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Today's Lecture

Supervised Learning (Part V)
» Review: Perceptron Algorithm

» Support Vector Machines (SVM) <« another discriminative
algorithm for learning linear classifiers

» Kernel SVM <« non-linear extension of SVM



The perceptron learning algorithm

» Invented in 1956 by Rosenblatt (Cornell University)

> One of the earliest learning algorithm, the first artificial neural
network

Perceptron|
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Hardware implementation: Mark | Perceptron



The perceptron learning algorithm

Given x, predict y € {0,1}

hor () 1 ifwix+b>0
w,b\X) =
b 0 otherwise
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The perceptron learning algorithm

Perceptron hypothesis function:

ho(x) 1 ife'x>0
X) =
o 0 otherwise

Parameter update rule:

0 =0+« <y(") - hg(X(i))) xj(i) forall j=0,...

» When prediction is correct: 6; = 0,
» When prediction is incorrect:
» predicted "1": 0; = 0, — ax;
» predicted "0": 0; = 0; + ax;



Issues with linear hyperplane perceptron:

» Infinitely many solutions if data are
separable

» Can not express “confidence” of the
prediction




Support Vector Machines in History

» Theoretical algorithm: developed
from Statistical Learning Theory (
Vapnik & Chervonenkis) since 60s

» Modern SVM was introduced in
COLT 92 by Boser, Guyon &
Vapnik
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Support Vector Machines in History

> 1995 paper by Corte & Vapnik titled “Support-Vector
Networks"

» Gained popularity in 90s for giving accuracy comparable to
neural networks with elaborated features in a handwriting task

Machine Learning, 20, 273-297 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
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Abstract. The support-vecior nenwork is a new learing machine for two-group classification problems. The
machine conceptually implements the following idea: input voctors arc non-linearly mapped to a very high-

input vector in feature space
dimension feature space. In this feature space a linear decision surface is constructed. Special propertics of the
decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector
network was previously implemented for the restricted casc where the training data can be separated without
errors. We here extend this result to non-separable training data.

High generalization ability of support-vector networks utilizing polynomial input transformations is demon-
strated. We also compare the performance of the support-vector network to various classical learning algorithms
that all took part in a benchmark study of Optical Character Recognition.
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Functional margins

Class labels: y € {—1,1}

1 ifwlx+b>0
h X) = -
W’b( ) {—1 otherwise

Functional Margin

Given training sample (x(i),y(i))
3 — (0 (WTX(i) n b)

sign(3()): whether the hypothesis is correct
» () >> 0 : prediction is correct with high confidence

» 40) << 0 : prediction is incorrect with high confidence

S



Function Margins

Functional margin of (w, b) with respect to training data S:

— min 3D = mi (D) (T x()
—i:r?’l.n AV = min y (W X +b>

.,m i=1,...m

2

Issue: 4 depends on ||w/|| and ||b|

e.g. Let w' = 2w, b’ = 2b. The decision boundary parameterized
by (w’, b') and (w, b) are the same. However,

3/(0) — () (2WTx(") n 2b) = 2D (wTx() 4 p) = 25()

Can we express the margin so that it is invariant to ||w|| and ||b||?



Geometric Margins

The geometric margin v() of a training example (x(), y()) is the

signed distance from the hyperplane

NONNG <WTX(f) L b
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» w is normal to hyperplane w’x + b =0
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Geometric Margins

The geometric margin of (w, b) with respect to training data S is
the minimum distance from any point to the hyperplane:

. T ,.
V= min A0 = min y<)<”W (:)+b>

i=1,.,m i=1,..,m I 1l
1 .
= min y{ (W x) b)
]l 30
1,
4
~ w]]

> 4 = when [|w]| = 1

» Geometric margins are invariant to parameter scaling



Optimal Margin Classifier

Assume data is linearly separable

Find (w, b) that maximize geometric margin v = ﬁ of the
w
training data ~
i
max
ywb ||wl|

There exists some § € R such that the functional margin of
(0w, 0b)is 5 =1

1
max —_—
7.w,b [[wl]
st yOwxD4p)y>1i=1,....m
. 2
— -
min 511wl

st yOwxD4py>1i=1,....m

can be solved using QP software



Review: Lagrange Duality

The primal optimization problem:
min  f(w)
w

sit. gi(w) <

Define the generalized Lagrange function :

/
L(w,a, B) = f(w +Za,g, )+ Bihi(w)
i=1

«; and (; are called the Lagrange multipliers



For a given w,

Op(w) = max L(w,a,p)

a,B:a;>0

!
= max f(w)+ Za,g, + Z;B;h;(W)

Recall the primal constraints: g;(w) < 0 and h;(w) =0 :
» Op(w) = f(w) if w satisfies primal constraints
» Op(w) = oo otherwise

The primal problem ((alternatwe form)

min fp(w) = min max L(w, o, B)

)



The primal problem (P)

p' = m|n«9p(w) =min max L(w,a,p)

w o a,fia;>
The dual problem (D)
d'= max Op(a,B) = o max  min L(w,a, B)

In general, d* < p* (max-min inequality)

Theorem (Lagrange Duality)

Suppose f and all gi's are convex, all h;’s are affine, and there
exists some w such that gj(w) < 0 for all i (strictly feasible) .
There must exists w*, a*, 3* so that w* is the solution to P
and o*,5* are the solution to D, and

p* — d* = L(W*,a*,ﬁ*)



Karush-Kuhn-Tucker (KKT) conditions

Under previous conditions, w*, a*, 8* are solutions of P and D if
and only if they statisty the following conditions:

6 * * * _ _
(SW,‘L(W’a’ﬁ)_O’ I_]-a n (1)
(%L(W*,a*,ﬁ*):o, i=1,...1 (2)
CV;kgl(w*) = 07 | = 17 y (3)
gilw") <0, i=1,..., (4)
o*>0,i=1,...,k (5)

Equation 3 is called the complementary slackness condition.



Optimal Margin Classifier

Optimal margin classifier
.1 >
min Slwll
st yDwxD 4 py>1i=1,....m

> f(w) = 3lwl?
> gi(w) =— (y(i)(wa(i) +b) —1)
Generalized Lagrangian function:

1 m . )
L(w, b,a) = S|l = Y ai [y (w x4 b) — 1]

i



By the complementary slackness condition in KKT:

ajgi(w*)=0,i=1,...,k
af >0 <= g(w*)=—yOw* x4 p)+1=0

Training examples (x(), y()) such that y()(w*"x() 4 b) =1 are
called support vectors

A

Support vectors lie on
XX hyperplane w*Tx + b =1
>< « when y() =1 or
T w*Tx + b= —1 when
b .

“X_\ y(’) = —]_

. T Constraints gi(w) < 0 is only
C‘)‘\,‘_‘ active on support vectors




Dual optimization problem:(Check derivation)

max W(a ZO"—*ZV” (aja(x7, x0)y

ij=1

Solution to the primal problem:
i

1 - . :
b* = —= max w* x) £ min w*Tx()
i:y(f):—l i:y(f)zl

For a new sample z, the SVM prediction is sign |:W* Tz+ b}
wliz4+b=3" aiyD(x) z) + b



Limitations of the basic SVM

x x =
X
hs ®
0
e}
o) 3 X
o X
o]
o 0

Outliers Non-linearly separable cases



Soft Margin SVM

Functional margin 1 —¢&; <1: .
1 2
= C
min Slwll® + ;ﬁ
st yD(wTxD 4 p)>1—¢
£>0,i=1,...,m

» C: relative weight on the
regularizer

> L; regularization let most
& =0, such that their
functional margins
1-¢=1




Soft Margin SVM

The generalized Lagrangian function:

m

1 m . .
L(w,b,& a,r) = S|[wlP+C Y &= o [y(')(wa“ +b) — 1+¢
i=1

i

m
- Z ri&i
i—1

Dual problem:

maxW Za,—ny() (J)aozj X xU)y

ij=1
st.0<a; <C,i=1,...,m

z’": aiy) =0
i=1

w* is the same as the non-regularizing case, but b* has changed.



Soft Margin SVM

Dual problem:

maxW Za,—ny yWaza;(xD, xU)y

ihj=1
st.0<;<C,i=1,....m

m
>y o
i=1

By the KKT dual-complentary conditions, for all i, a;fgi(w*) =0

ai=0 —  yOwTx() 4 p) >1 correct side of margin
aj=C —  yOwTx) 4+ b) <1 wrong side of margin
0<aj<C = yOw™xD 4+p)=1 at margin



Non-linear SVM

For non-separable data, we can use the kernel trick: Map input
values x € R? to a higher dimension ¢(x) € RP , such that the
data becomes separable.

Input space Feature space D
O [
o %o
9ge @ ]
0D g0
[]
[]

> ¢ is called a feature mapping.

» The classification function w’ x + b becomes
nonlinear:w " ¢(x) + b



Kernel Function

Given a feature mapping ¢, we define the kernel function to be

K(x,2) = ¢(x)T¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.

n n
2
K(sz) X Z) § XMZIE Xjs Zj = E E Xis Xjs Ziy Zj

i=1 j=1
= ¢>(X) ¢(Z)
o ]
X1X2
where ¢(x) = : takes O(n?) operations to compute,
XnXpn—1
L Xan -

while (x7z)? only takes O(n)



Kernel SVM
In the dual problem, replace (x;, y;) with (¢(x;), #(yi)) = K(xi, X;)

maxW Za,—ny (J)Ozozj (xi,xj)

ij=1
sit.a; >0,i=1,....m

zm: iy =0
i=1

No need to compute w* = 3", afyg(x()) explicitly since

m T
wix+b= (Z a,-y<"><z>(x(">)> ¢(x) + b

i=1

= aiyD{o(xM), o(x)) + b
i=1

m
=> aiyDK(x, x) + b
i=1



Kernel Matrix

Intuitively, kernel functions measures the similarity between
samples x and z.
Examples:

> Linear kernel: K(x,z) = (x"z+¢)"
» Gaussian or radial basis function (RBF) kernel:
K(x,z) = exp (—7“);:2”2)
Can any function K(x, y) be a kernel function?



Kernel Matrix

Represent kernel function as a matrix K € R"*" where
Kij = K(xi, %) = ¢(xi) (X))
Theorem (Mercer)

Let K :R" x R" — R Then K is a valid (Mercer) kernel if and
only if for any finite training set {x() ... x(M} K is symmetric
positive semi-definite.

ie. Kij = Kj,;and xTKx >0 for all x € R"



SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

» Break a large SVM problem into smaller chunks, update two
«;'s at a time

» Implemented by most SVM libraries.

Other related algorithms
» Support Vector Regression (SVR)

» Multi-class SVM (Koby Crammer and Yoram Singer. 2002.
On the algorithmic implementation of multiclass kernel-based

vector machines. J. Mach. Learn. Res. 2 (March 2002),
265-292.)
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