Learning From Data Lecture 9: Unsupervised Learning III

Yang Li yangli@sz.tsinghua.edu.cn

November 19, 2020

Front Matter

Today's Lecture

Correlation Analysis

- Review: CCA
- HGR maximal correlation

Spectral Graph Theory

- Similarity graphs
- Spectral clustering

Review: CCA Algorithm

Goal: Learn (linear) dependence between two sets of variables. **Input:** Covariance matrices for centered data *X* and *Y*:

- Σ_{XY} , invertible Σ_{XX} and Σ_{YY}
- Dimension $k \leq \min(n_1, n_2)$

Output: CCA projection matrices A_k and B_k :

• Compute
$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$

Compute SVD decomposition of Ω

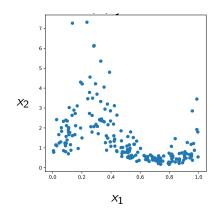
$$\Omega = \begin{bmatrix} | & \dots & | \\ c_1 & \dots & c_{n_1} \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \\ & & 0 \end{bmatrix} \begin{bmatrix} -d_1^T - \\ \vdots \\ -d_{n_2}^T - \end{bmatrix}$$

• $A_k = \sum_{XX}^{-\frac{1}{2}} [c_1, \dots, c_k]$ and $B_k = \sum_{YY}^{-\frac{1}{2}} [d_1, \dots, d_k]$

Review: Discussion of CCA

Applications:

- Co-clustering
- Multi-view regression
- CCA only measures linear dependencies
- Non-linear generalizations:
 - Kernel CCA (KCCA)
 - Deep CCA (DCCA)
 - Maximal HGR Correlation



Non-linear dependency between x_1 and x_2

Maximal HGR Correlation Analysis

Hirschfeld-Gebelein-Renyi (HGR) maximal correlation Given random variables X, Y, the HGR maximal correlation is

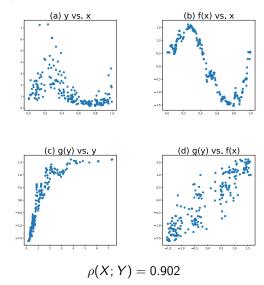
$$\rho(X; Y) = \max_{f(X), g(Y)} \mathbb{E}[f(X)g(Y)]$$

s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$
 $\mathbb{E}[f^2(X)] = \mathbb{E}[g^2(Y)] = 1$

where $f: \mathcal{X} \to \mathbb{R}$ and $g: \mathcal{Y} \to \mathbb{R}$ are real-valued functions

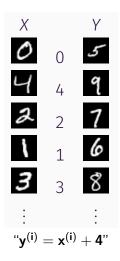
Example of HGR maximal correlation

Synthesized data: $y^{(i)} = \exp\left(\sin\left(2\pi x^{(i)} + \frac{\epsilon^{(i)}}{2}\right)\right)$, $e^{(i)} \approx \mathcal{N}(0, 1)$ for $i = 1, \dots, 200$



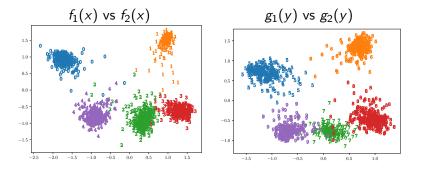
Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn unsupervised features from MNIST.



Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn unsupervised features from MNIST.



How to solve it?

Assume X and Y are both discrete with alphabet \mathcal{X} , \mathcal{Y} .

$$\mathbb{E}[f(x)g(y)] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{X,Y}(x,y)f(x)g(y)$$

Define $\phi(x) \triangleq \sqrt{P_X(x)}f(x)$, $\psi(y) \triangleq \sqrt{P_Y(y)}g(y)$, then

$$\mathbb{E}[f(x)g(y)] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \frac{P_{X,Y}(x,y)}{\sqrt{P_X(x)P_Y(y)}} \phi(x)\psi(y) = \psi^{\mathsf{T}} B\phi$$

• Matrix $B \in \mathbb{R}^{|\mathcal{Y}| \times |\mathcal{X}|}$, where $B(y, x) \triangleq \frac{P_{X,Y}(x,y)}{\sqrt{P_X(x)P_Y(y)}}$

• Vectors
$$\phi \in \mathbb{R}^{|\mathcal{X}|}, \psi \in \mathbb{R}^{|\mathcal{Y}|}$$

How to represent the constraints using ϕ and ψ ?

How to solve it?

Given
$$\phi(x) = \sqrt{P_X(x)}f(x), \ \psi(y) = \sqrt{P_Y(y)}g(y)$$

Unit-variance constraints

•
$$\mathbb{E}[f(x)^2] = 1 \implies$$

 $\sum_x P_X(x) \left(\frac{\phi(x)}{\sqrt{P_X(x)}}\right)^2 = \sum_x \phi(x)^2 = ||\phi||^2 = 1$
• Similarly, $\mathbb{E}[g(y)^2] = 1 \implies ||\psi||^2 = 1$

Zero-mean constraints

$$\mathbb{E}[f(x)] = 0 \implies \sum_{x} P_X(x) \frac{\phi(x)}{\sqrt{P_X(x)}} = \sum_{x} \phi(x) \sqrt{P_X(x)} = \langle \phi, \sqrt{P_X} \rangle = 0, \text{ i.e.}$$

 $(\phi \perp \sqrt{P_X})$

• Similarly, $\mathbb{E}[g(y)] = 0 \implies \langle \psi, \sqrt{P_Y} \rangle = 0$, i.e. $(\psi \perp \sqrt{P_Y})$

HGR Maximal Correlation as an SVD problem Alternative definition for HGR Maximal Correlation

$$\rho(X, Y) = \max_{\phi \in \mathbb{R}^{|\mathcal{X}|}, \psi \in \mathbb{R}^{|\mathcal{Y}|}} \psi^{T} B \phi$$
$$s.t. ||\phi||^{2} = ||\psi||^{2} = 1$$
$$\phi \perp \sqrt{P_{X}}, \psi \perp \sqrt{P_{Y}}$$

Proposition 1

 $(u_1, v_1) = \operatorname{argmax}_{||u||=||v||=1} u^T B v$ are the largest left and right singular vector of B.

Proposition 2

The largest left and right singular vectors are $\sqrt{P_Y}$ and $\sqrt{P_X}$

Proposition 3

 ψ^{*} and ϕ^{*} are the 2nd largest left and right singular vectors of B, respectively.

Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples $x^{(1)}, \ldots, x^{(m)}$ **Result**: compute $f^*(x), g^*(y)$ Randomly choose $g(y), y \in \mathcal{Y}$ such that $\mathbb{E}[g(Y)] = 0$; while σ not converged **do** $f(x) \leftarrow \mathbb{E}_m[g(Y)|X = x]$ Normalize $f(x) \forall x \in \mathcal{X}$; $g(y) \leftarrow \mathbb{E}_m[f(X)|Y = y]$; Normalize $g(y) \forall y \in \mathcal{Y}$; $\sigma \leftarrow \mathbb{E}_m[f(X)g(Y)]$; end

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc., 80(391),1985b

Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Data: Discrete data samples $x^{(1)}, \ldots, x^{(m)}$ **Result**: compute $f^*(x), g^*(y)$ Randomly choose $g(y), y \in \mathcal{Y}$ such that $\mathbb{E}[g(Y)] = 0$; **while** σ not converged **do** $f(x) \leftarrow \mathbb{E}_m[g(Y)|X = x] // \mathbb{E}_m[\cdot]$: sample expectation; Normalize $f(x) \forall x \in \mathcal{X}$; $g(y) \leftarrow \mathbb{E}_m[f(X)|Y = y]$; Normalize $g(y) \forall y \in \mathcal{Y}$; $\sigma \leftarrow \mathbb{E}_m[f(X)g(Y)]$; end

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc., 80(391),1985b

Extension to high dimension case

k-dimensional HGR Maximal Correlation

$$\rho(X; Y) = \max_{\substack{f : \mathcal{X} \to \mathbb{R}^k \\ g : \mathcal{Y} \to \mathbb{R}^k}} \mathbb{E}[f(X)^T g(Y)] \leftarrow \text{ optimize k values in parallel} \\ g : \mathcal{Y} \to \mathbb{R}^k \\ \text{s.t. } \mathbb{E}[f_i(X)] = \mathbb{E}[g_i(Y)] = 0, \ \forall i = 1, \dots, k \\ \mathbb{E}[f_i(X)^T f_i(X)] = \mathbb{E}[g_i(Y)^T g_i(Y)] = \mathbf{1}\{i = j\}, \ \forall i, j = 1, \dots, k \end{cases}$$

ACE algorithm for k-d data

Data: Discrete data samples $x^{(1)}, \ldots, x^{(m)}$ **Result**: compute $f^*(x), g^*(y)$ Randomly choose $g(y), y \in \mathcal{Y}$ such that $\mathbb{E}[g(Y)] = 0$; while σ not converged do $f(x) \leftarrow \mathbb{E}_m[g(Y)|X=x]$; Normalize $f(x) \ \forall x \in \mathcal{X}$; $g(y) \leftarrow \mathbb{E}_m[f(X)|Y=y];$ Normalize $g(y) \ \forall y \in \mathcal{Y}$; $\sigma \leftarrow \mathbb{E}_m[f(X)^T g(Y)];$

Normalize k-d feature: for all $x \in \mathcal{X}$.

•
$$f(x) \leftarrow f(x) - \mathbb{E}_m[f(X)]$$

•
$$f(x) \leftarrow f(x) \mathbb{E}_m[f(X)f(X)^T]^{-\frac{1}{2}}$$

g(y) is normalized similarly for all $y \in \mathcal{Y}$.

Discussion on HGR Maximal Correlation

- Useful for modal estimation from data
- ACE in Python: https://github.com/mace-cream/xyace
 (limited to discrete X and Y)
- Extension to continuous case: a deep neural network implementation of HGR maximal correlation [Wang et. al. 2018]

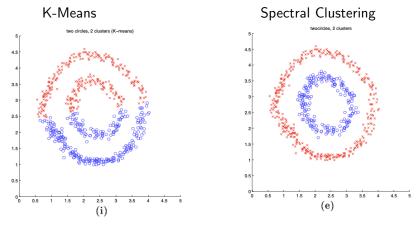
$$Loss(f,g) = -\hat{\mathbb{E}}[f(X)^{T}g(Y)] + \frac{1}{2}tr(Cov(f(X))Cov(g(Y)))$$

An Efficient Approach to Informative Feature Extraction from Multimodal Data, Wang, Lichen, et al. AAAI (2018).

Spectral Graph Theory

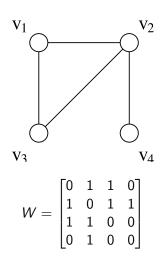
Graph Terminologies and Similarity Graphs Spectral Clustering

K-Means vs Spectral Clustering



[Shi & Malik 00; Ng, Jordan, Weiss NIPS 01]

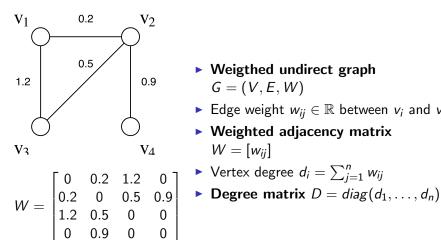
Graph Terminologies



- An undirect graph G = (V, E) consists of nodes V = {v₁,..., v_n} and edges E = {e₁,..., e_m}
- Edge e_{ij} connects v_i and v_j if they are adjacent or neighbors.
- Adjacency matrix $W_{ij} = \begin{cases} 1 & \text{if there is an edge } e_{ij} \\ 0 & \text{otherwise} \end{cases}$
- Degree d_i of node v_i is the number of neighbors of v_i.

$$d_i = \sum_{j=1}^n w_{ij}$$

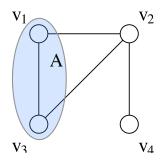
Graph Terminologies



- Weigthed undirect graph G = (V, E, W)
 - Edge weight $w_{ij} \in \mathbb{R}$ between v_i and v_j
 - Weighted adjacency matrix $W = [w_{ii}]$

• Vertex degree
$$d_i = \sum_{j=1}^n w_{ij}$$

Graph Terminologies



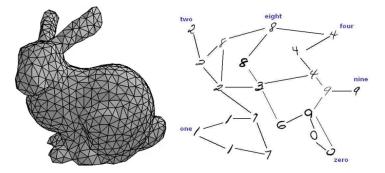
- Given vertex subset $A \subset V$, let $\bar{A} = V \setminus A$ be the complement of A in the graph
- Subset indicator function $\mathbf{1}_A \in \mathbb{R}^n$:

$$1_{\mathcal{A}}\{i\} = \begin{cases} 1 & \text{ if } v_i \in A \\ 0 & \text{ if } v_i \notin A \end{cases}$$

 Sets A₁,..., A_k form a partition of the graph if A_i ∩ A_j = Ø for all i ≠ j and A₁ ∪ ... ∪ A_k = V

Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D mesh etc



Use graph to represent similarity in data

Clustering from a graph point of view

- Given data points $x^{(1)}, \ldots, x^{(n)}$ and similarity measure $s_{ij} \ge 0$ for all $x^{(i)}, x^{(j)}$
- A typical similarity graph G = (V, E) is
 - $v_i \leftrightarrow x^{(i)}$
 - v_i and v_j are connected if $s_{ij} \geq \delta$ for some threshold δ
- Clustering: Divide data into groups such that points in the same group are similar and points in different groups are dissimilar
- ► Spectral Clustering (informal): Find a partition of G such that edges between the same group have high weight and edges between different groups have very low weight.

$\epsilon\text{-neighborhood}$

Add edges to all points inside a ball of radius f centered at v

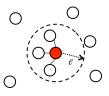
k-Nearest Neighbors

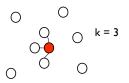
Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-rac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}
ight)$$
 for $i, j = 1, \dots, m$





ϵ -neighborhood

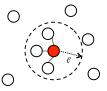
Add edges to all points inside a ball of radius f centered at vDrawbacks: sensitive to e, edge weights are on similar scale k-Nearest Neighbors

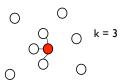
Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, \dots, m$





ϵ -neighborhood

Add edges to all points inside a ball of radius f centered at vDrawbacks: sensitive to e, edge weights are on similar scale

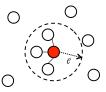
k-Nearest Neighbors

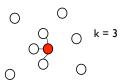
Add edges between v's k-nearest neighbors. Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-rac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}
ight)$$
 for $i, j = 1, \dots, m$





ϵ -neighborhood

Add edges to all points inside a ball of radius f centered at vDrawbacks: sensitive to e, edge weights are on similar scale

k-Nearest Neighbors

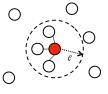
Add edges between v's k-nearest neighbors. Drawbacks: may result in asymmetric and irregular graph

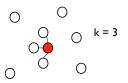
Fully connected graph

Often, Gaussian similarity is used

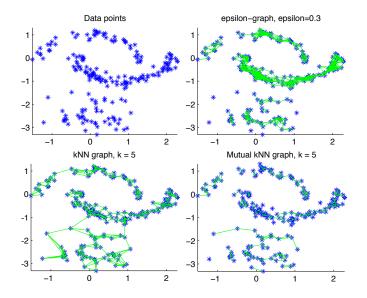
$$W_{i,j} = \exp\left(-rac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}
ight) \ ext{for} \ i,j = 1,\dots,m$$

Drawbacks: W is not sparse





Similarity graphs examples



Graph Laplacian

Unnormalized graph laplacian matrix:

$$L = D - W$$

Properties of L

- ► For every $f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i f_j)^2$
- L is symmetric and positive semi-definite
- The smallest eigenvalue of L is 0 with eigenvector 1
- *L* has *n* real eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Graph Laplacian

Proposition 4

Let G be an undirected graph with non-negative weights W, the multiplicity k if eigenvalue 0 of L is the number of connected components A_1, \ldots, A_k in G. The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{rw}

- ► λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ , v solve the generalized eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of L with eigenvector ${f 1}$
- L_{rw} is positive semi-definite and has n non-negative eigenvalues 0 = λ₁ ≤ λ₂ ≤ ... ≤ λ_n

¹Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{rw}

- ► λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ , v solve the generalized eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of L with eigenvector ${f 1}$
- L_{rw} is positive semi-definite and has n non-negative eigenvalues 0 = λ₁ ≤ λ₂ ≤ ... ≤ λ_n

Proposition 5

Let G be an undirected graph with non-negative weights W, the multiplicity k of eigenvalue 0 of L_{rw} is the number of connected components A_1, \ldots, A_k in G.

The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$

¹Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight W
- Compute first k eigenvectors $V = [v_1, \ldots, v_k]$ of L
- ▶ Define $y_i \in \mathbb{R}^k$ as the ith row of *V*, cluser y_1, \ldots, y_n into *k* clusters C_1, \ldots, C_k using k-means

Output: A_1, \ldots, A_k where $A_i = \{j | y_j = C_i\}$

Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

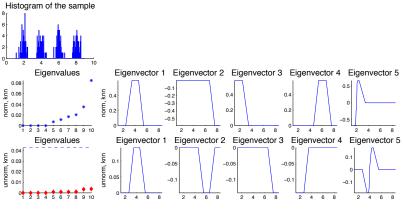
Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight W
- Compute first k eigenvectors V = [v₁,..., v_k] of generalized eigen problem Lv = λDv
- ▶ Define $y_i \in \mathbb{R}^k$ as the ith row of *V*, cluser y_1, \ldots, y_n into *k* clusters C_1, \ldots, C_k using k-means

Output: A_1, \ldots, A_k where $A_i = \{j | y_j = C_i\}$

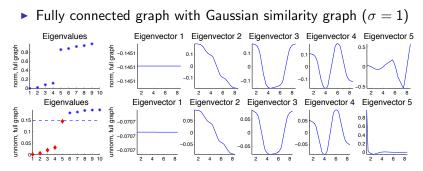
Toy Example

- 200 data points sampled from 4 Gaussian distributions
- KNN similarity graph (k = 10)



First 4 eigenvalues are 0 with eigenvectors 1_{A_i} , $i = 1, \ldots, 4$

Toy Example



First eigenvector is ${\bf 1}$ since the graph has only 1 connected component