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Today's Lecture

Supervised Learning (Part II)
> Review on linear and logistic regression
» Digress on probability: exponential families
» Generalized linear models (GLM)

» Discriminative vs. generative learning

Programming Assignment (PA1) is released. Due on Oct 9th.



Review of | ecture 2




Review of Lecture 2: Linear least square

» Hypothesis function for input feature x() e R™
hg(x()) = 6y + Hle’) o 40,0

o 1
0 ()
. - , 1 . X
» Vector notation: hg(X(’)) =0Tx(), 9= Cx() =7
0 N0
» Cost function for m training examples (x(), y()) i=1,... m:
1 — . N2
i () _ T, ()
J(0) > Z (y 0" x )

i=1

Also known as ordinary least square regression model.



How to minimize J(6)?
» Gradient descent:

update rule (batch) 6; « @—1—04-%2 (y(i) - h@(X(i))) )(J.(i)
i=1

update rule (stochastic) b 6+« (y(i) — hg(x(i))> Xj(i)

» Newton's method

00— HVJ®)

> Normal equation
XTX0=XTy



Review of Lecture 2

Maximum likelihood estimation
> Log-likelihood function:

((6) = log (H Py 1x; 9)) = log p(y|x"; 0)
i=1

i=1
where p is a probability density function.

OmLe = argmax ()
(%

(True or False?) Ordinary least square regression is equivalent to
the maximum likelihood estimation of 6.
True under the assumptions:

[ y(’) e QTx(i) _|_ e(i)
» () are i.i.d. according to N(0,02)



Review of Lecture 2: Linear Regression Exercise

The normal equation for solving ordinary least square is:
XTX0=Xx"Ty

When X T X is invertible, we have § = (X7 X)~1X Ty Now,
suppose X T X is singular. Does the solution exist?



Review of Lecture 2: Logistic regression

» Hypothesis function:

1
ho(x) = g(07x), g(z) = e is the sigmoid function.

» Assuming y|x; 0 is distributed according to Bernoulli( hg(x))

p(y|x;0) = hg(x)” (1 — hg(x))*™

» Log-likelihood function for m training examples:

m

00) = >y D log hy(x!?) + (1 — y") log(1 — hy(x(7))
i=1



Review of Lecture 2: Softmax regression

» Hypothesis function:

p(y = 1|x;0) . el
W)= | | = |

k I x :
ply =kixi)| 2o ® |0
» Assume y|x; @ is distributed according to Multinomial(hg(x)):

plyli) = [ L oy = I 6101
1=1

> Log-likelihood function for m training examples:

T (i)

m k 9X
ZZl{y )—I}Iogi()
=1 Z e’X

=1 _/:1



Linear models

What we've learned so far:

Learning task Model ‘ p(y|x;0)
regression Linear regression N (he(x) ,0?)
binary classification Logistic regression | Bernoulli( hy(x) )

multi-class classification | Softmax regression | Multinomial([hg(x)] )
Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing
linear models in which y|x; 0 is from an exponential family.



Review: Exponential Family




Exponential Family

A class of distributions is in the exponential family if it can be
written as

plyin) = b(y)e” )=

» 7 : natural/canonical parameter
» T(y): sufficient statistic of the distribution
» a(n) : log partition function (why?)



Exponential Family

Log partition function a(7) is the log of a normalizing constant.

ie.
- b(y)en TW)
cm) — nTT(y)—a(n) — 2VJ)€ 77
p(yin) = bly)e o)
Function a(n) is chosen such that > p(y;n) =1

(or [, p(y;m)dy = 1).

()



Exponential Family Examples

Bernoulli Distribution
Bernoulli(¢): a distribution over y € {0,1}, such that

ply;¢) = ¢ (1— )




Bernoulli Distribution
Bernoulli(¢): a distribution over y € {0,1}, such that

ply;d) = ¢¥(1— )™

How to write it in the form of p(y;n) = b(y)e TW)=a(m) 7



Exponential Family Examples

Bernoulli Distribution
Bernoulli(¢): a distribution over y € {0,1}, such that

py;¢) = ¢ (1— )™

> 1= log (1%5)
b(y)=1
T(y)=y

a(n) = log(1 + ")

v

v

v



Exponential Family Examples

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution A/(p, 1) over y € R:

> =p

> by) = = exp(-y?/2)
> T(y)=y

> a(n) = 31



Exponential Family Examples

Gaussian Distribution
Probability density of a Gaussian distribution A/(j,02) over y € R

p(y;0) = Nmoes

£
(5] el
— 5t
> b(y) = 10 >a():“—2+loa
W) =7 ) = 252 7108

Try this before attempting the homework



Exponential Family Examples

Poisson distribution: Poisson(\)

Models the probability that an event occurring y € N times in a
fixed interval of time, assuming events occur independently at a
constant rate

0.40
0.35f
Probability density 0.30}
function of Poisson(\) < 0.25}
overy € J: 1 o.20)
a
We A 0.15¢

ply: ) =

y! 0.10f
0.05f
0.00




Exponential Family Examples

Poisson distribution Poisson(\)

Probability density function of Poisson(\) over y € Y

e A
p(y; ) = )i
> n = log\
> b(y) =
» T(y)=y






Generalized Linear Models: Intuition

Example 1: Customer Prediction

Predict y, the number of customers in the store given x, the
recent spending in advertisement.

Problems with linear regression:
> Assumes y|x; 6 has a Normal distribution.
Poisson distribution is better for modeling occurrences
» A constant change in x leads to a constant change in y
More realistic to have a constant rate of increased number of
customers (e.g. doubling or halving y)



Generalized Linear Models: Intuition

Example 2: Purchase Prediction

Predict y, the probability a customer would make a purchase
given x, the recent spending in advertisement.

Problems with linear regression:

» Assumes y|x; @ is a Normal distribution.
Bernoulli distribution is better for modeling the probability of
a binary choice

> A constant change in x leads to a constant change in y
More realistic to have a constant change in the odds of
increased probability (e.g. from 2:1 odds to 4 : 1)



Generalized Linear Models : Intuition

Generalized Linear Model (GLM): a recipe for constructing
linear models in which y|x; 6 is from an exponential family.

Design motivation of GLM
» Response variables y can have arbitrary distributions

» Allow arbitrary function of y (the link function) to vary
linearly with the input values x



Generalized Linear Models: Construction

Formal GLM assumptions & design decisions:
1. y|x; 0 ~ ExponentialFamily(n)
e.g. Gaussian, Poisson, Bernoulli, Multinomial, Beta ...
2. The hypothesis function h(x) is E[T(y)|x]
e.g. When T(y) =y, h(x) =E[y|x]
3. The natural parameter 7 and the inputs x are related linearly:

7 is a number:

n=~0"x

7 is a vector:

ni=0x Vi=1,....n or n=0Tx



Generalized Linear Models: Construction

Relate natural parameter 7 to distribution mean E[T(y); 7] :

» Canonical response function g gives the mean of the
distribution

g(n) =E[T(y):n]
a.k.a. the “mean function”

» g Lis called the canonical link function

n=g “E[T(y):n])



GLM example: ordinary least square
Apply GLM construction rules:
1. Let y|x;0 ~ N(u,1)
n=m T(y)=y
2. Derive hypothesis function:
ho(x) = E[T(y)lx; 0]
=E[y|x; 6]

3. Adopt linear model n = 07 x:
ho(x) =n=0Tx

Canonical response function: = g(n) = n (identity)
Canonical link function: 7 = g=1(u) = i (identity)



GLM example: logistic regression
Apply GLM construction rules:
1. Let y|x; 0 ~ Bernoulli(¢)

n = log (%) T(y)=y
2. Derive hypothesis function:
ho(x) = E[T(y)lx: 0]
=E[y|x; 0]

1
_gb_l—l-e*77

3. Adopt linear model n = 07 x:
1

)= e

Canonical response function: ¢ = g(n) = sigmoid(n)
Canonical link function : n = g=%(¢) = logit(¢)



GLM example: Poisson regression

Example 1: Customer Prediction

Predict y, the number of customers in the store given x, the
recent spending in advertisement.

Use GLM to find the hypothesis function...



GLM example: Poisson regression

Apply GLM construction rules:
1. Let y|x; 8 ~ Poisson(\)
n=log(A), T(y) =y

2. Derive hypothesis function:

ho(x) = E [y|x; 6]
=A=¢"

3. Adopt linear model n = 07 x:
hg(x) = e~

Canonical response function: A = g(n) = €”"
Canonical link function : = g71()\) = log()\)



GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k
outcomes

k
p(yio) = [Joi"™"
i=1

Derive the exponential family form of Multinomial(¢1, .., ¢x):
Note: ¢y =1 — Zf-;_ll ¢ is not a parameter

Hy =1}
> T(y) = : log <%>
H{y=k-— 1.} > = :
1y =i ={] 77 og (“47*)

> a(n) = — log(éx) ~ by)=1



GLM example: Softmax regression

Apply GLM construction rules:

1. Let y|x; 0 ~ Multinomial(¢1,...,¢x), forall i=1...

" Ky =1}
ni = Iog(qs—;), T(y) = :
Hy=k-1}
Compute inverse: ¢; = ij‘j" 7
2. Derive hypothesis function:
Hy =1} b1
ho(x) = E : ;0 = | :
eni
¢ =

Zf:l e



GLM example: Softmax regression

3. Adopt linear model n; = 9,-Tx:

eeiTX
= ———=foralli=1... k-1
Z ko 0x ora

Zj:l S

e@i’—x
1
Zj:l R
. . e'li
Canonical response function: ¢; = g(n) = W

j=1

Canonical link function : 7; = g~ (¢;) = log <%>



GLM Summary

Sufficient statistic T(y)

Response function g(n)
Link function g~Y(E[T(y);n])

Exponential Family Y T(y) gn) g "E[T(y):n])
N(p,1) R y " a
Bernoulli(¢) {0,1} y 1_5_2777 Iog%
Poisson(\) N y e" log(1)
Multinomial(¢y, ..., éx) {1,...,k} 0; & ni = Iog<¢_}i>






Two Learning Approaches

Classify input data x into two classes y € {0, 1}

Discriminative Generative
. o ® ®
A Y
Y P [ ] ..
N [ ]
® A Ve ® ()
\ o
O o0 e o0
[ ... ' e 9 .. o
[ ] . O o o [ ]

Discriminate between Model the underlying distri-
classes of data points bution of the data



+ 0
A

. . e
Discriminative Learning Algorithms .‘\ o ® >
A class of learning algorithms that try to learn the . .. A ®e
conditional probability p(y|x) directly or learn Al PR
mappings directly from X to . ® e e

> e.g. linear regression, logistic regression, k-Nearest Neighbors



Generative Learning Algorithms

A class of learning algorithms that model the
joint probability p(x, y).

» Equivalently, generative algorithms model p(x|y) and p(y)
» p(y) is called the class prior

» Learned models are transformed to p(y|x) later to classify
data using Bayes' rule

Bayes Rule
The posterior distribution on y given x:

p(x|y)p(y)

p(ylx) = p(x)



Bayes Rule
The posterior distribution on y given x:

p(xly)p(y)

p(ylx) = o(x)

Make predictions in a generative model:

argmax p(y|x) = argmax w
y y p(x)
= argmax p(x|y)p(y)
y

No need to calculate p(x).



Generative Models

Generative classification algorithms:
» Continuous input: Gaussian Discriminant Analysis

» Discrete input: Naive Bayes
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