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Today's Lecture

Midterm Statistics
Unsupervised Learning (Part II)

» Kernel PCA (Cont’)
» Independent Component Analysis (ICA)
» Canonical Correlation Analysis (CCA)



PCA Review

PCA Dimension reduction

» Find principal components uy, ..., u, that are mutually
orthogonal (uncorrelated)

> Most of the variations in x will be accounted for by k principal
components where k < n.

Main steps
1. Standardize x such that Mean(x) = 0, Var(x;) =1 for all j
2. Compute ¥ = cov(x)

3. Find principal components vy, ..., u, by eigenvalue
decomposition: ¥ = UAUT. < U is an orthogonal basis in
Rn

4. Project data on first the k principal components: Z; = XU



PCA Limitations

» Assumes input data is real and continuous

» Assumes approximate normality of input space (but may
still work well on non-normally distributed data in practice)
+ sample mean & covariance must be sufficient statistics

Example of strongly non-normal distributed input:
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PCA Limitations

PCA results may not be useful when
> Axes of larger variance is less ‘interesting’ than smaller ones.
» Axes of variations are not orthogonal,

» Data has non-linear relationships (see kernel PCA)
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Kernel PCA

Feature extraction using PCA
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e.g. k-means

Linear PCA assumes data are separable in R”

A non-linear generalization
» Project data into higher dimension using feature mapping
¢ :R" = RI (d>n)
> Feature mapping is defined by a kernel function
K (x(i),x(j)) = p(xNTp(x1)) or kernel matrix K € Rm™*m

» We can now perform standard PCA in the feature space



Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods)

Sample covariance matrix of feature mapped data (assuming ¢(x)
is centered)

y — E IZ:;¢(X(I))¢(X(I))T c Rdxd
Let (A, uk),k =1,...,d be the eigen decomposition of ¥:
YU = AUk
PCA projection of x(!) onto the kth principal component uy:

A(xD) T uy

How to avoid evaluating ¢(x) explicitly?



The Kernel Trick

Represent projection ¢(x())Tu using kernel function K:

» Write uy as a linear combination of ¢(x(1), ..., ¢(x(M):
ug = ZOZW(XU))
i=1
» PCA projection of x() using kernel function K:
(XN T = ¢(xNTY " afd(xD) =~ afek (x, <)
i=1 i=1

How to find o/ s directly ?



The Kernel Trick

Kth eigenvector equation:
1 < . )
Z = —_ (I) (’) T — A
Uk (m ;:1 () (x") ") k Uk

» Substitute ug = >, as(i)gzﬁ(x(")), we obtain

Kak = )\kmak
ok
where ax = | 1 | can be solved by eigen decomposition of K
ay

» Normalize «y such that ukTuk =1:

up uy = Z Zaiaﬂ(x(i)ﬁ(ﬁ(x(j)) = af Kok = Aem(ay] k)
i—1 j=1
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Kernel PCA

When E[¢(x)] # 0 , we need to center ¢(x):
FxD) = 6(x7) = 3" 3l

The “centralized” kernel matrix is
Kij = o(x)T(x1))
In matrix notation:

K=K-1,K - K1, +1,K1,,

1/m ... 1/m

where 1,, = | D | eRM™
1/m ... 1/m

Use K to compute PCA



Kernel PCA Example
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Kernel PCA Example

Polynomial kernel PCA Gaussian kernel PCA
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Discussions of kernel PCA

» Often used in clustering, abnormality detection, etc

» Requires finding eigenvectors of m x m matrix instead of n x n

» Dimension reduction by projecting to k-dimensional principal
subspace is generally not possible
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The Pre-lmage problem: reconstruct data in input space x from
feature space vectors ¢(x)



The cocktail party problem

> n microphones at different locations of the room, each
recording a mixture of n sound sources

» How to “unmix” the sound mixtures?
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Brian imaging

» Different brain matters: gray matter, white matter,
cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
» An MRI scan is a mixture of different brain matters

Proton Density

T-2 Weighted IC3

MRI Scans (x) Independent Components (s)



EEG Analysis e.em,\odei

> Electrodes on patient scalp measure a
mixture of different brain activations

FCz Cz
Fz CPz

» Finding independent activation sources
helps removing artifacts in the signal
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Problem Model

Case: n=2
» Observed random variables: xi, x»

» Independent sources: s1,s, € R

X1 = a1151 + a12s2

Xp = a2151 + a»s

A is called the mixing matrix
x = As

The blind source separation (cocktail party) problem

Given repeated observation {x();i =1,..., m}, recover sources
s() that generated the data (x() = As())



Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation {x();i =1,..., m}, recover sources
s() that generated the data (x() = As())

Let W = A~! be the unmixing matrix
Goal of ICA: Find W, such that given x(i), the sources can be
recovered by s() = Wx())
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ICA Ambiguities

Assume data is non Gaussian, |ICA has two ambiguities:
» Permutation of original sources sy, ..., s,

» Scaling of w;

Why is Gaussian data problematic?

As long as the data is non-Gaussian, given enough data, we can
recover the n independent sources.



ICA vs PCA

Observations

ICA recovered signals

PCA recovered signals

PCA

ICA

approximately Gaussian data

non-Gaussian data

removes correlation (low order
dependence)

and

correlations
higher order dependence

removes

ordered importance

all components are equally im-
portant

orthogonal

not orthogonal



Densities and Linear Transformations

Theorem 1

If random vector s has density ps, and x = As for a square,
invertible matrix A, then the density of x is

Px(x) = ps(Wx)[W],

where W = A~1



ICA Algorithm

Joint distributions of independent sources s = {s1,...,s,}:
p(s) = f[ ps(si)
i=1
The density on x = As = W™ !s:
p(x) = H ps(w; x)|W|
i=1

Choose the sigmoid function g(s) as the non-Gaussian cdf

for ps, then

_ 1
T 1+e—s



ICA Algorithm

Given a training set {x(1), ... x(M1 the log likelihood is
(wy=>"
i=1

1

(Z log &' (w;"x(")) + log | W)

Jj=1
Stochastic gradient ascent learning rule for sample x():

1 —2g(w Tx(7)
W:=W+a«a 5
1 - 2g(w,"x1)

Check this at home!



Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations
among two sets of variables.
Example: two sets of measurements of 406 cars:

> Specification: Engine displacement (Disp), horsepower (HP), weight
(Wet)

> Measurement: Acceleration (Accel), MPG

-0.17*Accel-0.092*MPG
o

-1.5 -1 -0.5 o 0.5 1 15 2 25 3 35
0.0025*Disp+0.020*"HP-0.000025"Wgt

find important features that explain covariation between sets of variables



CCA Definitions

X1 yi
» Random vectors X = | : | and Y =

an }/nz
» Covariance matrix Xxy = cov(X, Y)

» CCA finds vectors a and b such that the random variables
a’ X and b7 Y maximize the correlation

p=corr(a’ X,b"Y)

» U=a’"X and V = bTY are called the first pair of
canonical variables

» Subsequent pairs of canonical variables maximizes p while
being uncorrelated with all previous pairs



Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle (m x n)
matrices M.

M=UVT =) oy
i=1

» UeR™M Ve R"™" are orthogonal matrices

» ¥ € R™*" is a rectangular diagonal matrix.

Examples:
? f 8 o1 0 0 0
Y = 2 =10 o0 0 O
0 0 o3 0 0 0
0 0 0 73

Diagonal entries 01 > 02 > ... > 0k, k = min(n, m) are
called singular values of M.



Review: Singular Value Decomposition

A non-negative real number o is a singular value for M € R™*" if
and only if there exist unit-length u € R™ and v € R" such that

Mv =ou

MTu=ov

u is called the left singular vector of o, v is called the right
singular vector of o

Connection to eigenvalue decomposition
Given SVD of matrix M = UX VT,
» MTM = (VETUT)(UZVT) = V(ETL)VT < v isan
eigenvector of MT M with eigenvalue (7,-2
» MMT = (UZVT)(VTETU) = U(ZZT)UT « u; is an
eigenvector of MM T with eigenvalue o2

i



CCA Derivations

The original problem:

(a1, b1) = argmax corr(a’ X,bTY)
acR™ beR™

Assume E[x1] = ... = E[x,,] = E[1] = ... = E[yn,] =0,
T T
corr(a’ X, bT X) = E[(a" X)(b" Y)]
VE[(@TX)?E[(aT Y)?]
_ a'Ixyb
VaTZxxay/bTZyyb
(1) is equivalent to:

aeRM" be R™
a'Yxxa=b"Zyyb=1



CCA Derivations

Define Q € RMm*™ ¢ € R™ and d € R™,

_1 _1
Q=35> xyXyy
1

c=%}a
1
d=%3,b
(2) can be written as
(c1,dh) = argmax c"Qd (3)
ccR™ deR™
lell? =1ld|]? =1

(c1,d1) can be solved by SVD, then the first pair of canonical

variables are .

1 _1
al = ZX)Q(Cl, b1 = ny/dl



CCA Derivations

(c1,d1) = argmax c'Qd
ccR™, dcR™
lel[> = [ldl|* =1

Proposition 1

c1 and dy are the left and right unit singular vectors of Q) with the
largest singular value.

Theorem 2

¢; and d; are the left and right unit singular vectors of Q) with the
ith largest singular value.



CCA Algorithm

Input: Covariance matrices for centered data X and Y:
> Y xy , invertible X xx and Lyy

» Dimension k < min(ny, n2)

Output: CCA projection matrices Ax and By:

_1 _1
» Compute 2 =X, 3 xyXy
» Compute SVD decomposition of Q

01

o T
0 2

_1 _1
> Ak = ZX;([Cl,...,Ck] and Bk = ny,[dl,...,dk]



Discussion of CCA

» CCA only measures linear . \ .
dependencies X2 L. L
» Non-linear generalizations: , ';'::, ..',,.‘- .
» Kernel CCA (KCCA) BIP% T S
» Deep CCA (DCCA) N L 2D
» Maximal HGR Correlation B v

X1

Non-linear dependency between x;
and x
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