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Learning From Data
Lecture 3: Generalized Linear Models

Yang Li yangli@sz.tsinghua.edu.cn

September 27, 2020
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Today’s Lecture

Supervised Learning (Part II)

▶ Review on linear and logistic regression

▶ Digress on probability: exponential families

▶ Generalized linear models (GLM)

▶ Discriminative vs. generative learning

Programming Assignment (PA1) is released. Due on Oct 9th.
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Review of Lecture 2
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Review of Lecture 2: Linear least square

▶ Hypothesis function for input feature x (i) ∈ Rn:

hθ(x
(i)) = θ0 + θ1x

(i)
1 + . . .+ θnx

(i)
n

▶ Vector notation: hθ(x
(i)) = θT x (i), θ =


θ0
θ1
...
θn

, x (i) =


1

x
(i)
1
...

x
(i)
n


▶ Cost function for m training examples (x (i), y (i)), i = 1, . . . ,m:

J(θ) =

1

2

m∑
i=1

(
y (i) − θT x (i)

)2

Also known as ordinary least square regression model.
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How to minimize J(θ)?

▶ Gradient descent:

update rule (batch)

θj ← θj +α · 1
m

m∑
i=1

(
y (i) − hθ(x

(i))
)
x
(i)
j

update rule (stochastic)

θj ← θj + α
(
y (i) − hθ(x

(i))
)
x
(i)
j

▶ Newton’s method

θ ← θ − H−1∇J(θ)

▶ Normal equation

XTXθ = XT y
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Review of Lecture 2

Maximum likelihood estimation
▶ Log-likelihood function:

ℓ(θ) = log

(
m∏
i=1

p(y (i)|x (i); θ)

)
=

m∑
i=1

log p(y (i)|x (i); θ)

where p is a probability density function.

θMLE = argmax
θ

ℓ(θ)

(True or False?) Ordinary least square regression is equivalent to
the maximum likelihood estimation of θ.
True under the assumptions:

▶ y (i) = θT x (i) + ϵ(i)

▶ ϵ(i) are i.i.d. according to N (0, σ2)
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Review of Lecture 2: Linear Regression Exercise

The normal equation for solving ordinary least square is:

XTXθ = XT y

When XTX is invertible, we have θ = (XTX )−1XT y Now,
suppose XTX is singular. Does the solution exist?
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Review of Lecture 2: Logistic regression

▶ Hypothesis function:

hθ(x) = g(θT x), g(z) =
1

1 + e−z
is the sigmoid function.

▶ Assuming y |x ; θ is distributed according to Bernoulli(hθ(x))

p(y |x ; θ) = hθ(x)
y (1− hθ(x))

1−y

▶ Log-likelihood function for m training examples:

ℓ(θ) =
m∑
i=1

y (i) log hθ(x
(i)) + (1− y (i)) log(1− hθ(x

(i)))
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Review of Lecture 2: Softmax regression

▶ Hypothesis function:

hθ(x) =

p(y = 1|x ; θ)
...

p(y = k |x ; θ)

 =
1∑k

j=1 e
θTj x

e
θT1 x

...

eθ
T
k x



▶ Assume y |x ; θ is distributed according to Multinomial(hθ(x)):

p(y |x ; θ) =
k∏

l=1

p(y = l |x ; θ)1{y=l}

▶ Log-likelihood function for m training examples:

ℓ(θ) =
m∑
i=1

k∑
l=1

1{y (i) = l} log eθ
T
l x(i)∑k

j=1 e
θTj x(i)
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Linear models

What we’ve learned so far:

Learning task Model p(y |x ; θ)
regression Linear regression N (hθ(x) ,σ

2)
binary classification Logistic regression Bernoulli( hθ(x) )
multi-class classification Softmax regression Multinomial([hθ(x)] )

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing
linear models in which y |x ; θ is from an exponential family.
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Review: Exponential Family
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Exponential Family

A class of distributions is in the exponential family if it can be
written as

p(y ; η) = b(y)eη
TT (y)−a(η)

▶ y : random variable

▶ η : natural/canonical parameter

▶ T (y): sufficient statistic of the distribution

▶ b(y):

▶ a(η) : log partition function (why?)
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Exponential Family

Log partition function a(η) is the log of a normalizing constant.
i.e.

p(y ; η) = b(y)eη
TT (y)−a(η) =

b(y)eη
TT (y)

ea(η)

Function a(η) is chosen such that
∑

y p(y ; η) = 1

(or
∫
y p(y ; η)dy = 1).

a(η) = log

(∑
y

b(y)eη
TT (y)

)
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Exponential Family Examples

Bernoulli Distribution

Bernoulli(ϕ): a distribution over y ∈ {0, 1}, such that

p(y ;ϕ) = ϕy (1− ϕ)1−y

y

ϕ

1 − ϕ

0 1

PY(y)
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Bernoulli Distribution

Bernoulli(ϕ): a distribution over y ∈ {0, 1}, such that

p(y ;ϕ) = ϕy (1− ϕ)1−y

How to write it in the form of p(y ; η) = b(y)eη
TT (y)−a(η)?
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Exponential Family Examples

Bernoulli Distribution

Bernoulli(ϕ): a distribution over y ∈ {0, 1}, such that

p(y ;ϕ) = ϕy (1− ϕ)1−y

▶ η =

log
(

ϕ
1−ϕ

)

▶ b(y) =

1

▶ T (y) =

y

▶ a(η) =

log(1 + eη)
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Exponential Family Examples

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution N (µ, 1) over y ∈ R:

p(y ; θ) =
1√
2π

exp

(
−(y − µ)2

2

)

▶ η =

µ

▶ b(y) =

1√
2π

exp(−y2/2)

▶ T (y) =

y

▶ a(η) =

1
2η

2
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Exponential Family Examples

Gaussian Distribution

Probability density of a Gaussian distribution N (µ, σ2) over y ∈ R:

p(y ; θ) =
1√
2πσ2

exp

(
−(y − µ)2

2σ2

)

▶ η =

[ µ
σ2

− 1
2σ2

]
▶ b(y) = 1√

2π

▶ T (y) =

[
y
y2

]
▶ a(η) = µ2

2σ2 + log σ

Try this before attempting the next written homework
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Exponential Family Examples

Poisson distribution: Poisson(λ)

Models the probability that an event occurring y ∈ N times in a
fixed interval of time, assuming events occur independently at a
constant rate

Probability density
function of Poisson(λ)
over y ∈ Y:

p(y ;λ) =
λye−λ

y !
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Exponential Family Examples

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over y ∈ Y:

p(y ;λ) =
λye−λ

y !

▶ η = log λ

▶ b(y) = 1
y !

▶ T (y) = y

▶ a(η) = eη
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Generalized Linear Models
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Generalized Linear Models: Intuition

Example 1: Customer Prediction

Predict y , the number of customers in the store given x , the
recent spending in advertisement.

Problems with linear regression:

▶ Assumes y |x ; θ has a Normal distribution.
Poisson distribution is better for modeling occurrences

▶ A constant change in x leads to a constant change in y
More realistic to have a constant rate of increased number of
customers (e.g. doubling or halving y)
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Generalized Linear Models: Intuition

Example 2: Purchase Prediction

Predict y , the probability a customer would make a purchase
given x , the recent spending in advertisement.

Problems with linear regression:

▶ Assumes y |x ; θ is a Normal distribution.
Bernoulli distribution is better for modeling the probability of
a binary choice

▶ A constant change in x leads to a constant change in y
More realistic to have a constant change in the odds of
increased probability (e.g. from 2 : 1 odds to 4 : 1)
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Generalized Linear Models : Intuition

Generalized Linear Model (GLM): a recipe for constructing
linear models in which y |x ; θ is from an exponential family.

Design motivation of GLM

▶ Response variables y can have arbitrary distributions

▶ Allow arbitrary function of y (the link function) to vary
linearly with the input values x
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Generalized Linear Models: Construction

Formal GLM assumptions & design decisions:

1. y |x ; θ ∼ ExponentialFamily(η)
e.g. Gaussian, Poisson, Bernoulli, Multinomial, Beta ...

2. The hypothesis function h(x) is E [T (y)|x ]
e.g. When T (y) = y , h(x) = E [y |x ]

3. The natural parameter η and the inputs x are related linearly:

η is a number:
η = θT x

η is a vector:

ηi = θTi x ∀i = 1, . . . , n or η = ΘT x
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Generalized Linear Models: Construction

Relate natural parameter η to distribution mean E [T (y); η] :

▶ Canonical response function g gives the mean of the
distribution

g(η) = E [T (y); η]

a.k.a. the “mean function”

▶ g−1 is called the canonical link function

η = g−1(E [T (y); η])
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GLM example: ordinary least square

Apply GLM construction rules:

1. Let y |x ; θ ∼ N(µ, 1)

η = µ, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]
= µ = η

3. Adopt linear model η = θT x :

hθ(x) = η = θT x

Canonical response function: µ = g(η) = η (identity)
Canonical link function: η = g−1(µ) = µ (identity)
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GLM example: logistic regression
Apply GLM construction rules:

1. Let y |x ; θ ∼ Bernoulli(ϕ)

η = log
(

ϕ
1−ϕ

)
, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]

= ϕ =
1

1 + e−η

3. Adopt linear model η = θT x :

hθ(x) =
1

1 + e−θT x

Canonical response function: ϕ = g(η) = sigmoid(η)
Canonical link function : η = g−1(ϕ) = logit(ϕ)
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GLM example: Poisson regression

Example 1: Customer Prediction

Predict y , the number of customers in the store given x , the
recent spending in advertisement.

Use GLM to find the hypothesis function...
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GLM example: Poisson regression

Apply GLM construction rules:

1. Let y |x ; θ ∼ Poisson(λ)

η = log(λ), T (y) = y

2. Derive hypothesis function:

hθ(x) = E [y |x ; θ]
= λ = eη

3. Adopt linear model η = θT x :

hθ(x) = eθ
T x

Canonical response function: λ = g(η) = eη

Canonical link function : η = g−1(λ) = log(λ)
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k
outcomes

p(y ;ϕ) =
k∏

i=1

ϕ
1{y=i}
i

Derive the exponential family form of Multinomial(ϕ1, .., ϕk):
Note: ϕk = 1−

∑k−1
i=1 ϕi is not a parameter

▶ T (y) =

 1{y = 1}
...

1{y = k − 1}


T (y)i = 1{y = i} =

{
0 y ̸= i

1 y = i

▶ a(η) = − log(ϕk)

▶ η =


log
(
ϕ1
ϕk

)
...

log
(
ϕk−1

ϕk

)


▶ b(y) = 1
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GLM example: Softmax regression

Apply GLM construction rules:

1. Let y |x ; θ ∼ Multinomial(ϕ1, . . . , ϕk), for all i = 1 . . . k − 1

ηi = log

(
ϕi

ϕk

)
, T (y) =

 1{y = 1}
...

1{y = k − 1}



Compute inverse: ϕi =
eηi∑k
j=1 e

ηj
← canonical response function

2. Derive hypothesis function:

hθ(x) = E

 1{y = 1}
...

1{y = k − 1}

∣∣∣∣∣∣x ; θ
 =

 ϕ1
...

ϕk−1


ϕi =

eηi∑k
j=1 e

ηj
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GLM example: Softmax regression

3. Adopt linear model ηi = θTi x :

ϕi =
eθ

T
i x∑k

j=1 e
θTj x

for all i = 1 . . . k − 1

hθ(x) =
1∑k

j=1 e
θTj x

 eθ
T
1 x

...

eθ
T
k−1x



Canonical response function: ϕi = g(η) =
eηi∑k
j=1 e

ηj

Canonical link function : ηi = g−1(ϕi ) = log

(
ϕi

ϕk

)
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GLM Summary

Sufficient statistic T (y)

Response function g(η)

Link function g−1(E[T (y); η])

Exponential Family Y T (y) g(η) g−1(E[T (y); η])
N (µ, 1) R y η µ

Bernoulli(ϕ) {0, 1} y 1
1+e−η log

ϕ
1−ϕ

Poisson(λ) N y eη log(λ)

Multinomial(ϕ1, . . . , ϕk) {1, . . . , k} δi
eηi∑k
j=1 e

ηj
ηi = log

(
ϕi

ϕk

)
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Discriminative & Generative Models
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Two Learning Approaches

Classify input data x into two classes y ∈ {0, 1}

Discriminate between
classes of data points

Model the underlying distri-
bution of the data
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Discriminative Learning Algorithms

A class of learning algorithms that try to learn the
conditional probability p(y |x) directly or learn
mappings directly from X to Y.

▶ e.g. linear regression, logistic regression, k-Nearest Neighbors
...
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Generative Learning Algorithms

A class of learning algorithms that model the
joint probability p(x , y).

▶ Equivalently, generative algorithms model p(x |y) and p(y)

▶ p(y) is called the class prior

▶ Learned models are transformed to p(y |x) later to classify
data using Bayes’ rule

Bayes Rule

The posterior distribution on y given x :

p(y |x) = p(x |y)p(y)
p(x)
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Bayes Rule

The posterior distribution on y given x :

p(y |x) = p(x |y)p(y)
p(x)

Make predictions in a generative model:

argmax
y

p(y |x) = argmax
y

p(x |y)p(y)
p(x)

= argmax
y

p(x |y)p(y)

No need to calculate p(x).
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Generative Models

Generative classification algorithms:

▶ Continuous input: Gaussian Discriminant Analysis

▶ Discrete input: Näıve Bayes
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