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Today's Lecture

Correlation Analysis

» Review: CCA

» HGR maximal correlation
Spectral Graph Theory

» Similarity graphs

» Spectral clustering



Review: CCA Algorithm

Goal:

Learn (linear) dependence between two sets of variables.
Input:

Covariance matrices for centered data X and Y:
> Y xy , invertible X xx and Lyy

» Dimension k < min(ny, ny)

Output: CCA projection matrices Ax and By:
_1 _1
» Compute 2 =X, 3 xyXy
» Compute SVD decomposition of

01
o

_1
> Ak = ZX)%[C]_,...,C;(] and Bk = Zw[dl,...,dk]

N



Review: Discussion of CCA

» Applications: ’ ‘
» Co-clustering ’ . °
P . S o
> Multi-view regression ‘ oo’
X2l e e L
» CCA only measures linear cat RN
. 2 H °e L) L)
dependencies P 2R % DR . .,‘
11 ® :. o°%® ® e ° °
» Non-linear generalizations: ' Tl g Jafr-
» Kernel CCA (KCCA) ° 0.0 02 04 0.6 08 10

» Deep CCA (DCCA) X1
» Maximal HGR Correlation
Non-linear dependency between x;

and x



Maximal HGR Correlation Analysis




A Non-linear Measure of Dependence

Hirschfeld-Gebelein-Renyi (HGR) maximal correlation
Given random variables X, Y, the HGR maximal correlation is
X:Y)= E[f(X)g(Y
p(X;Y) oD [f(X)g(Y)]
s.t.E[f(X)] =E[g(Y)] =0
E[f*(X)] =E[g*(Y)] =1

where f : X = R and g : Y — R are real-valued functions



Example of HGR maximal correlation
Synthesized data:y() = exp <sin (27rx(i) + #)) ,el) =~ N(0,1)
fori=1,...,200
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p(X;Y)=0.902



Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn
unsupervised features from MNIST.
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Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn

unsupervised features from MNIST.

f(x) vs f(x)




How to solve it?

Assume X and Y are both discrete with alphabet X', ).

E[f (x = Y Pxy(y)f(x)ely)
xeX,yeY
Define ¢(x) = \/Px(x)f(x), ¥(y) = v/Py(y)g(y), then
Px,y(x,y)

E[f(x)g ¢( () =4 Bo

xeEX,yeYy V PX PY

> Matrix 8 € RPIXI¥1, where B(y, x) & —2x0)
X\ X)Fy\y

» Vectors ¢ € RI* 1y € RV

How to represent the constraints using ¢ and ?



How to solve it?

Given ¢(x) = \/Px(x)f(x), ¥(y) = V/Pv(y)g(y)
Unit-variance constraints
» E[f(x)}] =1 =

5P (45) = bt = ol =1
» Similarly, E[g(y)?] =1 = |[¢[> =1

Zero—mean constraints
> E[f(x)] =0 =
>, Px(x )j& > d(x)/Px(x) = (6.+/Px) =0, i.e.
(6 L vPX)
» Similarly, E[g(y)] =0 = (¢,\/Py) =0, ie. (¢ L+/Py)




HGR Maximal Correlation as an SVD problem

Alternative definition for HGR Maximal Correlation

_ T
X Y)= | max 0TBY

s.tlol? = [[v|)P =1
¢ L \/Px, ¥ L\/Py

Proposition 1

(u1, v1) = argmax||y||—||v||=1 uT Bv are the largest left and right
singular vector of B.

Proposition 2

The largest left and right singular vectors are /Py and \/Px

Proposition 3

Y* and ¢* are the 2nd largest left and right singular vectors of B,
respectively.



Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:
ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples x(1) ... x(m)
Result: compute f*(x), g*(y)
Randomly choose g(y),y € Y such that E[g(Y)] =0 ;
while o not converged do
f(x) < Em[g(Y)|X = X]
Normalize f(x) Vx € X;
g(y) < En[f(X)|Y =y];
Normalize g(y) Vy € V;
o En[f(X)g(Y)];
end

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple
regression and correlation. J. Am. Stat. Assoc., 80(391),1985b



Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:
ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples x(1) ... x(m)
Result: compute f*(x), g*(y)
Randomly choose g(y),y € Y such that E[g(Y)] =0 ;
while o not converged do
f(x) < Enlg(Y)|X = x] // En[]: sample expectation ;
Normalize f(x) Vx € X;
g(y) < Enlf(X)|Y =y];
Normalize g(y) Vy € V;
o e Enlf(X)g(V)]
end

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple
regression and correlation. J. Am. Stat. Assoc., 80(391),1985b



Extension to high dimension case
k-dimensional HGR Maximal Correlation
p(X;Y)=  max E[f(X)Tg(Y)] « optimize k values in parallel
f: X =Rk
g:)y— R
s.t. E[fi(X)] =E[g(Y)] =0, Vi=1,... .k
E[H(X)T6(X)] =Elgi(Y) g(Y)] =1{i =}, Vij=1,... .k
ACE algorithm for k-d data

Data: Discrete data samples

XU x(m)

Result: compute £*(x),g*(y) Normalize k-d feature: for all x € X,

Randomly choose g(y),y € Y

such that E[g(Y)] =0 ; > f(x) + f(x) — En[f(X)]

while o not converged do .
f(x) < Emlg(Y)|X =x] ; > f(x) « F(X)EL[F(X)F(X)T]~2
Normalize f(x) Vx € X;
gly) < En[f(X)|Y =y] ; g(y) is normalized similarly for all
Normalize g(y) Vy € V; ye.

o+ Em[f(X)"g(Y)];
end



Discussion on HGR Maximal Correlation

> Useful for modal estimation from data

» ACE in Python: https://github.com/mace-cream/xyace
( limited to discrete X and Y )

» Extension to continuous case: a deep neural network
implementation of HGR maximal correlation [Wang et. al.
2018]

Loss(f,g) = —E[f(X)Tg(Y)] + %tr(Cov(f(X))Cov(g(Y)))

An Efficient Approach to Informative Feature Extraction from Multimodal Data,
Wang, Lichen, et al. AAAI (2018).


https://github.com/mace-cream/xyace

Spectral Graph Theory
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K-Means vs Spectral Clustering

K-Means Spectral Clustering

two circles, 2 clusters (K-means) twocircles, 2 clusters
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Graph Terminologies

» An undirect graph G = (V,E)
consists of nodes V = {v1,...,v,}
and edges E = {e1,...,em}

Vi V2

» Edge ejj connects v; and v; if they are
adjacent or neighbors.

» Adjacency matrix

1 if there is an edge ¢j

Wi = .
Va Vi 0 otherwise

» Degree d; of node v; is the number of
neighbors of v;.

n
d,': E Wij
J=1

O = = O
R = O
O O = =
O O = O



Graph Terminologies

Vi 0.2 V2

v

Weigthed undirect graph
G=(V,E,W)

Edge weight w;; € R between v; and v;

v

v

Weighted adjacency matrix
W = [wy]

Vertex degree di = > 71 wj;

» Degree matrix D = diag(ds,...,dp)

v




Graph Terminologies

> G_iven vertex subset A C V/, let
’ A = V\A be the complement of A in

Vi Vv
the graph
A » Subset indicator function 14 € R":
. 1 ifvieA
La{i} = .
0 ifvi¢A
V3 V

4 » Sets Aq,..., A, form a partition of
the graph if A;NA; =0 for all i # j
and AiU...UA, =V



Represent data using a graph

Some data are naturally represented by a graph e.g. social
networks, 3D mesh etc

Use graph to represent similarity in data



Clustering from a graph point of view

» Given data points x(!), ..., x(" and similarity measure
s;ij > 0 for all x(), x0)

> A typical similarity graph G = (V,E) is

> Vi X(i)
» v; and v; are connected if s; > ¢ for some threshold §

» Clustering: Divide data into groups such that points in the
same group are similar and points in different groups are
dissimilar

» Spectral Clustering (informal): Find a partition of G such
that edges between the same group have high weight and
edges between different groups have very low weight.



Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius f
centered at v

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

[ECEPCIAN
Wi, = exp <Z¢22 fori,j=1,...,m



Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius f
centered at v

Drawbacks: sensitive to e, edge weights are on
similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

[ECEPCIAN
Wi, = exp <Z¢22 fori,j=1,...,m



Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius f
centered at v

Drawbacks: sensitive to e, edge weights are on
similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.
Drawbacks: may result in asymmetric and
irregular graph

Fully connected graph

Often, Gaussian similarity is used

[ECEPCIAN
Wi, = exp <Z¢22 fori,j=1,...,m



Building similarity graphs from data

e-neighborhood

Add edges to all points inside a ball of radius f
centered at v

Drawbacks: sensitive to e, edge weights are on
similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.
Drawbacks: may result in asymmetric and
irregular graph

Fully connected graph

Often, Gaussian similarity is used

202

() — xU)2
Wi, = exp <||XXH2> fori,j=1,...,m

Drawbacks: W is not sparse



Similarity graphs examples

Data points epsilon—graph, epsilon=0.3
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Graph Laplacian

Unnormalized graph laplacian matrix:

L=D-W

Properties of L
> Forevery f € R, fTLf =337 ) wy(fi — f;)?
» L is symmetric and positive semi-definite
» The smallest eigenvalue of L is 0 with eigenvector 1

» L[ has n real eigenvalues 0 = A\; < X < ... < A,



Graph Laplacian

Proposition 4

Let G be an undirected graph with non-negative weights W, the
multiplicity k if eigenvalue 0 of L is the number of connected
components A1, ..., A in G.

The eigenspace of eigenvalue 0 is spanned by vectors 14,,...,14,



(Normalized) Graph Laplacian
Normalized graph laplacian (Chung 1997)

Ly =D L=1-D1w
Properties of L,,

> )\ is an eigenvalue of L,, with eigenvector v if and only if A, v
solve the generalized eigenproblem Lv = ADv

» 0 is an eigenvalue of L with eigenvector 1

» L,, is positive semi-definite and has n non-negative
eigenvalues 0 = A\ < X < ... < A,

! Another definition of normalized graph Laplacian is D :LD":



(Normalized) Graph Laplacian
Normalized graph laplacian (Chung 1997)

Ly =D L=1-D1w
Properties of L,,

> )\ is an eigenvalue of L,, with eigenvector v if and only if A, v
solve the generalized eigenproblem Lv = ADv

» 0 is an eigenvalue of L with eigenvector 1

» L,, is positive semi-definite and has n non-negative
eigenvalues 0 = A\ < X < ... < A,

Proposition 5

Let G be an undirected graph with non-negative weights W, the
multiplicity k of eigenvalue 0 of L., is the number of connected
components A1, ..., A in G.

The eigenspace of eigenvalue 0 is spanned by vectors 14,,...,14,

! Another definition of normalized graph Laplacian is D :LD":



Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points x(, ... x(" and cluster size k
» Build a graph connecting x(), ..., x(" with weight W
» Compute first k eigenvectors V = [vi,..., v] of L

» Define y; € R¥ as the ith row of V, cluser y1,...,y, into k
clusters C1, ..., Cx using k-means

Output: Ay,..., Ak where A; = {jly; = G}



Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points x(), ..., x(" and cluster size k
» Build a graph connecting x(V) ... x(") with weight W
» Compute first k eigenvectors V = [vi, ..., vx] of generalized
eigen problem Lv = ADv

» Define y; € R¥ as the ith row of V, cluser y1,...,y, into k
clusters (1, ..., Cx using k-means

Output: Ag,..., A where A; = {jly; = G}



Toy Example

» 200 data points sampled from 4 Gaussian distributions
» KNN similarity graph (k = 10)

Histogram of the sample
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Toy Example

» Fully connected graph with Gaussian similarity graph (o = 1)
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