
1/43

Learning From Data
Lecture 7: K-Means Clustering & PCA

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

October 29, 2020

2/43

Today’s Lecture

Unsupervised Learning

▸ Overview: the representation learning problem

▸ K-means clustering

▸ Principal component analysis

Written Assignment 2 is due today.

3/43

Unsupervised Learning

Similar to supervised learning, but without labels.

▸ Still want to learn the machine f

▸ Significantly harder in general

Unsupervised learning goal

Find representations of input feature x that can be used for
reasoning, decision making, predicting things, comminicating etc.

4/43

The representation learning problem

(Y Bengio et. al. Representation Learning: A Review and New
Perspectives, 2014)

Given input features x , find “simpler” features z that preserve the
same information as x .

Example: Face recognition
100 × 100

→ x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0
⋮

0.3
1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

104 → z = [⋮]

What information is in this picture? identity, facial attributes,
gender, age, sentiment, etc

5/43

Characteristics of a good representation

▸ low dimensional: compress information to a smaller size →
reduce data size

▸ sparse representation: most entries are zero for most data →
better interpretability

▸ independent representations: disentangle the source of
variations

f

identity

pose

expression

f(x)

6/43

Uses of representation learning

▸ Data compression

Example: Color image quantization. Each 24bit RGB color is
reduced to a palette of 16 colors.

Original Compressed

(0-255,0-255,0-255) 0-15
24bit x 300 x 400 4bit x 300 x 400 + 16 x24bit

6 times smaller

7/43

Uses of representation learning

▸ Abnormality (outlier, novelty) detection

Example: local density-based outlier detection

2

fining the local neighborhood of the object. We study how this
parameter affects the LOF value, and we present practical
guidelines for choosing the MinPts values for finding local out-
liers.

• Last but not least, we present experimental results which show
both the capability and the performance of finding local outli-
ers. We conclude that finding local outliers using LOF is mean-
ingful and efficient.

The paper is organized as follows. In section 2, we discuss related
work on outlier detection and their drawbacks. In section 3 we dis-
cuss in detail the motivation of our notion of outliers, especially, the
advantage of a local instead of a global view on outliers. In section
4 we introduce LOF and define other auxiliary notions. In section 5
we analyze thoroughly the formal properties of LOF. Since LOF re-
quires the single parameter MinPts, in section 6 we analyze the im-
pact of the parameter, and discuss ways to choose MinPts values for
LOF computation. In section 7 we perform an extensive experi-
mental evaluation.

2. RELATED WORK
Most of the previous studies on outlier detection were conducted in
the field of statistics. These studies can be broadly classified into
two categories. The first category is distribution-based, where a
standard distribution (e.g. Normal, Poisson, etc.) is used to fit the
data best. Outliers are defined based on the probability distribution.
Over one hundred tests of this category, called discordancy tests,
have been developed for different scenarios (see [5]). A key draw-
back of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. mul-
tivariate normal outliers). But for many KDD applications, the un-
derlying distribution is unknown. Fitting the data with standard dis-
tributions is costly, and may not produce satisfactory results.
The second category of outlier studies in statistics is depth-based.
Each data object is represented as a point in a k-d space, and is as-
signed a depth. With respect to outlier detection, outliers are more
likely to be data objects with smaller depths. There are many defi-
nitions of depth that have been proposed (e.g. [20], [16]). In theory,
depth-based approaches could work for large values of k. However,
in practice, while there exist efficient algorithms for k = 2 or 3
([16], [18], [12]), depth-based approaches become inefficient for
large datasets for k ≥ 4. This is because depth-based approaches
rely on the computation of k-d convex hulls which has a lower
bound complexity of Ω(nk/2) for n objects.
Recently, Knorr and Ng proposed the notion of distance-based out-
liers [13], [14]. Their notion generalizes many notions from the dis-
tribution-based approaches, and enjoys better computational com-
plexity than the depth-based approaches for larger values of k. Later
in section 3, we will discuss in detail how their notion is different
from the notion of local outliers proposed in this paper. In [17] the
notion of distance based outliers is extended by using the distance
to the k-nearest neighbor to rank the outliers. A very efficient algo-
rithms to compute the top n outliers in this ranking is given, but
their notion of an outlier is still distance-based.
Given the importance of the area, fraud detection has received more
attention than the general area of outlier detection. Depending on
the specifics of the application domains, elaborate fraud models
and fraud detection algorithms have been developed (e.g. [8], [6]).

In contrast to fraud detection, the kinds of outlier detection work
discussed so far are more exploratory in nature. Outlier detection
may indeed lead to the construction of fraud models.
Finally, most clustering algorithms, especially those developed in
the context of KDD (e.g. CLARANS [15], DBSCAN [7], BIRCH
[23], STING [22], WaveCluster [19], DenClue [11], CLIQUE [3]),
are to some extent capable of handling exceptions. However, since
the main objective of a clustering algorithm is to find clusters, they
are developed to optimize clustering, and not to optimize outlier de-
tection. The exceptions (called “noise” in the context of clustering)
are typically just tolerated or ignored when producing the clustering
result. Even if the outliers are not ignored, the notions of outliers are
essentially binary, and there are no quantification as to how outly-
ing an object is. Our notion of local outliers share a few fundamen-
tal concepts with density-based clustering approaches. However,
our outlier detection method does not require any explicit or implic-
it notion of clusters.

3. PROBLEMS OF EXISTING
(NON-LOCAL) APPROACHES

As we have seen in section 2, most of the existing work in outlier
detection lies in the field of statistics. Intuitively, outliers can be de-
fined as given by Hawkins [10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism.

This notion is formalized by Knorr and Ng [13] in the following
definition of outliers. Throughout this paper, we use o, p, q to de-
note objects in a dataset. We use the notation d(p, q) to denote the
distance between objects p and q. For a set of objects, we use C
(sometimes with the intuition that C forms a cluster). To simplify
our notation, we use d(p, C) to denote the minimum distance be-
tween p and object q in C, i.e. d(p,C) = min{ d(p,q) | q ∈ C }.

Definition 2: (DB(pct, dmin)-Outlier)
An object p in a dataset D is a DB(pct, dmin)-outlier if at least
percentage pct of the objects in D lies greater than distance
dmin from p, i.e., the cardinality of the set {q ∈ D | d(p, q) ≤
dmin} is less than or equal to (100 − pct)% of the size of D.

The above definition captures only certain kinds of outliers. Be-
cause the definition takes a global view of the dataset, these outliers
can be viewed as “global” outliers. However, for many interesting
real-world datasets which exhibit a more complex structure, there
is another kind of outliers. These can be objects that are outlying

C2

C1

o2
o1

Figure 1: 2-d dataset DS1
o1 and o2 are the detected outliers

8/43

Uses of representation learning
▸ Knowledge representation based on human perception

Example: word embedding

http://ruder.io/word-embeddings-1/

Each word is represented by a 2D vector. Words in the same semantic
category are grouped together

http://ruder.io/word-embeddings-1/

9/43

Clustering analysis

Given input features {x(1), . . . , x(m)}, group the data into a few
cohesive “clusters”.

▸ Objects in the same cluster are more similar to each other
than to those in other clusters

10/43

The k-means clustering problem
Given input data {x(1), . . . , x(m)}, x(i) ∈ Rd , k-means clustering
partition the input into k ≤ m sets C1, . . . ,Ck to minimize the
within-cluster sum of squares (WCSS).

argmin
C

k

∑
j=1
∑
x∈Cj

∥x − µj∥2

Equivalent definitions:

▸ minimizing the within-cluster variance:
k

∑
j=1
∣Cj ∣Var(Cj)

▸ minimizing the pairwise squared deviation between points in
the same cluster: (homework)

k

∑
i=1

1

2∣Ci ∣
∑

x ,x ′∈Ci

∥x − x ′∥2

▸ maximizing between-cluster sum of squares (BCSS)
(homework)

11/43

K-Means Clustering Algorithm

▸ Optimal k-means clustering is NP-hard in Euclidean space.

▸ Often solved via a heuristic, iterative algorithm

Lloyd’s Algorithm (1957,1982)

Let c(i) ∈ {1, . . . , k} be the cluster label for x(i)

Initialize cluster centroids µ1, . . . µk ∈ Rn randomly

Repeat until convergence{

For every i ,

c(i) ∶= argminj ∥x
(i) − µj∥2 ← assign x(i) to the cluster

with the closest centroid

For each j

µj ∶=
∑m

i=1 1{c
(i)=j}x(i)

∑m
i=1 1{c(i)=j}

← update centroid

}

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). ”Least squares quantization in PCM”. IEEE Transactions on Information Theory

Demo: http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

12/43

K-Means clustering discussion

▸ K-Means learns a k-dimensional sparse representation.
i.e. x(i) is transformed into a “one-hot” vector z(i) ∈ Rk :

z
(i)
j =

⎧⎪⎪⎨⎪⎪⎩

1 if c(i) = j
0 otherwise

▸ Only converges to a local minimum: initialization matters!

13/43

Practical considerations

▸ Replicate clustering trails and choose the result with the
smallest WCSS

▸ How to initialize centroids µj ’s ?
▸ Uniformly random sampling /
▸ Distance-based sampling e.g. kmeans++ [Arthur &
Vassilvitskii SODA 2007] ,

▸ How to choose k?
▸ Cross validation (later lecture)
▸ G-Means [Hamerly & Elkan, NIPS 2004]

▸ How to improve k-means efficiency?
▸ Elkan’s algorithm [Elkan, ICML 2003]
▸ Mini-batch k-means [D. Sculley, WWW 2010]

14/43

Motivation of PCA

Example: Analyzing San Francisco public transit route efficiency

features notes
speed average speed
flow # boarding pas-

sengers per hour
crowded % passenger ca-

pacity reached
wait time average waiting

time at bus stop
earning net operation

revenue
⋮ ⋮

15/43

Motivation of PCA

Input features contain a lot of redundancy

earning ×10
4

0 1 2 3 4

e
a
rn

in
g

wait time ×10
7

0 2 4 6 8

crowded
0 0.5 1

flow
0 2000 4000 6000

speed
0 200 400 600 800

e
a
rn

in
g

×10
4

0

1

2

3

4

w
a
it
 t
im

e

×10
7

0

2

4

6

8

c
ro

w
d
e
d

0

0.2

0.4

0.6

0.8

1

fl
o
w

0

1000

2000

3000

4000

5000

s
p
e
e
d

0

200

400

600

800

Scatter plot matrix reveals pairwise correlations among 5 major features

16/43

Motivation of PCA

Example of linearly dependent features

▸ Flow: average # boarding passengers per hour

▸ Crowdedness: average # passengers on train
train capacity

flow
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

c
ro

w
d
e
d
n
e
s
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 1

 2

 3

 4

 5

 6

 7

 8

 9
10

1112

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4243

44

45

46

47

48

49

50

51

52

53

54 55

56

5758

59

60

61

62

63

64

65

66

67

68

69
70

71

72

How can we automatically
detect and remove this
redundancy?

▸ geometric approach
← start here!

▸ diagonalize covariance
matrix approach

17/43

How to removing feature redundancy?

Given {x(1), . . . , x(m)}, x(i) ∈ Rn.

▸ Find a linear, orthogonal transformation W ∶ Rn → Rk of the
input data

▸ W aligns the direction of maximum variance with the axes of
the new space.

Example: n = 2

CHAPTER 5. MACHINE LEARNING BASICS

− −20 10 0 10 20

x1

−20

−10

0

10

20

x
2

− −20 10 0 10 20

z1

−20

−10

0

10

20
z 2

Figure 5.8: PCA learns a linear projection that aligns the direction of greatest variance
with the axes of the new space. (Left) The original data consists of samples of x. In this
space, the variance might occur along directions that are not axis-aligned. The(Right)
transformed data z= x>W now varies most along the axis z1. The direction of second
most variance is now along z2.

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in Fig. . In Sec. , we saw that we5.8 2.12
could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares

reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation .X

Let us consider the m n× -dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with is given by:X

Var[] =x
1

m− 1
X>X. (5.85)

147

CHAPTER 5. MACHINE LEARNING BASICS

− −20 10 0 10 20

x1

−20

−10

0

10

20

x
2

− −20 10 0 10 20

z1

−20

−10

0

10

20

z 2

Figure 5.8: PCA learns a linear projection that aligns the direction of greatest variance
with the axes of the new space. (Left) The original data consists of samples of x. In this
space, the variance might occur along directions that are not axis-aligned. The(Right)
transformed data z= x>W now varies most along the axis z1. The direction of second
most variance is now along z2.

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in Fig. . In Sec. , we saw that we5.8 2.12
could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares

reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation .X

Let us consider the m n× -dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with is given by:X

Var[] =x
1

m− 1
X>X. (5.85)

147

features x1 and x2 are strongly
correlated

variations in z = xTW is
mostly along the x-axis. x can
be represented in 1D!

18/43

Direction of Maximum Variance

▸ Suppose µ = mean(x) = 0, σj = var(xj) = 1 (variance of jth
feature)

▸ Find major axis of variation unit vector u:

3

example of this is if each data point represented a grayscale image, and each
x(i)
j took a value in {0, 1, . . . , 255} corresponding to the intensity value of

pixel j in image i.
Now, having carried out the normalization, how do we compute the “ma-

jor axis of variation” u—that is, the direction on which the data approxi-
mately lies? One way to pose this problem is as finding the unit vector u so
that when the data is projected onto the direction corresponding to u, the
variance of the projected data is maximized. Intuitively, the data starts off
with some amount of variance/information in it. We would like to choose a
direction u so that if we were to approximate the data as lying in the direc-
tion/subspace corresponding to u, as much as possible of this variance is still
retained.

Consider the following dataset, on which we have already carried out the
normalization steps:

Now, suppose we pick u to correspond the the direction shown in the
figure below. The circles denote the projections of the original data onto this
line.

4

We see that the projected data still has a fairly large variance, and the
points tend to be far from zero. In contrast, suppose had instead picked the
following direction:

Here, the projections have a significantly smaller variance, and are much
closer to the origin.

We would like to automatically select the direction u corresponding to
the first of the two figures shown above. To formalize this, note that given a

4

We see that the projected data still has a fairly large variance, and the
points tend to be far from zero. In contrast, suppose had instead picked the
following direction:

Here, the projections have a significantly smaller variance, and are much
closer to the origin.

We would like to automatically select the direction u corresponding to
the first of the two figures shown above. To formalize this, note that given a

input observations projections on u
have large variance

projections on u
have small vari-
ance

u maximizes the variance of the projections

19/43

Principal Component Analysis (PCA)
Pearson, K. (1901), Hotelling, H. (1933) ”Analysis of a complex of statistical variables into

principal components”. Journal of Educational Psychology.

PCA goals

▸ Find principal components u1, . . . ,un that are mutually
orthogonal (uncorrelated)

▸ Most of the variation in x will be accounted for by k principal
components where k ≪ n.

Main steps of (full) PCA:

1. Standardize x such that Mean(x) = 0,Var(xj) = 1 for all j

2. Find projection of x , uT1 x with maximum variance

3. For j = 2, . . . ,n ,
Find another projection of x , uTj x with maximum
variance, where uj is orthogonal to u1, . . . ,uj−1

20/43

Step 1: Standardize data

Normalize x such that Mean(x) = 0 and Var(xj) = 1

x(i) ∶= x(i) − µ ← recenter

x
(i)
j ∶= x

(i)
j /σj ← scale by stdev(xj)

Check:

var (
xj

σj
) = 1

m

m

∑
i=1

⎛
⎜
⎝

x
(i)
j − µj

σj

⎞
⎟
⎠

2

= 1

σ2
j

1

m

m

∑
i=1
(x(i)j − µj)

2

= 1

σ2
j

σ2
j = 1

21/43

Step 2: Find Projection with Maximum Variance

Since ∥u∥ = 1, the length
of x(i)’s projection on u

is x(i)
T
u.

Variance of the projections:

1

m

m

∑
i=1
(x(i)

T
u − 0)2 = 1

m

m

∑
i=1

uT x(i)x(i)
T
u

= uT (1
m

m

∑
i=1

x(i)x(i)
T
)u

= uTΣu

Σ : the sample covariance matrix of
x(1) . . . x(m).

22/43

1st Principal Component

Find unit vector u1 that maximizes variance of projections:

u1 = argmax
u∶∥u∥=1

uTΣu (1)

u1 is the 1st principal component of X

u1 can be solved using optimization tools, but it has a more
efficient solution:

Proposition 1

u1 is the largest eigenvector of covariance matrix Σ

23/43

A Review on Eigenvalue Problem

The Eigenvalue Problem

Nonzero vector u ∈ Rn is an eigenvector of matrix A ∈ Rn×n if

Au = λu

for some λ ∈ R. We call λ the eigenvalue corresponding to u.

▸ A has at most n distinct eigenvalues

Eigenvalue Decomposition

Let U = [u1, . . . ,un] be the matrix of n linearly independent
eigenvectors of A and Λ = diag([λ1, . . . , λn]) , then

A = UΛU−1

▸ If A is symmetric, A can be decomposed as A = UΛUT where
U is an orthogonal matrix (UTU = I).

24/43

Proposition 1

u1 is the largest eigenvector of covariance matrix Σ

Proof. Generalized Lagrange function of Problem 1:

L(u) = −uTΣu + β(uTu − 1)

To minimize L(u),

δL

δu
= − 2Σu + 2βu = 0 Ô⇒ Σu = βu

Therefore u1 must be an eigenvector of Σ.
Let u1 = vj , the eigenvector with the jth largest eigenvalue λj ,

uT1 Σu1 = vTj Σvj = λjvj
T vj = λj .

Hence u1 = v1, the eigenvector with the largest eigenvalue λ1.

25/43

Proposition 2

The jth principal component of X , uj is the jth largest
eigenvector of Σ .

Proof. Consider the case j = 2,

u2 = argmax
u∶∥u∥=1,uT1 u=0

uTΣu (2)

The Lagrangian function:

L(u) = −uTΣu + β1(uTu − 1) + β2(uT1 u)

Minimizing L(u) yields:

β2 = 0,Σu = β1u

To maximize uTΣu = λ, u2 must be the eigenvector with the
second largest eigenvalue β1 = λ2. The same argument can be
generalized to cases j > 2. (Use induction to prove for j = 1 . . .n)

26/43

Summary

We can solve PCA by solving an eigenvalue problem!
Main steps of (full) PCA:

1. Standardize x such that Mean(x) = 0,Var(xj) = 1 for all j

2. Compute Σ = cov(x)
3. Find principal components u1, . . . ,un by eigenvalue

decomposition: Σ = UΛUT . ← U is an orthogonal basis in Rn

Next we project data vectors x to this new basis, which spans the
principal component space.

27/43

PCA Projection

▸ Projection of sample x ∈ Rn in the principal component space:

z(i) =

⎡⎢⎢⎢⎢⎢⎢⎣

x(i)
T
u1
⋮

x(i)
T
un

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Rn

▸ Matrix notation:

z(i) =
⎡⎢⎢⎢⎢⎢⎣

∣ ∣
u1 . . . un
∣ ∣

⎤⎥⎥⎥⎥⎥⎦

T

x(i) = UT x(i), or Z = XU

▸ The truncated transformation Zk = XUk keeping only the first
k principal components is used for dimension reduction.

28/43

Properties of PCA

▸ The variance of principal component projections are

Var(xTuj) = uj TΣuj = λj for j = 1, . . . ,n

▸ % of variance explained by the jth principal component:
λj

∑n
i=1 λi

. i.e. projections are uncorrelated

▸ % of variance accounted for by retaining the first k principal

components (k ≤ n):
∑k

j=1 λj

∑n
j=1 λj

Another geometric interpretation of PCA is minimizing projection
residuals. (see homework!)

29/43

Covariance Interpretation of PCA

PCA removes the “redundancy” (or noise) in input data X :
Let Z = XU be the PCA projected data,

cov(Z) = 1

m
ZTZ = 1

m
(XU)T (XU) = UT (1

m
XTX)U = UTΣU

Since U is symmetric, it has real eigenvalues. Its eigen decomposition is

Σ = UΛUT

where

U =
⎡⎢⎢⎢⎢⎢⎣

∣ ∣
u1 . . . un
∣ ∣

⎤⎥⎥⎥⎥⎥⎦
,Λ =

⎡⎢⎢⎢⎢⎢⎣

λ1

⋱
λn

⎤⎥⎥⎥⎥⎥⎦
Then

cov(Z) = UT (UΛUT)U = Λ

The principal component transformation XU diagonalizes the
sample covariance matrix of X

30/43

PCA Example: Iris Dataset

▸ 150 samples

▸ input feature dimension: 4

First two input attributes

4 5 6 7 8

sepal length

2

2.5

3

3.5

4

4.5

s
e

p
a

l
w

id
th

31/43

PCA Example: Iris Dataset

▸ 150 samples

▸ input feature dimension: 4

PCA Projection on 2 Principal Components

-4 -2 0 2 4

u
1

-1.5

-1

-0.5

0

0.5

1

1.5

u
2

% of variance explained by PC1: 73%, by PC2: 22%

32/43

PCA Example: Eigenfaces

Learning image representations for face recognition using PCA
[Turk and Pentland CVPR 1991]

Training data Eigenfaces: k principal components

33/43

PCA Example: Eigenfaces

Each face image is a linear combination of the
eigenfaces (principal components)

Each image is represented by k weights

Recognize faces by
classifying the weight
vectors. e.g. k-Nearest
Neighbor

34/43

PCA Limitations

▸ Only considers linear relationships in data (see kernel PCA)

▸ Assumes input data is real and continuous

▸ Assumes approximate normality of input space (but may
still work well on non-normally distributed data in practice)

Example of strongly non-normal distributed input:

PDF Original Input PCA Projection

35/43

Kernel PCA

Feature extraction using PCA

x(i) PCA
Wx(i) f c(i)

e.g. k-means

Linear PCA assumes data are separable in Rn

A non-linear generalization

▸ Project data into higher dimension using feature mapping
ϕ ∶ Rn → Rd (d ≥ n)

▸ Feature mapping is defined by a kernel function
K (x(i), x(j)) = ϕ(x(i))Tϕ(x(j)) or kernel matrix K ∈ Rm×m

▸ We can now perform standard PCA in the feature space

36/43

Kernel PCA
(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal

component analysis. In Advances in kernel methods)

Sample covariance matrix of feature mapped data (assuming ϕ(x)
is centered)

Σ = 1

m

m

∑
i=1

ϕ(x(i))ϕ(x(i))T ∈ Rd×d

Let (λk ,uk), k = 1, . . . ,d be the eigen decomposition of Σ:

Σuk = λkuk

PCA projection of x(l) onto the kth principal component uk :

ϕ(x(l))Tuk

How to avoid evaluating ϕ(x) explicitly?

37/43

The Kernel Trick

Represent projection ϕ(x(l))Tuk using kernel function K :

▸ Write uk as a linear combination of ϕ(x(1)), . . . , ϕ(x(m)):

uk =
m

∑
i=1

αi
kϕ(x

(i))

▸ PCA projection of x(l) using kernel function K :

ϕ(x(l))Tuk = ϕ(x(l))T
m

∑
i=1

αi
kϕ(x

(i)) =
m

∑
i=1

αi
kK(x

(l), x(i))

How to find αi
k ’s directly ?

38/43

The Kernel Trick
Kth eigenvector equation:

Σuk = (
1

m

m

∑
i=1

ϕ(x(i))ϕ(x(i))T)uk = λkuk

▸ Substitute uk = ∑m
i=1 α

(i)
k ϕ(x(i)), we obtain

Kαk = λkmαk

where αk =
⎡⎢⎢⎢⎢⎢⎣

α1
k

⋮
αm
k

⎤⎥⎥⎥⎥⎥⎦
can be solved by eigen decomposition of K

▸ Normalize αk such that uTk uk = 1:

uTk uk =
m

∑
i=1

m

∑
j=1

αi
kα

j
kϕ(x

(i))Tϕ(x(j)) = αT
k Kαk = λkm(αT

k αk)

∥αk∥2 =
1

λkm

39/43

Kernel PCA

When E[ϕ(x)] ≠ 0 , we need to center ϕ(x):

ϕ̃(x(i)) = ϕ(x(i)) − 1

m

m

∑
l=1

ϕ̃(x(l))

The “centralized” kernel matrix is

K̃i ,j = ϕ̃(x(i))T ϕ̃(x(j))

In matrix notation:

K̃ = K − 1mK −K1m + 1mK1m

where 1m =
⎡⎢⎢⎢⎢⎢⎣

1/m . . . 1/m
⋮ ⋱ ⋮

1/m . . . 1/m

⎤⎥⎥⎥⎥⎥⎦
∈ Rmxm

Use K̃ to compute PCA

40/43

Kernel PCA Example

original data standard PCA

-100

-100

-50

0

-50

z

100

50

x

0

100

y

050

100 -100

class 1

class 2

-150 -100 -50 0 50 100

-100

-50

0

50

100
class 1

class 2

41/43

Kernel PCA Example

Polynomial kernel PCA Gaussian kernel PCA

-1.5 -1 -0.5 0 0.5 1 1.5

10
21

-8

-6

-4

-2

0

2

4

6

8
10

20

class 1

class 2

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

4

5

6

class 1

class 2

k(x , x ′) = (x ⋅ x ′ + 1)5 k(x , x ′) = exp (− ∣∣x−x
′∣∣2

2σ2)

42/43

Discussions of kernel PCA
▸ Often used in clustering, abnormality detection, etc
▸ Requires finding eigenvectors of m ×m matrix instead of n × n
▸ Dimension reduction by projecting to k-dimensional principal
subspace is generally not possible

The Pre-Image problem: reconstruct data in input space x from
feature space vectors ϕ(x)

43/43

Summary

Representation learning

▸ Transform input features into “simpler” or “interpretable”
representations.

▸ Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms:
low dimension sparse disentangle variations

k-means
PCA

	Unsupervised Learning Overview
	K-Means Clustering
	Principal component analysis
	Linear PCA
	Kernel PCA

