Learning From Data Lecture 9: Unsupervised Learning III

Yang Li yangli@sz.tsinghua.edu.cn

November 19, 2020

Front Matter

Today's Lecture

Correlation Analysis

- ▶ Review: CCA
- \triangleright HGR maximal correlation

Spectral Graph Theory

- \blacktriangleright Similarity graphs
- ▶ Spectral clustering

Review: CCA Algorithm

Goal: Learn (linear) dependence between two sets of variables. **Input:** Covariance matrices for centered data *X* and *Y* :

- ▶ Σ*XY* , invertible Σ*XX* and Σ*YY*
- ▶ Dimension k < min(n_1 , n_2)

Output: CCA projection matrices A_k and B_k :

• Compute
$$
\Omega = \sum_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}}
$$

 \triangleright Compute SVD decomposition of Ω

$$
\Omega = \begin{bmatrix} | & \dots & | \\ c_1 & \dots & c_{n_1} \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \\ & & & 0 \end{bmatrix} \begin{bmatrix} -d_1^T - \\ \vdots \\ -d_{n_2}^T - \end{bmatrix}
$$

 \blacktriangleright $A_k = \sum_{XX}^{-\frac{1}{2}} [c_1, \ldots, c_k]$ and $B_k = \sum_{YY}^{-\frac{1}{2}} [d_1, \ldots, d_k]$

Review: Discussion of CCA

▶ Applications:

- ▶ Co-clustering
- **Multi-view regression**
- ▶ CCA only measures linear dependencies
- ▶ Non-linear generalizations:
	- ▶ Kernel CCA (KCCA)
	- ▶ Deep CCA (DCCA)
	- ▶ Maximal HGR Correlation

*x*1

Non-linear dependency between *x*¹ and x_2

Maximal HGR Correlation Analysis

A Non-linear Measure of Dependence

Hirschfeld-Gebelein-Renyi (HGR) maximal correlation Given random variables *X, Y* , the HGR maximal correlation is

$$
\rho(X; Y) = \max_{f(X), g(Y)} \mathbb{E}[f(X)g(Y)]
$$

s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$
 $\mathbb{E}[f^2(X)] = \mathbb{E}[g^2(Y)] = 1$

where $f: \mathcal{X} \to \mathbb{R}$ and $g: \mathcal{Y} \to \mathbb{R}$ are real-valued functions

Example of HGR maximal correlation

 $\text{Synthesized data: } y^{(i)} = \exp\left(\sin\left(2\pi x^{(i)} + \frac{\epsilon^{(i)}}{2}\right)\right)$ $\tan \left(2\pi x^{(i)}+\frac{\epsilon^{(i)}}{2}\right)\right)$, $e^{(i)}\approx \mathcal{N}(0,1)$ for $i = 1, \ldots, 200$

Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn unsupervised features from MNIST.

Example of HGR maximal correlation 1*.*0

Use multi-dimensional HGR maximal correlation to learn ߰ 0*.*5 unsupervised features from MNIST. ߴ 1*.*0

How to solve it?

Assume X and Y are both discrete with alphabet \mathcal{X}, \mathcal{Y} .

$$
\mathbb{E}[f(x)g(y)] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{X,Y}(x,y)f(x)g(y)
$$

 $\mathsf{Define} \ \phi(x) \triangleq \sqrt{P_X(x)} f(x), \ \psi(y) \triangleq \sqrt{P_Y(y)} g(y), \ \mathsf{then}$

$$
\mathbb{E}[f(x)g(y)] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \frac{P_{X,Y}(x, y)}{\sqrt{P_X(x)P_Y(y)}} \phi(x) \psi(y) = \psi^T B \phi
$$

▶ Matrix $B \in \mathbb{R}^{|\mathcal{Y}| \times |\mathcal{X}|}$, where $B(y, x) \triangleq \frac{P_{X, Y}(x, y)}{\sqrt{P_X(x)P_Y(y)}}$

$$
\blacktriangleright \text{ Vectors } \phi \in \mathbb{R}^{|\mathcal{X}|}, \psi \in \mathbb{R}^{|\mathcal{Y}|}
$$

How to represent the constraints using *ϕ* and *ψ*?

How to solve it?

Given
$$
\phi(x) = \sqrt{P_X(x)} f(x)
$$
, $\psi(y) = \sqrt{P_Y(y)} g(y)$

Unit-variance constraints

$$
\mathbb{E}[f(x)^2] = 1 \implies
$$
\n
$$
\sum_{x} P_X(x) \left(\frac{\phi(x)}{\sqrt{P_X(x)}}\right)^2 = \sum_{x} \phi(x)^2 = ||\phi||^2 = 1
$$
\n
$$
\text{Similarly, } \mathbb{E}[g(y)^2] = 1 \implies ||\psi||^2 = 1
$$

Zero-mean constraints

$$
\mathbb{E}[f(x)] = 0 \Longrightarrow
$$

\n
$$
\sum_{x} P_{X}(x) \frac{\phi(x)}{\sqrt{P_{X}(x)}} = \sum_{x} \phi(x) \sqrt{P_{X}(x)} = \langle \phi, \sqrt{P_{X}} \rangle = 0, \text{ i.e.}
$$

\n
$$
(\phi \perp \sqrt{P_{X}})
$$

► Similarly, $\mathbb{E}[g(y)] = 0 \implies \langle \psi, \sqrt{P_Y} \rangle = 0$, i.e. $(\psi \perp$ *P^Y*)

HGR Maximal Correlation as an SVD problem Alternative definition for HGR Maximal Correlation

$$
\rho(X, Y) = \max_{\phi \in \mathbb{R}^{|\mathcal{X}|}, \psi \in \mathbb{R}^{|\mathcal{Y}|}} \psi^T B \phi
$$

s.t. $||\phi||^2 = ||\psi||^2 = 1$
 $\phi \perp \sqrt{P_X}, \psi \perp \sqrt{P_Y}$

Proposition 1

 $(u_1,v_1) = \text{argmax}_{||u||=||v||=1}$ $u^T Bv$ are the largest left and right *singular vector of B.*

Proposition 2

The largest left and right singular vectors are $\sqrt{P_Y}$ *and* $\sqrt{P_X}$

Proposition 3

 $ψ$ * and $φ$ * are the 2nd largest left and right singular vectors of B, *respectively.*

Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples $x^{(1)}, \ldots, x^{(m)}$ **Result**: compute $f^*(x)$, $g^*(y)$ Randomly choose $g(y), y \in \mathcal{Y}$ such that $\mathbb{E}[g(Y)] = 0$; **while** *σ not converged* **do** $f(x) \leftarrow \mathbb{E}_m[g(Y)|X=x]$ Normalize $f(x)$ $\forall x \in \mathcal{X}$; $g(y) \leftarrow \mathbb{E}_m[f(X)|Y=y]$; Normalize *g*(*y*) *∀y ∈ Y*; $\sigma \leftarrow \mathbb{E}_{m}[f(X)g(Y)];$ **end**

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc., 80(391),1985b

Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples $x^{(1)}, \ldots, x^{(m)}$ **Result**: compute $f^*(x)$, $g^*(y)$ Randomly choose $g(y), y \in \mathcal{Y}$ such that $\mathbb{E}[g(Y)] = 0$; **while** *σ not converged* **do** $f(x) \leftarrow \mathbb{E}_m[g(Y)|X=x]/\mathbb{E}_m[\cdot]$: sample expectation ; Normalize $f(x)$ $\forall x \in \mathcal{X}$; $g(y) \leftarrow \mathbb{E}_m[f(X)|Y=y]$; Normalize *g*(*y*) *∀y ∈ Y*; $\sigma \leftarrow \mathbb{E}_{m}[f(X)g(Y)]$; **end**

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc., 80(391),1985b

Extension to high dimension case

k-dimensional HGR Maximal Correlation

$$
\rho(X; Y) = \max_{\substack{f \colon \mathcal{X} \to \mathbb{R}^k \\ g \colon \mathcal{Y} \to \mathbb{R}^k}} \mathbb{E}[f(X)^T g(Y)] \leftarrow \text{ optimize k values in parallel}
$$

$$
s.t. \mathbb{E}[f_i(X)] = \mathbb{E}[g_i(Y)] = 0, \forall i = 1,\ldots,k
$$

$$
\mathbb{E}[f_i(X)^T f_j(X)] = \mathbb{E}[g_i(Y)^T g_j(Y)] = \mathbf{1}\{i = j\}, \forall i, j = 1,\ldots,k
$$

ACE algorithm for k-d data

Data: Discrete data samples $x^{(1)}, \ldots, x^{(m)}$ **Result**: compute $f^*(x)$, $g^*(y)$ Randomly choose $g(y)$, $y \in Y$ such that $\mathbb{E}[g(Y)] = 0$; **while** *σ not converged* **do** $f(x) \leftarrow \mathbb{E}_m[g(Y)|X=x]$; Normalize $f(x)$ $\forall x \in \mathcal{X}$; $g(y) \leftarrow \mathbb{E}_m[f(X)|Y=y]$; Normalize *g*(*y*) *∀y ∈ Y*; $\sigma \leftarrow \mathbb{E}_m[f(X)^T g(Y)];$

Normalize k-d feature: for all $x \in \mathcal{X}$.

$$
\blacktriangleright \ \ f(x) \leftarrow f(x) - \mathbb{E}_m[f(X)]
$$

$$
\blacktriangleright \ \ f(x) \leftarrow f(x) \mathbb{E}_m[f(X)f(X)^T]^{-\frac{1}{2}}
$$

g(*y*) is normalized similarly for all *y ∈ Y*.

Discussion on HGR Maximal Correlation

- ▶ Useful for modal estimation from data
- ▶ ACE in Python: https://github.com/mace-cream/xyace (limited to discrete *X* and *Y*)
- ▶ Extension to continuous case: a deep neural network implementation of HGR maximal correlation [Wang et. al. 2018]

$$
Loss(f, g) = -\hat{\mathbb{E}}[f(X)^T g(Y)] + \frac{1}{2}tr(Cov(f(X))Cov(g(Y)))
$$

An Efficient Approach to Informative Feature Extraction from Multimodal Data, Wang, Lichen, et al. AAAI (2018).

Spectral Graph Theory

Graph Terminologies and Similarity Graphs Spectral Clustering

K-Means vs Spectral Clustering

[Shi & Malik 00; Ng, Jordan, Weiss NIPS 01]

Graph Terminologies

- \blacktriangleright An **undirect graph** $G = (V, E)$ consists of nodes $V = \{v_1, \ldots, v_n\}$ and edges $E = \{e_1, \ldots, e_m\}$
- \blacktriangleright Edge e_{ij} connects v_i and v_j if they are **adjacent** or neighbors.
- ▶ Adjacency matrix $W_{ij} =$ $\int 1$ if there is an edge e_{ij} 0 otherwise
- ▶ Degree d_i of node v_i is the number of neighbors of *vⁱ* .

$$
d_i = \sum_{j=1}^n w_{ij}
$$

Graph Terminologies

- ▶ **Weigthed undirect graph** $G = (V, E, W)$
- ▶ Edge weight *wij ∈* R between *vⁱ* and *v^j*
- ▶ **Weighted adjacency matrix** $W = [w_{ii}]$

$$
\blacktriangleright
$$
 Vertex degree $d_i = \sum_{j=1}^n w_{ij}$

 \blacktriangleright Degree matrix $D = diag(d_1, \ldots, d_n)$

Graph Terminologies

- ▶ Given vertex subset *A ⊂ V*, let $\overline{A} = V \setminus A$ be the complement of A in the graph
- ▶ Subset indicator function $\mathbf{1}_A \in \mathbb{R}^n$:

$$
1_A\{i\} = \begin{cases} 1 & \text{if } v_i \in A \\ 0 & \text{if } v_i \notin A \end{cases}
$$

 \triangleright Sets A_1, \ldots, A_k form a **partition** of the graph if $A_i \cap A_j = \emptyset$ for all $i \neq j$ and $A_1 \cup \ldots \cup A_k = V$

Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D mesh etc

Use graph to represent similarity in data

Clustering from a graph point of view

- \blacktriangleright Given data points $x^{(1)}, \ldots, x^{(n)}$ and **similarity measure** $s_{ij} \geq 0$ for all $x^{(i)}, x^{(j)}$
- \blacktriangleright A typical **similarity graph** $G = (V, E)$ is
	- ▶ $v_i \leftrightarrow x^{(i)}$
	- ▶ *vⁱ* and *v^j* are connected if *sij ≥ δ* for some threshold *δ*
- ▶ **Clustering**: Divide data into groups such that points in the same group are similar and points in different groups are dissimilar
- ▶ **Spectral Clustering (informal)**: *Find a partition of G such that edges between the same group have high weight and edges between different groups have very low weight.*

ϵ-neighborhood orbood . The additional of all instances inside a ball of all $\mathsf{orb}(G)$

Add edges to all points inside a ball of radius *f* radius *e* centered at *v* \sqrt{Q}

k-Nearest Neighbors

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors

Fully connected graph

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i, j = 1, ..., m
$$

ϵ-neighborhood orbood . The additional of all instances inside a ball of all $\mathsf{orb}(G)$

Add edges to all points inside a ball of radius *f* radius *e* centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale \sqrt{Q} \mathcal{A} -Nearest New Graph (k-NNG)

k-Nearest Neighbors

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors \mathbf{F} add edges between an instance and its number an

Fully connected graph

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i, j = 1, ..., m
$$

ϵ-neighborhood orbood . The additional of all instances inside a ball of all $\mathsf{orb}(G)$

Add edges to all points inside a ball of radius *f* radius *e* centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale \sqrt{Q} \mathcal{A} -Nearest New Graph (k-NNG)

k-Nearest Neighbors

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors Drawbacks: may result in asymmetric and irregular graph Fully connected graph \mathbf{F} add edges between an instance and its number an

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i,j = 1,\ldots,m
$$

ϵ-neighborhood orbood . The additional of all instances inside a ball of all $\mathsf{orb}(G)$

Add edges to all points inside a ball of radius *f* radius *e* centered at *v* Drawbacks: sensitive to *e*, edge weights are on similar scale \sqrt{Q} \mathcal{A} -Nearest New Graph (k-NNG)

k-Nearest Neighbors

Add edges between *v*'s *k*-nearest neighbors. k-nearest neighbors Drawbacks: may result in asymmetric and irregular graph Fully connected graph \mathbf{F} add edges between an instance and its number an

Often, Gaussian similarity is used

$$
W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right) \text{ for } i,j = 1,\ldots,m
$$

Drawbacks: *W* is not sparse

Similarity graphs examples and how we set the parameter which governs its connected version of the parameter α -neighborhood graphs examples

Graph Laplacian

Unnormalized graph laplacian matrix:

$$
L = D - W
$$

Properties of *L*

- ▶ For every $f \in \mathbb{R}^n$, $f^{\mathsf{T}} L f = \frac{1}{2}$ $\frac{1}{2}$ ∑ $_{i,j=1}^{n}$ w_{ij} $(f_i - f_j)^2$
- ▶ *L* is symmetric and positive semi-definite
- ▶ The smallest eigenvalue of *L* is 0 with eigenvector **1**
- ▶ *L* has *n* real eigenvalues $0 = \lambda_1 < \lambda_2 < \ldots < \lambda_n$

Graph Laplacian

Proposition 4

Let G be an undirected graph with non-negative weights W , the multiplicity k if eigenvalue 0 of L is the number of connected components A_1, \ldots, A_k *in* G *.*

The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$
L_{rw} = D^{-1}L = I - D^{-1}W
$$

Properties of *Lrw*

- \triangleright λ is an eigenvalue of L_{rw} with eigenvector *v* if and only if λ , *v* solve the generalized eigenproblem $Lv = \lambda Dv$
- ▶ 0 is an eigenvalue of *L* with eigenvector **1**
- ▶ *Lrw* is positive semi-definite and has *n* non-negative α eigenvalues $0 = \lambda_1 < \lambda_2 < \ldots < \lambda_n$

¹Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$
L_{rw} = D^{-1}L = I - D^{-1}W
$$

Properties of *Lrw*

- \triangleright λ is an eigenvalue of L_{rw} with eigenvector *v* if and only if λ , *v* solve the generalized eigenproblem $Lv = \lambda Dv$
- ▶ 0 is an eigenvalue of *L* with eigenvector **1**
- ▶ *Lrw* is positive semi-definite and has *n* non-negative α eigenvalues $0 = \lambda_1 < \lambda_2 < \ldots < \lambda_n$

Proposition 5

Let G be an undirected graph with non-negative weights W , the multiplicity k of eigenvalue 0 of Lrw is the number of connected components A_1, \ldots, A_k *in* G .

The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$

¹Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$

Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- ▶ Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight *W*
- \triangleright Compute first *k* eigenvectors $V = [v_1, \ldots, v_k]$ of *L*
- ▶ Define *yⁱ ∈* R *k* as the ith row of *V*, cluser *y*1*, . . . , yⁿ* into *k* clusters C_1, \ldots, C_k using k-means

Output: $A_1, ..., A_k$ where $A_i = \{j | y_i = C_i\}$

Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- ▶ Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight *W*
- ▶ Compute first *k* eigenvectors $V = [v_1, \ldots, v_k]$ of generalized eigen problem $Lv = \lambda Dv$
- ▶ Define *yⁱ ∈* R *k* as the ith row of *V*, cluser *y*1*, . . . , yⁿ* into *k* clusters C_1, \ldots, C_k using k-means

Output: $A_1, ..., A_k$ where $A_i = \{j | y_i = C_i\}$

Toy Example

- ▶ 200 data points sampled from 4 Gaussian distributions
- \triangleright KNN similarity graph ($k = 10$)

0.8 n
, norm, full graph $\frac{1}{2}$ First 4 eigenvalues are 0 with eigenvectors 1_{A_i} , $i = 1, \ldots, 4$

Toy Example

First eigenvector is 1 since the graph has only 1 connected eigenvectors of *L*rw and *L* based on the *k*-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of *L*rw componentand *L* based on the fully connected graph. For all plots, we used we use the Gaussian kernel with = 1 as similarity function.