

Learning From Data Lecture 3: Generalized Linear Models

Yang Li yangli@sz.tsinghua.edu.cn

September 27, 2020

Today's Lecture

Supervised Learning (Part II)

- Review on linear and logistic regression
- Digress on probability: exponential families
- Generalized linear models (GLM)
- Discriminative vs. generative learning

Programming Assignment (PA1) is released. Due on Oct 9th.

▶ Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$: $h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \ldots + \theta_n x_n^{(i)}$

► Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$: $h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \ldots + \theta_n x_n^{(i)}$

Vector notation:
$$h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)}, \ \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, \ x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$$

► Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$: $h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \ldots + \theta_n x_n^{(i)}$

▶ Vector notation:
$$h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)}, \ \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, \ x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$$

► Cost function for *m* training examples $(x^{(i)}, y^{(i)}), i = 1, ..., m$:

$$J(\theta) =$$

- ► Hypothesis function for input feature $x^{(i)} \in \mathbb{R}^n$: $h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \ldots + \theta_n x_n^{(i)}$
- ▶ Vector notation: $h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)}, \ \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}, \ x^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ \vdots \\ x_{n}^{(i)} \end{bmatrix}$
- ► Cost function for m training examples $(x^{(i)}, y^{(i)}), i = 1, ..., m$:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(\widehat{y_{i}^{(i)} - \theta^{T} x_{i}^{(i)}} \right)^{2}$$

Also known as ordinary least square regression model.

Gradient descent:

update rule (batch)

update rule (stochastic)

Newton's method

Normal equation

Gradient descent:

update rule (batch)
$$\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$
 update rule (stochastic)

Newton's method

Normal equation

Gradient descent:

update rule (batch)
$$\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$
update rule (stochastic) $\theta_j \leftarrow \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$

Newton's method

► Normal equation

Gradient descent:

update rule (batch)
$$\theta_j \leftarrow \theta_j + \alpha \cdot \frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$
 update rule (stochastic) $\theta_j \leftarrow \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$

Newton's method

$$\theta \leftarrow \theta - H^{-1} \nabla J(\theta)$$

► Normal equation

$$X^T X \theta = X^T y$$

Maximum likelihood estimation

Log-likelihood function:

$$\ell(\theta) = \log \left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}; \theta) \right) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \theta)$$

where p is a probability density function.

$$\underbrace{\theta_{\textit{MLE}}}_{\theta} = \operatorname*{argmax} \ell(\theta)$$

Maximum likelihood estimation

Log-likelihood function:

$$\ell(\theta) = \log \left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}; \theta) \right) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \theta)$$

where p is a probability density function.

$$\theta_{MLE} = \operatorname*{argmax}_{\theta} \ell(\theta)$$

(True or False?) Ordinary least square regression is equivalent to the maximum likelihood estimation of $\underline{\theta}$.

Maximum likelihood estimation

Log-likelihood function:

$$\ell(\theta) = \log \left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}; \theta) \right) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \theta)$$

where p is a probability density function.

$$\theta_{MLE} = \operatorname*{argmax}_{\theta} \ell(\theta)$$

(True or False?) Ordinary least square regression is equivalent to the maximum likelihood estimation of θ .

True under the assumptions:

- $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$
- $lackbox{}{ullet} \epsilon^{(i)}$ are i.i.d. according to $\mathcal{N}(0,\sigma^2)$

Review of Lecture 2: Linear Regression Exercise

The normal equation for solving ordinary least square is:

$$X^T X \theta = X^T y$$

When X^TX is invertible, we have $\Theta = (X^TX)^{-1}X^Ty$ Now, suppose X^TX is singular. Does the solution exist?

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), \ g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

• Assuming $y|x;\theta$ is distributed according to Bernoulli $(h_{\theta}(x))$

$$p(y|x;\theta) =$$

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), \ g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

▶ Assuming $y|x;\theta$ is distributed according to Bernoulli $(h_{\theta}(x))$

$$p(y|x;\theta) = \underbrace{h_{\theta}(x)}(1 - h_{\theta}(x))^{1-y}$$

Hypothesis function:

$$h_{\theta}(x) = g(\theta^T x), \ g(z) = \frac{1}{1 + e^{-z}}$$
 is the sigmoid function.

▶ Assuming $y|x;\theta$ is distributed according to Bernoulli $(h_{\theta}(x))$

$$p(y|x;\theta) = h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y}$$

Log-likelihood function for m training examples:

$$(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Review of Lecture 2: Softmax regression

Hypothesis function:

$$\underbrace{h_{\theta}(x)}_{h_{\theta}(x)} = \begin{bmatrix} p(y = 1|x; \theta) \\ \vdots \\ p(y = k|x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix}$$

Review of Lecture 2: Softmax regression

Hypothesis function:

$$h_{\theta}(x) = \begin{bmatrix} p(y = 1 | x; \theta) \\ \vdots \\ p(y = k | x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix}$$

► Assume $y|x;\theta$ is distributed according to Multinomial $(h_{\theta}(x))$:

$$p(y|x;\theta) = \prod_{l=1}^{k} p(y=l|x;\theta) \frac{1}{y=l} \begin{cases} 1 & \text{if } z \in l \\ 0 & \text{o.w.} \end{cases}$$

Review of Lecture 2: Softmax regression

► Hypothesis function:

$$h_{\theta}(x) = \begin{bmatrix} p(y = 1 | x; \theta) \\ \vdots \\ p(y = k | x; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k}^{T} x} \end{bmatrix}$$

▶ Assume $y|x;\theta$ is distributed according to Multinomial($h_{\theta}(x)$):

$$p(y|x;\theta) = \prod_{l=1}^{k} p(y=l|x;\theta)^{\mathbf{1}\{y=l\}}$$

► Log-likelihood function for *m* training examples:

$$\ell(\theta) = \left(\sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1} \{ y^{(i)} = l \} \log \frac{e^{\theta_i^T x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_j^T x^{(i)}}} \right)$$

Linear models

What we've learned so far:

Learning task	Model	$p(y x;\theta)$
regression	Linear regression	$\mathcal{N}(h_{\theta}(x),\sigma^2)$
binary classification	Logistic regression	Bernoulli($h_{\theta}(x)$)
multi-class classification	Softmax regression	Multinomial($[h_{\theta}(x)]$)

Can we generalize the linear model to other distributions?

Linear models

What we've learned so far:

Learning task	Model	$p(y x;\theta)$
regression		$\int \mathcal{N}(h_{ heta}(x),\sigma^2)$
	Logistic regression	
multi-class classification	Softmax regression	Multinomial($[h_{\theta}(x)]$)

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x(\theta)$ is from an **exponential family**.

Review: Exponential Family

Exponential Family

A class of distributions is in the **exponential family** if it can be written as

$$p(y;\underline{\eta}) = b(y)e^{\eta^T T(y) - a(\eta)}$$

- y: random variable response variable.
- $\triangleright \eta$: natural/canonical parameter
- ightharpoonup T(y): sufficient statistic of the distribution
- ► *b*(*y*):
- $a(\eta)$: log partition function (why?)

Exponential Family

Log partition function $a(\eta)$ is the log of a normalizing constant. i.e. $e^{\eta^{\gamma\gamma}(y)} e^{-a(\eta)}$

$$\underline{p(y;\eta)} = \underline{b(y)} e^{\eta^T T(y) - a(\eta)} = \frac{b(y) e^{\eta^T T(y)}}{e^{a(\eta)}}$$

Function
$$a(\eta)$$
 is chosen such that $\sum_{y} p(y; \eta) = 1$ (or $\int_{y} p(y; \eta) dy = 1$).

$$\sum_{y} \frac{b(y)e^{\eta^{T}T(y)}}{e^{a(\eta)}} = 1$$

$$\frac{1}{e^{a(y)}} \sum_{y} b(y)e^{\eta^{T}T(y)} = 1$$

$$a(\eta) = \log \left(\sum_{y} b(y)e^{\eta^{T}T(y)} \right)$$

$$a(\eta) = \log \left(\sum_{y} b(y)e^{\eta^{T}T(y)} \right).$$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0, 1\}$, such that

$$p(y;\phi) = \underline{\phi}^{y} (1-\underline{\phi})^{1-y}$$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0,1\}$, such that

How to write it in the form of
$$p(y; \eta) = b(y)e^{\eta^T T(y) - a(\eta)}$$
?

$$p(y; \phi) = e^{\log \left[\frac{b^{-y}(1-\phi)^{-y}}{2}\right]}$$

$$= e^{\log$$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0,1\}$, such that

$$p(y; \phi) = \phi^{y} (1 - \phi)^{1-y}$$

- η =
- \blacktriangleright b(y) =
- ightharpoonup T(y) =
- ightharpoonup $a(\eta) =$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0,1\}$, such that

$$p(y; \phi) = \phi^{y} (1 - \phi)^{1-y}$$

- $ightharpoonup \eta = \log\left(rac{\phi}{1-\phi}
 ight)$
- ▶ b(y) = 1
- T(y) = y
- $\blacktriangleright \ a(\eta) = \log(1 + e^{\eta})$

Gaussian Distribution (unit variance) 6=1

Probability density of a Gaussian distribution $\mathcal{N}(\mu, 1)$ over $y \in \mathbb{R}$:

$$p(y;\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{(y-\mu)^2}{2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y^2 + \mu^2 - 2y\mu)\right)$$

$$= \left[\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}\right] e^{-\frac{1}{2}(\mu^2 - 2y\mu)}$$

$$= \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}\right) e^{-\frac{1}{2}(\mu^2 - 2y\mu)}$$

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution $\mathcal{N}(\mu, 1)$ over $y \in \mathbb{R}$:

$$p(y;\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2}\right)$$

- $\eta = \mu$
- $b(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$
- T(y) = y
- $a(\eta) = \frac{1}{2}\eta^2$

1+1.

Probability density of a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ over $y \in \mathbb{R}$:

Try this before attempting the next written homework

Poisson distribution: Poisson($\underline{\lambda}$)

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, assuming events occur independently at a constant rate

Poisson distribution: Poisson(λ)

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, assuming events occur independently at a constant rate

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$P(y;\lambda) = \frac{\lambda^{y}e^{-\lambda}}{y!}$$

$$P(y;\lambda) = \frac{\lambda^{y}e^{-\lambda}}{y!}$$

$$= \frac{1}{y!}e^{\lambda^{y}e^{-\lambda}}$$

Exponential Family Examples

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$

- $\qquad \qquad \boldsymbol{\eta} = \log \lambda$
- $b(y) = \frac{1}{y!}$
- T(y) = y
- ightharpoonup $a(\eta)=e^{\eta}$

Generalized Linear Models

Generalized Linear Models: Intuition

Example 1: Customer Prediction

Predict y, the number of customers in the store given x, the recent spending in advertisement.

Problems with linear regression:

- Assumes $y|x;\theta$ has a Normal distribution.

 Poisson distribution is better for modeling occurrences
- A constant change in x leads to a constant change in y
 More realistic to have a constant rate of increased number of customers (e.g. doubling or halving y)

Generalized Linear Models: Intuition

Example 2: Purchase Prediction(0, 1) 70%

Predict \underline{y} , the probability a customer would make a purchase given \underline{x} , the recent spending in advertisement.

Problems with linear regression:

- Assumes y|x; θ is a Normal distribution.
 Bernoulli distribution is better for modeling the probability of a binary choice
- A constant change in x leads to a constant change in y More realistic to have a constant change in the odds of increased probability (e.g. from 2 : 1 odds to 4 : 1)

Generalized Linear Models: Intuition

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x;\theta$ is from an exponential family.

Design motivation of GLM

- ▶ **Response variables** *y* can have arbitrary distributions
- Allow arbitrary function of y (the link function) to vary linearly with the input values x

Generalized Linear Models: Construction

Formal GLM assumptions & design decisions:

- 1 $y|x;\theta \sim \text{ExponentialFamily}(\eta)$ $\mathcal{T}(y)$.
 e.g. Gaussian, Poisson, Bernoulli, Multinomial, Beta ...
- ②. The hypothesis function h(x) is $\mathbb{E}[T(y)|x] = \mu$ e.g. When T(y) = y, $h(x) = \mathbb{E}[y|x]$ μ
- 3. The natural parameter $\underline{\eta}$ and the inputs x are related linearly:

$$\eta$$
 is a number:

$$\widehat{\eta} = \theta^T x$$

 η is a vector:

$$\eta_i = \theta_i^\mathsf{T} x \quad \forall i = 1, \dots, n \quad \text{ or } \quad \eta = \Theta^\mathsf{T} x$$

Generalized Linear Models: Construction

Relate natural parameter η to distribution mean $\mathbb{E}[T(y); \eta]$:

► Canonical response function g gives the mean of the distribution

$$g(\eta) = \mathbb{E}[T(y); \eta]$$

a.k.a. the "mean function"

Generalized Linear Models: Construction

Relate natural parameter η to distribution mean $\mathbb{E}[T(y); \eta]$:

► Canonical response function *g* gives the mean of the distribution

$$g(\eta) = \mathbb{E}[T(y); \eta]$$

- a.k.a. the "mean function"
- $ightharpoonup g^{-1}$ is called the **canonical link function**

$$\eta = g^{-1}(\mathbb{E}\left[T(y);\eta\right])$$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim N(\mu, 1)$$

$$\underbrace{\eta = \mu, \ T(y) = y}$$

Apply GLM construction rules:

1. Let $y|x; \theta \sim N(\mu, 1)$

$$\underbrace{\eta = \mu, \ T(y) = y}$$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E}\left[\underline{T(y)}|x;\theta\right]$$
$$= \mathbb{E}\left[y|x;\theta\right]$$
$$= \underbrace{n}$$

Apply GLM construction rules:

1. Let $y|x; \underline{\theta} \sim N(\mu, 1)$

$$\eta = \mu$$
, $T(y) = y$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E} [T(y)|x; \theta]$$
$$= \mathbb{E} [y|x; \theta]$$
$$= \mu = \eta$$

3. Adopt linear model $\underline{\underline{\eta}} = \underline{\underline{\theta}^T x}$: $h_{\theta}(x) = \eta = \underline{\underline{\theta}^T x}$

Apply GLM construction rules:

1. Let $y|x; \theta \sim N(\mu, 1)$

$$\eta = \mu$$
, $T(y) = y$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E} [T(y)|x; \theta]$$
$$= \mathbb{E} [y|x; \theta]$$
$$= \mu = \eta$$

3. Adopt linear model $\eta = \theta^T x$:

$$T(y) = g(\eta), \quad h_{\theta}(x) = \eta = \theta^{T} x$$

Canonical response function: $\mu = g(\eta) = \eta$ (identity) Canonical link function: $\eta = g^{-1}(\mu) = \mu$ (identity)

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y = 0$$

Apply GLM construction rules:

1. Let $y|x; \theta \sim \underbrace{\mathsf{Bernoulli}(\phi)}$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$h_{\theta}(x) = \underbrace{\mathbb{E}[T(y)|x;\theta]}_{=\mathbb{E}[y|x;\theta]}$$

$$= \underbrace{0}_{=\frac{1}{1+e^{-\eta}}} \int_{-\infty}^{\infty} s_{\theta} e^{-ix\theta} dx$$

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E} [T(y)|x; \theta]$$
$$= \mathbb{E} [y|x; \theta]$$
$$= \phi = \frac{1}{1 + e^{-\eta}}$$

3. Adopt linear model $\eta = \theta^T \underline{x}$:

$$\frac{1}{\left[h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \right]}$$

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E}[T(y)|x;\theta]$$

$$= \mathbb{E}[y|x;\theta]$$

$$= \phi = \frac{1}{1 + e^{-\eta}} \ \mathcal{J}(y)$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Canonical response function: $\phi = g(\eta) = \text{sigmoid}(\eta)$

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim \text{Bernoulli}(\phi)$$
 $\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E} [T(y)|x; \theta]$$
$$= \mathbb{E} [y|x; \theta]$$
$$= \phi = \frac{1}{1 + e^{-\eta}}$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Canonical response function: $\phi = g(\eta) = \text{sigmoid}(\eta)$ Canonical link function : $\eta = g^{-1}(\phi) \neq \overline{\text{logit}(\phi)}$

GLM example: Poisson regression

Example 1: Customer Prediction

Predict y, the number of customers in the store given x, the recent spending in advertisement.

Use GLM to find the hypothesis function...

GLM example: Poisson regression

Apply GLM construction rules:

1. Let
$$y|x$$
; $\theta \sim \frac{\text{Poisson}(\lambda)}{\eta = \log(\lambda)}$, $T(y) = y$

2. Derive hypothesis function:

$$h_{\theta}(x) = \underbrace{\mathbb{E}\left[y|x;\theta\right]}_{=(\lambda)=(e^{\eta})}$$

3. Adopt linear model $\underline{\eta} = \underline{\theta^T x}$

$$h_{\theta}(x) = e^{\theta^T x}$$

Canonical response function: $\lambda = g(\eta) = e^{\eta}$ Canonical link function : $\eta = g^{-1}(\lambda) = \underline{\log(\lambda)}$

Probability mass function of a Multinomial distribution over \underline{k} outcomes

$$p(y;\phi) = \prod_{i=1}^{k} \phi_i^{1\{y=i\}}$$

Derive the exponential family form of Multinomial $(\phi_1, ..., \phi_k)$:

Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

Probability mass function of a Multinomial distribution over k outcomes

$$p(y;\phi) = \prod_{i=1}^k \phi_i^{\mathbf{1}\{y=i\}}$$

Derive the exponential family form of Multinomial($\phi_1,...,\phi_k$): Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

GLM example: Softmax regression $\tau(y) = \log \frac{\phi_i}{\phi_{ii}}$ $\phi_i = \frac{e^{\eta_i}}{\sum_{j \neq i}^k q_{ij}}$

Probability mass function of a Multinomial distribution over k outcomes

outcomes
$$p(y;\phi) = \prod_{i=1}^{k} \phi_{i}^{1\{y=i\}} \frac{\phi_{i}^{k}}{\phi_{k}} = 0$$

$$p(y;\phi) = \prod_{i=1}^{k} \phi_{i}^{1\{y=i\}} \frac{\phi_{i}^{k}}{\phi_{k}} = 0$$
Derive the exponential family form of Multipoptial $\phi_{i}^{k} = 0$

Derive the exponential family form of Multinomial $(\phi_1, ..., \phi_k)$

Note:
$$\phi_{k} = 1 - \sum_{i=1}^{k-1} \phi_{i}$$
 is not a parameter $(1, ..., \phi_{k})$.

$$P(y; \phi) = \prod_{i=1}^{k} \phi_{i}^{1;y_{2}} \int_{x_{i-1}}^{x_{i-1}} dx_{i}^{T(y_{i})} \int_{x_{i-1}}^{x_{i-1}} dx_{i}^{T(y_{i})} dx_{i}^{1:y_{i-1}} dx_{i}^{1:y_{i-1}}$$

Probability mass function of a Multinomial distribution over k outcomes

$$p(y; \phi) = \prod_{i=1}^{k} \phi_i^{1\{y=i\}}$$

Derive the exponential family form of Multinomial $(\phi_1, ..., \phi_k)$:

Note: $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$ is not a parameter

Apply GLM construction rules:

1. Let $y|x; \theta \sim \mathsf{Multinomial}(\phi_1, \dots, \phi_k)$, for all $i = 1 \dots k - 1$

$$\underline{\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right)}, \ T(y) = \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix}$$

Apply GLM construction rules:

1. Let $y|x; \theta \sim \mathsf{Multinomial}(\phi_1, \dots, \phi_k)$, for all $i = 1 \dots k-1$

$$\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ T(y) = \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix}$$

Compute inverse: $\phi_i = \frac{e^{\eta_i}}{\sum_{i=1}^k e^{\eta_i}} \leftarrow$ canonical response function

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Multinomial}(\phi_1, \dots, \phi_k)$, for all $i = 1 \dots k - 1$

$$\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ T(y) = \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix}$$

Compute inverse: $\phi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}} \leftarrow canonical response function$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E} \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix} x; \theta = \begin{bmatrix} \phi_{1} \\ \vdots \\ \phi_{k-1} \end{bmatrix}$$

$$\phi_{i} = \frac{e^{\eta_{i}}}{\sum_{j=1}^{k} e^{\eta_{j}}}$$

3. Adopt linear model $\eta_i = \theta_i^T x$:

$$\phi_i = \frac{e^{\theta_i^T x}}{\sum_{j=1}^k e^{\theta_j^T x}}$$
 for all $i = 1 \dots k-1$

$$h_{ heta}(x) = rac{1}{\sum_{j=1}^{k} e^{ heta_{j}^{T} x}} \begin{bmatrix} e^{ heta_{1}^{T} x} \\ \vdots \\ e^{ heta_{k-1}^{T} x} \end{bmatrix}$$

3. Adopt linear model $\eta_i = \theta_i^T x$:

$$\phi_i = rac{\mathrm{e}^{ heta_i^T imes}}{\sum_{j=1}^k \mathrm{e}^{ heta_j^T imes}} ext{ for all } i = 1 \dots k-1$$

$$h_{ heta}(x) = rac{1}{\sum_{j=1}^{k} \mathrm{e}^{ heta_{j}^{T} x}} egin{bmatrix} \mathrm{e}^{ heta_{1}^{I} x} \ \mathrm{e}^{ heta_{k-1}^{T} x} \end{bmatrix}$$

Canonical response function:
$$\phi_i = g(\eta) = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$$

Canonical link function :
$$\eta_i = g^{-1}(\phi_i) = \log\left(\frac{\phi_i}{\phi_k}\right)$$

GLM Summary

Sufficient statistic T(y)Response function $g(\overline{\eta})$ Link function $g^{-1}(\mathbb{E}[T(y);\eta])$

Exponential Family	\mathcal{Y}	T(y)	$g(\eta)$	$g^{-1}(\mathbb{E}[T(y);\eta])$
$\mathcal{N}(\mu,1)$	\mathbb{R}	У	$\widetilde{\eta}$	μ
$Bernoulli(\phi)$	$\{0,1\}$	у	$rac{1}{1+e^{-\eta}}$	$\log rac{\phi}{1-\phi}$
Poisson(λ)	\mathbb{N}	У	e^{η}	$\log(\lambda)$
$\widehat{Multinomial(\phi_1,\dots,\phi_k)}$	$\{1,\ldots,k\}$	δ_i	$\frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$	$\eta_i = \log\!\left(rac{\phi_i}{\phi_k} ight)$

Discriminative & Generative Models

Two Learning Approaches

Classify input data x into two classes $y \in \{0,1\}$

Discriminative Learning Algorithms

A class of learning algorithms that try to learn the **conditional probability** p(y|x) directly or learn mappings directly from \mathcal{X} to \mathcal{Y} .

• e.g. linear regression, logistic regression, k-Nearest Neighbors ...

Generative Learning Algorithms

A class of learning algorithms that <u>model the</u> **joint probability** p(x, y).

- ▶ Equivalently, generative algorithms model p(x|y) and p(y)
- \triangleright p(y) is called the **class prior**
- ▶ Learned models are transformed to p(y|x) later to classify data using Bayes' rule

Bayes Rule

The posterior distribution on y given x:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Bayes Rule

The posterior distribution on
$$y$$
 given x :
$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Make predictions in a generative model:

No need to calculate p(x).

Generative Models

Generative classification algorithms:

- ► Continuous input: Gaussian Discriminant Analysis
- ► Discrete input: Naïve Bayes