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Today's Lecture

Unsupervised Learning
» Overview: the representation learning problem
» K-means clustering
» Principal component analysis

Written Assignment 2 is due today.



Unsupervised Learning

—

Similar to supervised learning, but without labels.
» Still want to learn the machine f

» Significantly harder in general

Unsupervised learning goal

Find representations of input feature x that can be used for
reasoning, decision making, predicting things, comminicating etc.



The representation learning problem

( Y Bengio et. al. Representation Learning: A Review and New
Perspectives, 2014)

Given input features x, find “simpler’ features z that preserve the
same information as x.

Example: Face recognition
100 x 100

What information is in this picture? identity, facial attributes,
gender, age, sentiment, etc



Characteristics of a good representation

» low dimensional: compress information to a smaller size —
reduce data size

> sparse representation: most entries are zero for most data —
better interpretability

» independent representations: disentangle the source of
variations
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Uses of representation learning

» Data compression

Example: Color image quantization. Each 24bit RGB color is
reduced to a palette of 16 colors.

Original Compressed

-
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(0-255,0-255,0-255) 0-15
24bit x 300 x 400 4bit x 300 x 400 + 16 x24bit
6 times smaller



Uses of representation learning

» Abnormality (outlier, novelty) detection

Example: local density-based outlier detection
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Uses of representation learning

» Knowledge representation based on human perception

Example: word embedding

» body part
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http://ruder.io/word-embeddings-1/

Each word is represented by a 2D vector. Words in the same semantic
category are grouped together


http://ruder.io/word-embeddings-1/

Clustering analysis

Given input features {x(1) ... x(™} group the data into a few
cohesive “clusters”.
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» Objects in the same cluster are more similar to each other
than to those in other clusters



The k-means clustering problem
Given input data {x ... x(™1 x() ¢ RY k-means clustering
partition the input into k < m sets (i, ..., Cx to minimize the
within-cluster sum of squares (WCSS).

argmmZ > lx = w1

J=1xeC;

Equivalent definitions:
k
> minimizing the within-cluster variance: ) |Cj| Var(C;)
j=1
» minimizing the pairwise squared deviation between points in
the same cluster: (homework)

» maximizing between-cluster sum of squares (BCSS)
(homework)



K-Means Clustering Algorithm

» Optimal k-means clustering is NP-hard in Euclidean space.

» Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)
Let () e {1,...,k} be the cluster label for x(7)

Initialize cluster centroids ui,...ux € R" randomly
Repeat until convergencef{

For every i,

= argmin; 1D = ;|? < assign x to the cluster
with the closest centroid

For each j
|
|

>m 1{C(i):j}x(i)
ey v < update centroid
Hi > l{c( ):J} P

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). " Least squares quantization in PCM". |EEE Transactions on Information Theory


Demo: http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

K-Means clustering discussion

» K-Means learns a k-dimensional sparse representation.
i.e. x() is transformed into a “one-hot” vector z(7) € Rk:

Lo _ |1 if () =
J 0 otherwise

» Only converges to a local minimum: initialization matters!
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Practical considerations

» Replicate clustering trails and choose the result with the
smallest WCSS
> How to initialize centroids p;'s ?

» Uniformly random sampling ®
» Distance-based sampling e.g. kmeans++ [Arthur &
Vassilvitskii SODA 2007]

» How to choose k7
» Cross validation (later lecture)
» G-Means [Hamerly & Elkan, NIPS 2004]

» How to improve k-means efficiency?

» Elkan’s algorithm [Elkan, ICML 2003]
» Mini-batch k-means [D. Sculley, WWW 2010]



Motivation of PCA

Example: Analyzing San Francisco public transit route efficiency

features

notes

speed

average speed

flow

# boarding pas-
sengers per hour

crowded

% passenger ca-
pacity reached

wait time

average waiting
time at bus stop

earning

net operation
revenue




Motivation of PCA

Input features contain a lot of redundancy
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Motivation of PCA

Example of linearly dependent features

» Flow: average # boarding passengers per hour

average # passengers on train
train capacity

» Crowdedness:
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How to removing feature redundancy?

Given {x(M, ... x(M} x() c¢R".
» Find a linear, orthogonal transformation W : R" — R¥ of the
input data

» W aligns the direction of maximum variance with the axes of
the new space.

Example: n=2
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features x; and xo are strongly variations in z = x'W is
correlated mostly along the x-axis. x can

be represented in 1D!



Direction of Maximum Variance

» Suppose 1 = mean(x) =0, 0j = var(x;) = 1 (variance of jth
feature)
» Find major axis of variation unit vector u:

input observations  projections on wu projections on u
have large variance have small vari-
ance
u maximizes the variance of the projections



Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) " Analysis of a complex of statistical variables into
principal components”. Journal of Educational Psychology.

PCA goals

» Find principal components uy, ..., u, that are mutually
orthogonal (uncorrelated)

» Most of the variation in x will be accounted for by k principal
components where k < n.

Main steps of (full) PCA:

1. Standardize x such that Mean(x) =0, Var(x;) =1 for all j

2. Find projection of x, ulTx with maximum variance

3. Forj=2,....n,
Find another projection of x, u] x with maximum

J
variance, where u; is orthogonal to uy,...,uj_1



Step 1: Standardize data

Normalize x such that Mean(x) =0 and Var(x;) =1

x() o= x () — u < recenter

N0

G = )(j.(i)/aj < scale by stdev(x;)

Check:

(i) 2
e BT



Step 2: Find Projection with Maximum Variance

Since |luf =1, the length
of x()’s projection on u

is x(i)Tu.
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1st Principal Component

Find unit vector u; that maximizes variance of projections:

uy = argmax u' Tu (1)
u:lluf=1

up is the 1st principal component of X

uy can be solved using optimization tools, but it has a more
efficient solution:

Proposition 1

uy is the largest eigenvector of covariance matrix ¥



A Review on Eigenvalue Problem

The Eigenvalue Problem

Nonzero vector u € R" is an eigenvector of matrix A e R™" if
Au=)\u
for some A € R. We call X the eigenvalue corresponding to u.

» A has at most n distinct eigenvalues

Eigenvalue Decomposition

Let U =[u1,...,u,] be the matrix of n linearly independent

eigenvectors of A and A = diag([A1,...,An]) , then
A=UNUT?

» If Ais symmetric, A can be decomposed as A = UANUT where
U is an orthogonal matrix (UT U = 1).



Proposition 1

uy is the largest eigenvector of covariance matrix ¥

Proof. Generalized Lagrange function of Problem 1:
L(u)=-u"Su+B(u"u-1)
To minimize L(u),

g—L=—2Zu+2ﬂu=0 = Yu=_Lu
u

Therefore u; must be an eigenvector of ¥.
Let u; = vj, the eigenvector with the jth largest eigenvalue \;,

ulTZul = \/J-TZVJ- = )\jvavJ- = Aj.

Hence 1y = vy, the eigenvector with the largest eigenvalue A;.

O



Proposition 2
The jth principal component of X , u; is the jth largest

eigenvector of ¥ .

Proof. Consider the case j = 2,

= argmax u'Yu (2)
u:|lul=1,u] u=0

The Lagrangian function:
L(u)=-u"Su+B1(u"u—-1)+Ba(uf u)
Minimizing L(u) yields:
B2=0,Xu=pru

To maximize u’ Xu =\, u» must be the eigenvector with the
second largest eigenvalue 51 = A. The same argument can be

generalized to cases j > 2. (Use induction to prove for j=1...n )
L]



Summary

We can solve PCA by solving an eigenvalue problem!
Main steps of (full) PCA:

1. Standardize x such that Mean(x) =0, Var(x;) =1 for all j
2. Compute X = cov(x)

3. Find principal components uy, ..., u, by eigenvalue
decomposition: ¥ = UNUT. < U is an orthogonal basis in R"

Next we project data vectors x to this new basis, which spans the
principal component space.



PCA Projection

» Projection of sample x € R” in the principal component space:

S0 _

» Matrix notation:

2D =y ... ou,

—X(i) Tul
: eR"
x0Ty,

T

xD =uTxD or Z=XU

» The truncated transformation Z, = XUy keeping only the first
k principal components is used for dimension reduction.



Properties of PCA

» The variance of principal component projections are

Var(xTuJ-) = uJ-TZuj- =)Xforj=1,...,n

» % of variance explained by the jth principal component:
Aj
i1 Ai
» % of variance accounted for by retaining the first k principal
k
i1 A
YA
Another geometric interpretation of PCA is minimizing projection
residuals. (see homework!)

i.e. projections are uncorrelated

components (k < n):



Covariance Interpretation of PCA

PCA removes the “redundancy” (or noise) in input data X:
Let Z = XU be the PCA projected data,

1 1 1
cov(Z)==2T7Z==—(XU)T(XU)=UT (—XTX) U=U"zu
m m m
Since U is symmetric, it has real eigenvalues. Its eigen decomposition is
Y =UAUT

where
| | A1
U=lu ... ugf|,A= -
| | An

Then
cov(Z)=UT(UNUT)U = A

The principal component transformation XU diagonalizes the
sample covariance matrix of X



PCA Example: Iris Dataset

» 150 samples

» input feature dimension: 4

First two input attributes
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PCA Example: Iris Dataset

» 150 samples

» input feature dimension: 4

PCA Projection on 2 Principal Components
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PCA Example: Eigenfaces

Learning image representations for face recognition using PCA
[Turk and Pentland CVPR 1991]

Training data Eigenfaces: k principal components




PCA Example: Eigenfaces

Each face image is a linear combination of the
eigenfaces (principal components)

+2) Mean Image

. wg

)

Each image is represented by k weights

Recognize faces by
classifying the weight
vectors. e.g. k-Nearest
Neighbor




PCA Limitations

» Only considers linear relationships in data (see kernel PCA)
» Assumes input data is real and continuous

» Assumes approximate normality of input space (but may
still work well on non-normally distributed data in practice)

Example of strongly non-normal distributed input:

PDF Original Input

PCA Projection

0.7

0.6
05 of
0.4
0.3
0.2
0.1

b
0052 1 o 1 2 -




Kernel PCA

Feature extraction using PCA

20 P e[ s 0

e.g. k-means

Linear PCA assumes data are separable in R”

A non-linear generalization
» Project data into higher dimension using feature mapping
¢:R" > RY (d > n)
» Feature mapping is defined by a kernel function
K (x(i),x(j)) = p(xN)Tp(xU)) or kernel matrix K € R™™

» We can now perform standard PCA in the feature space



Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods)

Sample covariance matrix of feature mapped data (assuming ¢(x)
is centered)

s 1 i¢(X(i))¢(X(i))T c Rxd
mij=1
Let (A\x,uk),k=1,...,d be the eigen decomposition of ¥:
YU = Aguy
PCA projection of x() onto the kth principal component w:
o(x") T uk

How to avoid evaluating ¢(x) explicitly?



The Kernel Trick

Represent projection ¢(x())7 u, using kernel function K:

» Write uy as a linear combination of ¢(x(1), ..., ¢(x(™):

ug = Z QW(XU))
i=1

» PCA projection of x{) using kernel function K:
m o , m .
()T = d(xD)T Y afed(xD) = 3 af K(xD, x1)
i=1 i=1

How to find oz;('s directly 7



The Kernel Trick

Kth eigenvector equation:

Yug = (% i¢(X(i))¢(X(i))T) Uk = Ak Uk
i-1

» Substitute ux = 3174 af(i)qb(x(i)), we obtain

Kak = )\kmozk
o
where ax =| ! |can be solved by eigen decomposition of K
am
k

» Normalize « such that u,;ruk =1:

ul g =Yl (XN To(xD) = af Kay = Adem(af )
P

1
2 _



Kernel PCA
When E[¢(x)] # 0, we need to center ¢(x):
Fx) = 6(x7) = — 32 51)
mz
The “centralized” kernel matrix is
Ru = 55(x("))T€f>'(x(j’)
In matrix notation:

K=K-1,K-K1,+1,K1,,

1/m ... 1/m
where 1,,=| : i | e R™mM

1/m ... 1/m
Use K to compute PCA



Kernel PCA Example

original data standard PCA
* class 1
O class 2
100 100
50
50
~N 0
-50 0
-100
-100 0
-100

X 100 100




Kernel PCA Example

Polynomial kernel PCA Gaussian kernel PCA
. X102
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k(x,x") = (x-x"+1)° k(x, x')‘exp( M)



Discussions of kernel PCA

» Often used in clustering, abnormality detection, etc

» Requires finding eigenvectors of m x m matrix instead of nx n

» Dimension reduction by projecting to k-dimensional principal
subspace is generally not possible

()

Kernel Mapping

Principle Component
¥ Projection

1

‘a"ﬁ} -

v
Principle Component
Subspace

The Pre-Ilmage problem: reconstruct data in input space x from
feature space vectors ¢(x)



Summary

Representation learning

» Transform input features into “simpler” or
representations.

‘interpretable”

» Used in feature extraction, dimension reduction, clustering etc
Unsupervised learning algorithms:
‘ low dimension sparse disentangle variations

k-means v’
PCA v’ v’
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