.

To illustrate the behavior of the different graphs we use the toy example presented in Figure 3. As underlying
distribution we choose a distribution on 2 with three clusters: two “moons” and a Gaussian. The density of the
bottom moon is chosen to be larger than the one of the top moon. The upper left panel in Figure 3 shows a sample

17
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W

Properties of L

▶ For every f ∈ Rn, f TLf = 1
2

∑n
i ,j=1 wij(fi − fj)

2

▶ L is symmetric and positive semi-definite

▶ The smallest eigenvalue of L is 0 with eigenvector 1

▶ L has n real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn
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Graph Laplacian

Proposition 4

Let G be an undirected graph with non-negative weights W , the
multiplicity k if eigenvalue 0 of L is the number of connected
components A1, . . . ,Ak in G.
The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . , 1Ak
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(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) 1:

Lrw = D−1L = I − D−1W

Properties of Lrw
▶ λ is an eigenvalue of Lrw with eigenvector v if and only if λ, v

solve the generalized eigenproblem Lv = λDv

▶ 0 is an eigenvalue of L with eigenvector 1

▶ Lrw is positive semi-definite and has n non-negative
eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn

Proposition 5

Let G be an undirected graph with non-negative weights W , the
multiplicity k of eigenvalue 0 of Lrw is the number of connected
components A1, . . . ,Ak in G.
The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . , 1Ak

1Another definition of normalized graph Laplacian is D− 1
2 LD− 1

2
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Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points x (1), . . . , x (n) and cluster size k

▶ Build a graph connecting x (1), . . . , x (n) with weight W

▶ Compute first k eigenvectors V = [v1, . . . , vk ] of L

▶ Define yi ∈ Rk as the ith row of V , cluser y1, . . . , yn into k
clusters C1, . . . ,Ck using k-means

Output: A1, . . . ,Ak where Ai = {j |yj = Ci}
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Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points x (1), . . . , x (n) and cluster size k

▶ Build a graph connecting x (1), . . . , x (n) with weight W

▶ Compute first k eigenvectors V = [v1, . . . , vk ] of generalized
eigen problem Lv = λDv

▶ Define yi ∈ Rk as the ith row of V , cluser y1, . . . , yn into k
clusters C1, . . . ,Ck using k-means

Output: A1, . . . ,Ak where Ai = {j |yj = Ci}
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Toy Example

▶ 200 data points sampled from 4 Gaussian distributions

▶ KNN similarity graph (k = 10)
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Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of Lrw and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with � = 1 as similarity function.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 2 drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histograms
of a sample drawn from this distribution. As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi� xj |2/2�

2) with � = 1. As similarity graph we consider both the fully connected
graph and the k-nearest neighbor graph with k = 10. In Figure 1 we show the first eigenvalues and eigenvectors
of the unnormalized Laplacian L and the normalized Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. �i

(for the moment ignore the dashed line and the different shapes of the eigenvalues in the plots for the unnormalized
case; their meaning will be discussed in Section 8.4). In the eigenvector plots of an eigenvector v = (v1, . . . , v200)0

we plot xi vs. vi. The first two rows of Figure 1 show the results based on the k-nearest neighbor graph. We can see
that the first four eigenvalues are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the k-nearest neighbor graph, in which case the eigenvectors are given
as in Propositions 2 and 4. The next two rows show the results for the fully connected graph. As the Gaussian
similarity function is always positive, this graph only consists of one connected component. Thus, eigenvalue 0
has multiplicity 1, and the first eigenvector is the constant vector. The following eigenvectors carry the information
about the clusters. For example, in the unnormalized case (last row), if we threshold the second eigenvector at
0, then the part below 0 corresponds to clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly,

7

First 4 eigenvalues are 0 with eigenvectors 1Ai
, i = 1, . . . , 4
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▶ Fully connected graph with Gaussian similarity graph (σ = 1)
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Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of Lrw and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with � = 1 as similarity function.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 2 drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histograms
of a sample drawn from this distribution. As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi� xj |2/2�

2) with � = 1. As similarity graph we consider both the fully connected
graph and the k-nearest neighbor graph with k = 10. In Figure 1 we show the first eigenvalues and eigenvectors
of the unnormalized Laplacian L and the normalized Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. �i

(for the moment ignore the dashed line and the different shapes of the eigenvalues in the plots for the unnormalized
case; their meaning will be discussed in Section 8.4). In the eigenvector plots of an eigenvector v = (v1, . . . , v200)0

we plot xi vs. vi. The first two rows of Figure 1 show the results based on the k-nearest neighbor graph. We can see
that the first four eigenvalues are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the k-nearest neighbor graph, in which case the eigenvectors are given
as in Propositions 2 and 4. The next two rows show the results for the fully connected graph. As the Gaussian
similarity function is always positive, this graph only consists of one connected component. Thus, eigenvalue 0
has multiplicity 1, and the first eigenvector is the constant vector. The following eigenvectors carry the information
about the clusters. For example, in the unnormalized case (last row), if we threshold the second eigenvector at
0, then the part below 0 corresponds to clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly,

7

First eigenvector is 1 since the graph has only 1 connected
component
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