Learning From Data Lecture 7: K-Means Clustering & PCA

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

October 29, 2020

Today's Lecture

Unsupervised Learning

- ▸ Overview: the representation learning problem
- ▸ K-means clustering
- ▸ Principal component analysis

Written Assignment 2 is due today.

Unsupervised Learning

$$
x\longrightarrow \boxed{f(\cdot)}\quad \longrightarrow \mathbb{X}
$$

Similar to supervised learning, but without labels.

- ▸ Still want to learn the machine *f*
- ▸ Significantly harder in general

Unsupervised learning goal

Find **representations** of input feature *x* that can be used for reasoning, decision making, predicting things, comminicating etc.

The representation learning problem

(Y Bengio et. al. *Representation Learning: A Review and New Perspectives*, 2014)

Given input features *x*, find "simpler" features *z* that **preserve the same information** as *x*.

Example: Face recognition 100×100

$$
\rightarrow x = \begin{bmatrix} 0.5 \\ 0 \\ \vdots \\ 0.3 \\ 1.0 \end{bmatrix} 10^4 \rightarrow z = [\vdots]
$$

What information is in this picture? *identity, facial attributes, gender, age, sentiment, etc*

Characteristics of a good representation

- \triangleright low dimensional: compress information to a smaller size \rightarrow *reduce data size*
- \triangleright sparse representation: most entries are zero for most data \rightarrow *better interpretability*
- ▸ independent representations: disentangle the source of variations

Uses of representation learning

▸ Data compression

Example: Color image quantization. Each 24bit RGB color is reduced to a palette of 16 colors.

 $(0-255, 0-255, 0-255)$ 0-15

24bit x 300 x 400 4bit x 300 x 400 + 16 x24bit *6 times smaller*

Uses of representation learning \mathcal{C} cause the definition training

 \triangleright Abnormality (outlier, novelty) detection

Example: local density-based outlier detection real-world datasets which exhibit a more complex structure, there ample. Tocal defisity-based outlier detection

*o*¹ and *o*² are the detected outliers

Uses of representation learning

▸ Knowledge representation based on human perception Example: word embedding

http://ruder.io/word-embeddings-1/

Each word is represented by a 2D vector. Words in the same semantic category are grouped together

Clustering analysis

Given input features $\{x^{(1)},...,x^{(m)}\}$, group the data into a few *cohesive* "clusters".

▸ Objects in the same cluster are more similar to each other than to those in other clusters

The k-means clustering problem

Given input data $\{x^{(1)},...,x^{(m)}\}$, $x^{(i)} \in \mathbb{R}^d$, **k-means clustering**
portition the input into $k \le m$ sets C , C to minimize the partition the input into $k \le m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$
\underset{C}{\text{argmin}} \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|^2
$$

Equivalent definitions:

- ▸ minimizing the within-cluster variance: *k* $\sum_{i=1}$ | C_j | $Var(C_j)$ *j*=1
- ▸ minimizing the pairwise squared deviation between points in the same cluster: *(homework)*

$$
\sum_{i=1}^{k} \frac{1}{2|C_i|} \sum_{x, x' \in C_i} ||x - x'||^2
$$

▸ maximizing between-cluster sum of squares (BCSS) *(homework)*

K-Means Clustering Algorithm

- ▸ Optimal k-means clustering is NP-hard in Euclidean space.
- ▸ Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \ldots, k\}$ be the cluster label for $x^{(i)}$

```
Initialize cluster centroids \mu_1, \ldots, \mu_k \in \mathbb{R}^n randomly
Repeat until convergence {
    For every i ,
        c^{(i)} := argmin<sub>j</sub> ||x^{(i)} - \mu_j||^2 ← assign x^{(i)} to the cluster
                                              with the closest centroid
    For each j
          \mu_j := \frac{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}}\sum_{i=1}^{m} 1\{c^{(i)}=j\}← update centroid
}
```
Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

K-Means clustering discussion

▸ K-Means learns a *k*-dimensional *sparse* representation. i.e. $x^{(i)}$ is transformed into a "one-hot" vector $z^{(i)} \in \mathbb{R}^k$:

$$
z_j^{(i)} = \begin{cases} 1 & \text{if } c^{(i)} = j \\ 0 & \text{otherwise} \end{cases}
$$

▸ Only converges to a local minimum: initialization matters!

Practical considerations

- ▸ Replicate clustering trails and choose the result with the smallest WCSS
- ▸ How to initialize centroids μ_j 's ?
	- Uniformly random sampling \odot
	- \triangleright Distance-based sampling e.g. kmeans $++$ [Arthur & Vassilvitskii SODA 2007] ©
- ▸ How to choose *k*?
	- ▸ Cross validation (later lecture)
	- ▸ G-Means [Hamerly & Elkan, NIPS 2004]
- ▸ How to improve k-means efficiency?
	- ▸ Elkan's algorithm [Elkan, ICML 2003]
	- ▸ Mini-batch k-means [D. Sculley, WWW 2010]

Motivation of PCA

Example: Analyzing San Francisco public transit route efficiency

Motivation of PCA

Input features contain a lot of redundancy

Scatter plot matrix reveals pairwise correlations among 5 major features

Motivation of PCA

Example of linearly dependent features

- \triangleright Flow: average $\#$ boarding passengers per hour
- \triangleright Crowdedness: $\frac{\text{average } \# \text{ passengers on train}}{\text{average } \# \text{ passengers}}$ train capacity

How can we automatically detect and remove this redundancy?

- ▸ geometric approach ← *start here!*
- ▸ diagonalize covariance matrix approach

How to removing feature redundancy?

Given $\{x^{(1)},...,x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$.

- ▸ Find a linear, orthogonal transformation *W* ∶ R *ⁿ* [→] ^R *k* of the input data
- ▸ *W* aligns the direction of maximum variance with the axes of the new space.

Example: $n = 2$

features x_1 and x_2 are strongly variations in correlated

correlated mostly along the x-axis. x can be represented in 1D! Figure 5.8: x_1 and x_2 are strongly variations in $z = x^T W$ is

Direction of Maximum Variance

- Suppose $\mu = mean(x) = 0$, $\sigma_j = var(x_j) = 1$ (variance of jth f eature $)$
- \blacktriangleright Find major axis of variation unit vector u . Consider the following dataset $\mathfrak j$ it vector u :

Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into principal components". Journal of Educational Psychology.

PCA goals

- \triangleright Find principal components u_1, \ldots, u_n that are mutually orthogonal (uncorrelated)
- ▸ Most of the variation in *x* will be accounted for by *k* principal components where $k \ll n$.

Main steps of (full) PCA:

- 1. Standardize *x* such that $Mean(x) = 0$, $Var(x_i) = 1$ for all *j*
- 2. Find projection of x , $u_1^T x$ with maximum variance

3. For
$$
j = 2, ..., n
$$
,

3. For $j = 2, ..., n$,
Find another projection of *x*, $u_j^T x$ with maximum variance, where *u^j* is orthogonal to *u*1*, . . . , uj*−¹

Step 1: Standardize data

Normalize *x* such that $Mean(x) = 0$ and $Var(x_j) = 1$

$$
x^{(i)} := x^{(i)} - \mu \leftarrow \text{recenter}
$$

$$
x_j^{(i)} := x_j^{(i)}/\sigma_j \leftarrow \text{ scale by } \text{stdev}(x_j)
$$

Check:

$$
var\left(\frac{x_j}{\sigma_j}\right) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{x_j^{(i)} - \mu_j}{\sigma_j}\right)^2 = \frac{1}{\sigma_j^2} \frac{1}{m} \sum_{i=1}^{m} \left(x_j^{(i)} - \mu_j\right)^2
$$

$$
= \frac{1}{\sigma_j^2} \sigma_j^2 = 1
$$

Step 2: Find Projection with Maximum Variance

Variance of the projections:

$$
\frac{1}{m} \sum_{i=1}^{m} (x^{(i)T} u - \mathbf{0})^2 = \frac{1}{m} \sum_{i=1}^{m} u^T x^{(i)} x^{(i)T} u
$$

$$
= u^T \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)T} \right) u
$$

$$
= u^T \Sigma u
$$

Σ : the sample covariance matrix of $x^{(1)} \dots x^{(m)}$.

1st Principal Component

Find unit vector u_1 that maximizes variance of projections:

$$
u_1 = \underset{u:||u||=1}{\text{argmax}} \ u^T \Sigma u \tag{1}
$$

u_1 is the **1st principal component** of X

*u*¹ *can be solved using optimization tools, but it has a more efficient solution:*

Proposition 1

*u*¹ *is the largest eigenvector of covariance matrix* Σ

A Review on Eigenvalue Problem

The Eigenvalue Problem

Nonzero vector $u \in \mathbb{R}^n$ is an **eigenvector** of matrix $A \in \mathbb{R}^{n \times n}$ if

 $A_{II} = \lambda_{II}$

for some $\lambda \in \mathbb{R}$. We call λ the **eigenvalue** corresponding to *u*.

▸ *A* has at most *n* distinct eigenvalues

Eigenvalue Decomposition

Let $U = [u_1, \ldots, u_n]$ be the matrix of *n* linearly independent eigenvectors of *A* and $\Lambda = diag([\lambda_1, \ldots, \lambda_n])$, then

$$
A = U \Lambda U^{-1}
$$

► If *A* is symmetric, *A* can be decomposed as $A = U\Lambda U^T$ where *U* is an orthogonal matrix $(U^T U = I)$.

Proposition 1

*u*¹ *is the largest eigenvector of covariance matrix* Σ

Proof. Generalized Lagrange function of Problem 1:

$$
L(u) = -u^T \Sigma u + \beta (u^T u - 1)
$$

To minimize *^L*(*u*),

$$
\frac{\delta L}{\delta u} = -2\Sigma u + 2\beta u = 0 \implies \Sigma u = \beta u
$$

Therefore u_1 must be an eigenvector of Σ .

Let $u_1 = v_j$, the eigenvector with the *j*th largest eigenvalue λ_j ,

$$
u_1^T \Sigma u_1 = v_j^T \Sigma v_j = \lambda_j v_j^T v_j = \lambda_j.
$$

Hence $u_1 = v_1$, the eigenvector with the largest eigenvalue λ_1 . \Box

24/43

Proposition 2

*The j***th principal component** *of X , u^j is the jth largest eigenvector of* Σ *.*

Proof. Consider the case $i = 2$.

$$
u_2 = \underset{u:||u||=1, u_1^T u=0}{\operatorname{argmax}} u^T \Sigma u \tag{2}
$$

The Lagrangian function:

$$
L(u) = -u^T \Sigma u + \beta_1 (u^T u - 1) + \beta_2 (u_1^T u)
$$

Minimizing *^L*(*u*) yields:

$$
\beta_2=0, \Sigma u=\beta_1 u
$$

To maximize $u^T \Sigma u = \lambda$, u_2 must be the eigenvector with the second largest eigenvalue $\beta_1 = \lambda_2$. The same argument can be generalized to cases $j > 2$. (Use induction to prove for $j = 1 \ldots n$)

Summary

We can solve PCA by solving an eigenvalue problem! Main steps of (full) PCA:

- 1. Standardize *x* such that $Mean(x) = 0$, $Var(x_i) = 1$ for all *j*
- 2. Compute $\Sigma = cov(x)$
- 3. Find principal components *u*1*, . . . , uⁿ* by eigenvalue $\mathsf{decomposition:} \ \Sigma = \mathsf{U}\mathsf{\Lambda}\mathsf{U}^{\mathsf{T}}$. $\leftarrow \ \mathsf{U}$ *is an orthogonal basis in* \mathbb{R}^n

Next we project data vectors *x* to this new basis, which spans the **principal component space**.

PCA Projection

▸ Projection of sample *^x* [∈] ^R *n* in the principal component space:

$$
z^{(i)} = \begin{bmatrix} x^{(i)T} u_1 \\ \vdots \\ x^{(i)T} u_n \end{bmatrix} \in \mathbb{R}^n
$$

▸ Matrix notation:

$$
z^{(i)} = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}^T x^{(i)} = U^T x^{(i)}, \text{ or } Z = XU
$$

▸ The truncated transformation *^Z^k* ⁼ *XU^k* keeping only the first *k* principal components is used for **dimension reduction**.

Properties of PCA

▸ The variance of principal component projections are

$$
\text{Var}(x^T u_j) = u_j^T \Sigma u_j = \lambda_j \text{ for } j = 1, \dots, n
$$

- ▸ % of variance explained by the *j*th principal component: *λj* $\frac{y}{\sum_{i=1}^{n} \lambda_i}$. i.e. projections are uncorrelated
- ▸ % of variance accounted for by retaining the first *k* principal $\textsf{components} \; (k \leq n) \colon \; \frac{\sum_{j=1}^k \lambda_j}{\sum_{i=1}^n \lambda_i}$ $\sum_{j=1}^{n} \lambda_j$

Another geometric interpretation of PCA is minimizing projection residuals. (see homework!)

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data *X*: Let $Z = XU$ be the PCA projected data,

$$
cov(Z) = \frac{1}{m}Z^{T}Z = \frac{1}{m}(XU)^{T}(XU) = U^{T}\left(\frac{1}{m}X^{T}X\right)U = U^{T}\Sigma U
$$

Since *U* is symmetric, it has real eigenvalues. Its eigen decomposition is

^Σ ⁼ *^U*Λ*^U T*

where

$$
U = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}
$$

Then

$$
cov(Z) = U^{T}(U\Lambda U^{T})U = \Lambda
$$

The principal component transformation *XU* diagonalizes the sample covariance matrix of *X*

PCA Example: Iris Dataset

- ▸ 150 samples
- ▸ input feature dimension: 4

PCA Example: Iris Dataset

- ▸ 150 samples
- ▸ input feature dimension: 4

 $%$ of variance explained by PC1: 73%, by PC2: 22%

PCA Example: Eigenfaces

Learning image representations for face recognition using PCA [Turk and Pentland CVPR 1991]

Training data Eigenfaces: *k* principal components

PCA Example: Eigenfaces

Each face image is a linear combination of the **eigenfaces** (principal components)

Each image is represented by *k* weights

Recognize faces by classifying the weight vectors. e.g. k-Nearest Neighbor

PCA Limitations

- ▸ Only considers linear relationships in data (see kernel PCA)
- ▸ Assumes input data is real and continuous
- ▸ Assumes **approximate normality** of input space (but may still work well on non-normally distributed data in practice)

Example of strongly non-normal distributed input:

Kernel PCA

Feature extraction using PCA

Linear PCA assumes data are separable in \mathbb{R}^n

A non-linear generalization

- ▸ Project data into higher dimension using feature mapping ϕ : ℝ^{*n*} → ℝ^{*d*} (*d* ≥ *n*)
- ▸ Feature mapping is defined by a kernel function $K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})$ $(\int_{0}^{T} \phi(x^{(j)})$ or kernel matrix $K \in \mathbb{R}^{m \times m}$
- ▸ We can now perform standard PCA in the feature space

Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. *Kernel principal component analysis*. In Advances in kernel methods)

Sample covariance matrix of feature mapped data (assuming *^ϕ*(*x*) is centered)

$$
\Sigma = \frac{1}{m} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^{\mathsf{T}} \in \mathbb{R}^{d \times d}
$$

Let (λ_k, u_k) , $k = 1, \ldots, d$ be the eigen decomposition of Σ :

 $Σ*u_k* = λ_k*u_k*$

PCA projection of $x^{(l)}$ onto the *kth* principal component u_k :

 $\phi(x^{(l)})$ $\overline{}$ *T uk*

How to avoid evaluating *^ϕ*(*x*) explicitly?

The Kernel Trick

Represent projection $\phi(x^{(l)})^T u_k$ using kernel function *K*: $\overline{}$

▸ Write u_k as a linear combination of $\phi(x^{(1)}), \ldots, \phi(x^{(m)})$:

$$
u_k = \sum_{i=1}^m \alpha_k^i \phi(x^{(i)})
$$

▶ PCA projection of $x^{(l)}$ using kernel function K :

$$
\phi(x^{(l)})^{\mathsf{T}} u_k = \phi(x^{(l)})^{\mathsf{T}} \sum_{i=1}^m \alpha_k^i \phi(x^{(i)}) = \sum_{i=1}^m \alpha_k^i K(x^{(l)}, x^{(i)})
$$

How to find α_k^i 's directly ?

The Kernel Trick

Kth eigenvector equation:

$$
\Sigma u_k = \left(\frac{1}{m} \sum_{i=1}^m \phi(x^{(i)}) \phi(x^{(i)})^T\right) u_k = \lambda_k u_k
$$

► Substitute $u_k = \sum_{i=1}^m \alpha_k^{(i)} \phi(x^{(i)})$, we obtain

$$
K\alpha_k = \lambda_k m\alpha_k
$$

where α_k = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ α_k^1 ⋮ *α m k* $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ can be solved by eigen decomposition of *K*

• Normalize α_k such that $u_k^T u_k = 1$:

$$
u_k^T u_k = \sum_{i=1}^m \sum_{j=1}^m \alpha_k^i \alpha_k^j \phi(x^{(i)})^T \phi(x^{(j)}) = \alpha_k^T K \alpha_k = \lambda_k m(\alpha_k^T \alpha_k)
$$

$$
\|\alpha_k\|^2 = \frac{1}{\lambda_k m}
$$

Kernel PCA

When $\mathbb{E}[\phi(x)] \neq 0$, we need to center $\phi(x)$:

$$
\widetilde{\phi}(\mathbf{x}^{(i)}) = \phi(\mathbf{x}^{(i)}) - \frac{1}{m} \sum_{l=1}^{m} \widetilde{\phi}(\mathbf{x}^{(l)})
$$

The "centralized" kernel matrix is

~

$$
\tilde{K}_{i,j} = \widetilde{\phi}(\boldsymbol{x}^{(i)})^T \widetilde{\phi}(\boldsymbol{x}^{(j)})
$$

In matrix notation:

$$
\tilde{K} = K - \mathbf{1}_m K - K \mathbf{1}_m + \mathbf{1}_m K \mathbf{1}_m
$$

where $\mathbf{1}_m = \begin{bmatrix} 1/m & \dots & 1/m \\ \vdots & \ddots & \vdots \\ 1/m & \dots & 1/m \end{bmatrix} \in \mathbb{R}^{m \times m}$
Use \tilde{K} to compute PCA

Kernel PCA Example

Kernel PCA Example

Discussions of kernel PCA

- ▸ Often used in clustering, abnormality detection, etc
- ▸ Requires finding eigenvectors of *m* × *m* matrix instead of *n* × *n*
- ▸ Dimension reduction by projecting to k-dimensional principal subspace is generally not possible

The Pre-Image problem: reconstruct data in input space *x* from feature space vectors *^ϕ*(*x*)

Summary

Representation learning

- ▸ Transform input features into "simpler" or "interpretable" representations.
- ▸ Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms:

