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Today’s Lecture

Midterm Statistics
Unsupervised Learning (Part II)

▶ Kernel PCA (Cont’)

▶ Independent Component Analysis (ICA)

▶ Canonical Correlation Analysis (CCA)
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PCA Review

PCA Dimension reduction
▶ Find principal components u1, . . . , un that are mutually

orthogonal (uncorrelated)

▶ Most of the variations in x will be accounted for by k principal
components where k ≪ n.

Main steps

1. Standardize x such that Mean(x) = 0,Var(xj) = 1 for all j

2. Compute Σ = cov(x)

3. Find principal components u1, . . . , un by eigenvalue
decomposition: Σ = UΛUT . ← U is an orthogonal basis in
Rn

4. Project data on first the k principal components: Zk = XUk
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PCA Limitations

▶ Assumes input data is real and continuous

▶ Assumes approximate normality of input space (but may
still work well on non-normally distributed data in practice)
← sample mean & covariance must be sufficient statistics

Example of strongly non-normal distributed input:

PDF Original Input PCA Projection
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PCA Limitations

PCA results may not be useful when

▶ Axes of larger variance is less ‘interesting‘ than smaller ones.

▶ Axes of variations are not orthogonal;

▶ Data has non-linear relationships (see kernel PCA)
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Kernel PCA

Feature extraction using PCA

x(i) PCA
Wx(i) f c(i)

e.g. k-means

Linear PCA assumes data are separable in Rn

A non-linear generalization

▶ Project data into higher dimension using feature mapping
ϕ : Rn → Rd (d ≥ n)

▶ Feature mapping is defined by a kernel function
K
(
x (i), x (j)

)
= ϕ(x (i))Tϕ(x (j)) or kernel matrix K ∈ Rm×m

▶ We can now perform standard PCA in the feature space
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Kernel PCA
(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal

component analysis. In Advances in kernel methods)

Sample covariance matrix of feature mapped data (assuming ϕ(x)
is centered)

Σ =
1

m

m∑
i=1

ϕ(x (i))ϕ(x (i))T ∈ Rd×d

Let (λk , uk), k = 1, . . . , d be the eigen decomposition of Σ:

Σuk = λkuk

PCA projection of x (l) onto the kth principal component uk :

ϕ(x (l))Tuk

How to avoid evaluating ϕ(x) explicitly?
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The Kernel Trick

Represent projection ϕ(x (l))Tuk using kernel function K :

▶ Write uk as a linear combination of ϕ(x (1)), . . . , ϕ(x (m)):

uk =
m∑
i=1

αi
kϕ(x

(i))

▶ PCA projection of x (l) using kernel function K :

ϕ(x (l))Tuk = ϕ(x (l))T
m∑
i=1

αi
kϕ(x

(i)) =
m∑
i=1

αi
kK (x (l), x (i))

How to find αi
k ’s directly ?
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The Kernel Trick
Kth eigenvector equation:

Σuk =

(
1

m

m∑
i=1

ϕ(x (i))ϕ(x (i))T

)
uk = λkuk

▶ Substitute uk =
∑m

i=1 α
(i)
k ϕ(x (i)), we obtain

Kαk = λkmαk

where αk =

α
1
k
...

αm
k

can be solved by eigen decomposition of K

▶ Normalize αk such that uTk uk = 1:

uTk uk =
m∑
i=1

m∑
j=1

αi
kα

j
kϕ(x

(i))Tϕ(x (j)) = αT
k Kαk = λkm(αT

k αk)

∥αk∥2 =
1

λkm
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Kernel PCA

When E[ϕ(x)] ̸= 0 , we need to center ϕ(x):

ϕ̃(x (i)) = ϕ(x (i))− 1

m

m∑
l=1

ϕ̃(x (l))

The “centralized” kernel matrix is

K̃i ,j = ϕ̃(x (i))T ϕ̃(x (j))

In matrix notation:

K̃ = K − 1mK − K1m + 1mK1m

where 1m =

1/m . . . 1/m
...

. . .
...

1/m . . . 1/m

 ∈ Rmxm

Use K̃ to compute PCA
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Kernel PCA Example

original data standard PCA
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Kernel PCA Example

Polynomial kernel PCA Gaussian kernel PCA
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Discussions of kernel PCA
▶ Often used in clustering, abnormality detection, etc
▶ Requires finding eigenvectors of m×m matrix instead of n× n
▶ Dimension reduction by projecting to k-dimensional principal

subspace is generally not possible

The Pre-Image problem: reconstruct data in input space x from
feature space vectors ϕ(x)
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The cocktail party problem

▶ n microphones at different locations of the room, each
recording a mixture of n sound sources

▶ How to “unmix” the sound mixtures?
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Brian imaging
▶ Different brain matters: gray matter, white matter,

cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
▶ An MRI scan is a mixture of different brain matters
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EEG Analysis
▶ Electrodes on patient scalp measure a

mixture of different brain activations

▶ Finding independent activation sources
helps removing artifacts in the signal



17/33

Problem Model

Case: n = 2

▶ Observed random variables: x1, x2
▶ Independent sources: s1, s2 ∈ R

x1 = a11s1 + a12s2

x2 = a21s1 + a22s2

A is called the mixing matrix

x = As

The blind source separation (cocktail party) problem

Given repeated observation {x (i); i = 1, . . . ,m}, recover sources
s(i) that generated the data (x (i) = As(i))
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Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation {x (i); i = 1, . . . ,m}, recover sources
s(i) that generated the data (x (i) = As(i))

Let W = A−1 be the unmixing matrix
Goal of ICA: Find W , such that given x (i), the sources can be
recovered by s(i) = Wx (i)

W =

−w
T
1 −
...

−wT
n −


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ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:

▶ Permutation of original sources s1, . . . , sn
▶ Scaling of wi

Why is Gaussian data problematic?

As long as the data is non-Gaussian, given enough data, we can
recover the n independent sources.
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ICA vs PCA

PCA ICA

approximately Gaussian data non-Gaussian data

removes correlation (low order
dependence)

removes correlations and
higher order dependence

ordered importance all components are equally im-
portant

orthogonal not orthogonal
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Densities and Linear Transformations

Theorem 1

If random vector s has density ps , and x = As for a square,
invertible matrix A, then the density of x is

px(x) = ps(Wx)|W |,

where W = A−1



22/33

ICA Algorithm

Joint distributions of independent sources s = {s1, . . . , sn}:

p(s) =
n∏

i=1

ps(si )

The density on x = As = W−1s:

p(x) =
n∏

i=1

ps(w
T
i x)|W |

Choose the sigmoid function g(s) = 1
1+e−s as the non-Gaussian cdf

for ps , then
ps(s) = g ′(s)
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ICA Algorithm

Given a training set {x (1), . . . , x (m)}, the log likelihood is

l(W ) =
m∑
i=1

 n∑
j=1

log g ′(wT
j x (i)) + log |W |


Stochastic gradient ascent learning rule for sample x (i):

W := W + α


1− 2g(w1

T x (i))
...

1− 2g(wn
T x (i))

 x (i)
T
+ (W T )

−1


Check this at home!



24/33

Canonical Correlation Analysis
Canonical correlation analysis (CCA) finds the associations
among two sets of variables.
Example: two sets of measurements of 406 cars:

▶ Specification: Engine displacement (Disp), horsepower (HP), weight
(Wgt)

▶ Measurement: Acceleration (Accel), MPG

find important features that explain covariation between sets of variables
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CCA Definitions

▶ Random vectors X =

 x1
...
xn1

 and Y =

 y1
...
yn2


▶ Covariance matrix ΣXY = cov(X ,Y )

▶ CCA finds vectors a and b such that the random variables
aTX and bTY maximize the correlation

ρ = corr(aTX , bTY )

▶ U = aTX and V = bTY are called the first pair of
canonical variables

▶ Subsequent pairs of canonical variables maximizes ρ while
being uncorrelated with all previous pairs
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Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle (m × n)
matrices M.

M = UΣV T =
r∑

i=1

σiuiv
T
i

▶ U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices

▶ Σ ∈ Rm×n is a rectangular diagonal matrix.
Examples:

Σ =


σ1 0 0
0 σ2 0
0 0 σ3
0 0 0

 Σ =

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0


Diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σk , k = min(n,m) are
called singular values of M.
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Review: Singular Value Decomposition

A non-negative real number σ is a singular value for M ∈ Rm×n if
and only if there exist unit-length u ∈ Rm and v ∈ Rn such that

Mv = σu

MTu = σv

u is called the left singular vector of σ, v is called the right
singular vector of σ

Connection to eigenvalue decomposition

Given SVD of matrix M = UΣV T ,

▶ MTM = (VΣTUT )(UΣV T ) = V (ΣTΣ)V T ← vi is an
eigenvector of MTM with eigenvalue σ2

i

▶ MMT = (UΣV T )(V TΣTU) = U(ΣΣT )UT ← ui is an
eigenvector of MMT with eigenvalue σ2

i
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CCA Derivations

The original problem:

(a1, b1) = argmax
a∈Rn1 ,b∈Rn2

corr(aTX , bTY ) (1)

Assume E[x1] = . . . = E[xn1 ] = E[y1] = . . . = E[yn2 ] = 0,

corr(aTX , bTX ) =
E[(aTX )(bTY )]√

E[(aTX )2]E[(aTY )2]

=
aTΣXY b√

aTΣXXa
√

bTΣYY b

(1) is equivalent to:

(a1, b1) = argmax
a ∈ Rn1 , b ∈ Rn2

aTΣXXa = bTΣYY b = 1

aTΣXY b

(2)
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CCA Derivations

Define Ω ∈ Rn1×n2 , c ∈ Rn1 and d ∈ Rn2 ,

Ω = Σ
− 1

2
XXΣXYΣ

− 1
2

YY

c = Σ
1
2
XXa

d = Σ
1
2
YY b

(2) can be written as

(c1, d1) = argmax
c ∈ Rn1 , d ∈ Rn2

||c ||2 = ||d ||2 = 1

cTΩd (3)

(c1, d1) can be solved by SVD, then the first pair of canonical
variables are

a1 = Σ
− 1

2
XX c1, b1 = Σ

− 1
2

YY d1
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CCA Derivations

(c1, d1) = argmax
c ∈ Rn1 , d ∈ Rn2

||c ||2 = ||d ||2 = 1

cTΩd

Proposition 1

c1 and d1 are the left and right unit singular vectors of Ω with the
largest singular value.

Theorem 2

ci and di are the left and right unit singular vectors of Ω with the
ith largest singular value.
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CCA Algorithm

Input: Covariance matrices for centered data X and Y :

▶ ΣXY , invertible ΣXX and ΣYY

▶ Dimension k ≤ min(n1, n2)

Output: CCA projection matrices Ak and Bk :

▶ Compute Ω = Σ
− 1

2
XXΣXYΣ

− 1
2

YY

▶ Compute SVD decomposition of Ω

Ω =

 | . . . |
c1 . . . cn1
| . . . |



σ1

. . .

σr
0


−d

T
1 −
...

−dT
n2−


▶ Ak = Σ

− 1
2

XX [c1, . . . , ck ] and Bk = Σ
− 1

2
YY [d1, . . . , dk ]
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Discussion of CCA

▶ CCA only measures linear
dependencies

▶ Non-linear generalizations:
▶ Kernel CCA (KCCA)
▶ Deep CCA (DCCA)
▶ Maximal HGR Correlation

x2

Chapter 2 The Preliminary

Figure 2.1 The HGR transformation results: the title of subplots is in the form of “y-axis vs.
x-axis”

Table 2.1 The value of correlations in the GMC solutions

1
d�1E[

Õ
i,j( fi(xi))T( fj(xj))] 0.642
E[ f1(x1) f2(x2)] -0.066
E[ f1(x1) f3(x3)] 0.631
E[ f2(x2) f3(x3)] 0.718

The value of correlations varies from di�erent variable pairs and it seems to be
reasonable. The correlation between f1(x1) and f2(x2) is very small because x1 and x2 are
independent. The subplots (f) ~(h) in Fig 2.2 can also indicate the degree of correlation
between each transformation pairs. Again the transformations on those variables clearly
reflect the true structure among them, they are all in the form fi(xi) = log |xi | as shown
in the subplots (c)~(e) in Fig 2.2. As a consequence, they satisfy the liner relationship of

11

x1

Non-linear dependency between x1
and x2
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