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Learning From Data
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Regression
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Today’s Lecture

Supervised Learning (Part I)

▶ Linear Regression

▶ Binary Classification

▶ Multi-Class Classification
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Review: Supervised Learning

▶ Input space: X , Target space: Y

▶ Given training examples, we want to learn a hypothesis
function h : X → Y so that h(x) is a ”good” predictor for the
corresponding y .

CS229 Fall 2012 2

To establish notation for future use, we’ll use x(i) to denote the “input”
variables (living area in this example), also called input features, and y(i)

to denote the “output” or target variable that we are trying to predict
(price). A pair (x(i), y(i)) is called a training example, and the dataset
that we’ll be using to learn—a list of m training examples {(x(i), y(i)); i =
1, . . . , m}—is called a training set. Note that the superscript “(i)” in the
notation is simply an index into the training set, and has nothing to do with
exponentiation. We will also use X denote the space of input values, and Y
the space of output values. In this example, X = Y = R.

To describe the supervised learning problem slightly more formally, our
goal is, given a training set, to learn a function h : X !→ Y so that h(x) is a
“good” predictor for the corresponding value of y. For historical reasons, this
function h is called a hypothesis. Seen pictorially, the process is therefore
like this:

Training 
    set

 house.)
(living area of

Learning 
algorithm

h predicted yx
(predicted price)
of house)

When the target variable that we’re trying to predict is continuous, such
as in our housing example, we call the learning problem a regression prob-
lem. When y can take on only a small number of discrete values (such as
if, given the living area, we wanted to predict if a dwelling is a house or an
apartment, say), we call it a classification problem.

▶ y is discrete (categorical):
classification problem

▶ y is continuous (real value):
regression problem
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Review: Inference vs Learning

Given training data of x and y ,

Inference

knowing the structure of f , find good models to describe f . i.e.
model the data generation process ← focus of statistics

Prediction

given future data samples of x , predict the corresponding output
data y using f . ← focus of machine learning
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Linear Regression
Linear Regression Model
Ordinary Least Square
Maximum Likelihood Estimation
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Linear Regression

Example: predict Portland housing price

Living area (ft2) # bedrooms Price ($1000)
x1 x2 y

2104 3 400
1600 3 330
2400 3 369
...

...
...

# of rooms

5
4

3
2

14000
3000

living area

2000
1000

200

300

400

500

600

700

p
ri
c
e

 (
1

0
0

0
$

)
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Linear Approximation

A linear model

h(x) = θ0 + θ1x1 + θ2x2

θi ’s are called parameters.

Using vector notation,

h(x) = θT x , where θ =

θ0θ1
θ2

 , x =

 1
x1
x2
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Alternative Notation

h(x) = w1x1 + w2x2 + b

w1,w2 are called weights, b is called the bias

h(x) = wT x + b, where w =

[
w1

w2

]
, x =

[
x1
x2

]
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Apply model to new data
Suppose we have the optimal parameters θ , e.g.

> h = LinearRegression().fit(X, y)

> theta = h.coef

array([89.60, 0.1392, -8.738])

make a prediction of new feature x :

ŷ = hθ(x) = θT x

living area
1000 2000 3000 4000

p
ri
c
e

 (
1

0
0

0
$

)

200

300

400

500

600

700
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Model Estimation

How to estimate model parameters θ (or w and b) from data?

Least Square Estimation

Minimize sum of the prediction error squared (least square error)
with respect to θ

Maximum Likelihood Estimation
▶ Assume the data are generated from h(x) with some noise

distribution.

▶ Determines the parameters θ most likely to produce the
observed data.

Other estimation methods exist, e.g. Bayesian estimation
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Ordinary Least Square

Cost function:

J(θ) =
1

2

m∑
i=1

(h(x (i))− y (i))2

living area
1000 2000 3000 4000

p
ri
ce

 (
1
0
0
0
$
)

200

300

400

500

600

700

(x, y)

h(x) = ✓0 + ✓1x1

+ ✓2x2

h(x)� y

▶ This model is called ordinary least square
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Ordinary Least Square

Cost function:

J(θ) =
1

2

m∑
i=1

(h(x (i))− y (i))2

▶ This model is called ordinary least square

Ordinary Least square problem

min
θ

J(θ)

=min
θ

1

2

m∑
i=1

(h(x (i))− y (i))2

How to minimize J(θ) ?

▶ Numerical solution: gradient descent, Newton’s method

▶ Analytical solution: normal equation
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Gradient descent

A first-order iterative optimization algorithm for finding the
minimum of a function J(θ).

Key idea

Start at an initial guess,
repeatedly change θ to decrease
J(θ):

θ := θ − α∇J(θ)

α is the learning rate
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Review: Convex function

Definition

A function f (x) is convex on a convex set C if for any x1, x2 ∈ C
and 0 ≤ λ ≤ 1,

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (y2)

e.g. C is an interval [a, b]

Theorem

If J(θ) is convex, gradient descent finds the global minimum.
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For the ordinary least square problem,
J(θ) = 1

2

∑m
i=1(h(x

(i))− y (i))2 = 1
2

∑m
i=1(θ

T x (i) − y (i))2,

∇J(θ) =


∂J(θ)
∂θ1
...

∂J(θ)
∂θn

 , where ∂J(θ)∂θj
=

∂

∂θj

[
1

2

m∑
i=1

(
θT x (i) − y (i)

)2]

=
m∑
i=1

(
θT x (i) − y (i)

)
x
(i)
j
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Gradient descent for ordinary least square

Gradient of cost function: ∇J(θ) =
∑m

i=1

(
θT x (i) − y (i)

)
x
(i)
j

Gradient descent update: θ := θ − α∇J(θ)

Batch Gradient Descent

Repeat until convergence{

θj = θj + α
∑m

i=1(y
(i) − hθ(x

(i)))x
(i)
j for every j

}

θ is only updated after we have seen all m training samples.
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Batch gradient descent

Repeat until convergence{

θj = θj + α
∑m

i=1 (y (i) − hθ(x
(i)))x

(i)
j for every j

}

Stochastic gradient descent

Repeat until convergence{

for i = 1 . . .m {

θj = θj + α(y (i) − hθ(x
(i)))x

(i)
j for every j

}

}

θ is updated each time a training example is read

▶ Stochastic gradient descent gets θ close to minimum much
faster

▶ Good for regression on large data
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Minimize J(θ) Analytically

The matrix notation

X =


— (x (1))

T
—

— (x (2))
T

—
...

— (x (m))
T

—

 , y⃗ =


y (1)

y (2)

...

y (m)


X is called the design matrix.

The least square function can be
written as

J(θ) =
1

2
(Xθ − y)T (Xθ − y)
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Compute the gradient of J(θ) :

∇θJ(θ) =∇θ

[
1

2
(Xθ − y)T (Xθ − y)

]
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Compute the gradient of J(θ) :

∇θJ(θ) =∇θ

[
1

2
(Xθ − y)T (Xθ − y)

]
=

XTXθ − XT y

Since J(θ) is convex, x is a global minimum of J(θ) when
∇J(θ) = 0.

The Normal equation

θ = (XTX )−1XT y

(XTX )−1XT is called the Moore-Penrose pseudoinverse of X
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Which method to use?

gradient descent normal equation

iterative solution exact solution

need to choose proper learning
parameter α for cost function
to converge

numerically unstable when X
is ill-conditioned. e.g. features
are highly correlated

works well for large number of
samples m

solving equation is slow when
m is large
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Minimize J(θ) using Newton’s Method

Newton’s method solves real functions f (x) = 0 by iterative
approximation

▶ Update rule: xn+1 := xn − f (xn)
f ′(xn)

Geometric intuition of Newton’s method
▶ Find tangent line of f at (xn, yn)

▶ xn+1 ← x-intercept of the tangent line

▶ yn+1 ← f (xn+1)
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Newton’s Method Demo

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif
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Minimize J(θ) using Newton’s Method

Newton’s method for optimization minθ J(θ)

Use newton’s method to solve ∇θJ(θ) = 0 :

▶ x is one-dimensional:

θ := θ − f ′(x)

f ′′(x)

▶ x is multidimensional:

θ = θ − H−1(θ)∇J(θ)

where H is the Hessian matrix of J(θ).

a.k.a Newton-Raphson method
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Newton’s Method for Optimization

Initialize θ
While θ has not coverged {

θ := θ − H−1(θ)∇J(θ)
}

Performance of Newton’s method:

▶ Needs fewer interations than batch gradient descent

▶ Computing H−1 is time consuming

▶ Faster in practice when n is small
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Maximum Likelihood Estimation

Consider target y is modeled as

y (i) = θT x (i) + ϵ(i)

and suppose ϵ(i) are independently and identically distributed (IID)
to Gaussian distribution N (0, σ2) ,

then

p(ϵ(i)) =
1√
2πσ2

exp

(
−ϵ

(i)2

2σ2

)

p(y (i)|x (i); θ) = 1√
2πσ2

exp

(
−(y (i) − θT x (i))2

2σ2

)
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Maximum Likelihood Estimation

The likelihood of this model with respect to θ is

L(θ) = p(y⃗ |X ; θ) =
m∏
i=1

p(y (i)|x (i); θ)

Maximum likelihood estimation of θ:

θMLE = argmax
θ

L(θ)
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Maximum Likelihood Estimation

We compute log likelihood,

log L(θ) = log
m∏
i=1

p(y (i)|x (i); θ) =
m∑
i=1

log p(y (i)|x (i); θ)

=
m∑
i=1

log
1√
2πσ2

exp

(
−(y (i) − θT x)2

2σ2

)
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Maximum Likelihood Estimation

We compute log likelihood,

log L(θ) = log
m∏
i=1

p(y (i)|x (i); θ) =
m∑
i=1

log p(y (i)|x (i); θ)

=
m∑
i=1

log
1√
2πσ2

exp

(
−(y (i) − θT x)2

2σ2

)

= m log
1√
2πσ2

− 1

σ2
· 1
2

m∑
i=1

(y (i) − θT x (i))2

Then argmaxθ log L(θ) ≡ argminθ
1
2

∑m
i=1(y

(i) − θT x (i))2 .
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Linear Regression Summary

▶ Least square regression

▶ Solving least square:
▶ gradient descent

▶ normal equation

▶ newton’s method

▶ Probabilistic interpretation: maximum likelihood
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Logistic Regression
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A binary classification problem

Classify binary digits

▶ Training data: 12600 grayscale
images of handwritten digits

▶ Each image is represent by a vector
x (i) of dimension 28× 28 = 784

▶ Vectors x (i) are normalized to [0,1]

Binary classification: Y = {0, 1}
▶ negative class: y (i) = 0

▶ positive class: y (i) = 1
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Logistic Regression Hypothesis Function

Sigmoid function

g(z) =
1

1 + e−z

▶ g : R→ (0, 1)

▶ g ′(z) =

g(z)(1− g(z))

Hypothesis function for logistic
regression:

hθ = g(θT x) =
1

1 + e−θT x
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Maximum likelihood estimation for logistic regression

Logistic regression assumes y |x is Bernoulli distributed.
e.g. tossing a coin with p(head) = hθ(x)

▶ p(y = 1 | x ; θ) = hθ(x)

▶ p(y = 0 | x ; θ) = 1− hθ(x)

p(y | x ; θ) = (hθ(x))
y (1− hθ(x))

1−y

Given m independently generated training examples, the likelihood
function is:

L(θ) = p(y⃗ |X ; θ) =
m∏
i=1

p(y (i)|x (i); θ)

l(θ) = log(L(θ)) =
m∑
i=1

y (i) log hθ(x
(i)) + (1− y (i)) log(1− hθ(x

(i)))

l(θ) is concave!
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Maximum likelihood estimation for logistic regression

l(θ) =
m∑
i=1

y (i) log hθ(x
(i)) + (1− y (i)) log(1− hθ(x

(i)))

Solve argmaxθ l(θ) using gradient ascent:

∂l(θ)

∂θj
=

m∑
i=1

(
y (i) − hθ(x

(i))
)
x
(i)
j

Stocastic Gradient Ascent

Repeat until convergence{

for i = 1 . . .m {

θj = θj + α(y (i) − hθ(x
(i)))x

(i)
j for every j

}

}

▶ Update rule has the same form as least square regression, but
with different hypothesis function hθ
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Binary Digit Classification

Using the learned classifier

Given an image x , the predicted label is

ŷ =

{
1 g(θT x) > 0.5

0 otherwise

Binary digit classification results

sample size accuracy

Training 16200 100%
Testing 1225 100%

▶ Testing accuracy is 100% since this problem is relatively easy.
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Multi-Class Classification
Multiple Binary Classifiers
Softmax Regression
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Multi-class classification

Each data sample belong to one of k > 2 different classes.

Y = {1, . . . , k}

Given new sample x ∈ Rk , predict
which class it belongs.
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Naive Approach: Convert to binary classification

One-Vs-Rest

Learn k classifiers h1, . . . , hk . Each hi classify one class against the
rest of the classes.
Given a new data sample x , its predicted label ŷ :

ŷ = argmax
i

hi (x)
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Multiple binary classifiers

Drawbacks of One-Vs-Rest:

▶ Class unbalance: more negative samples than positive samples

▶ Different classifiers may have different confidence scales



38/44

Drawbacks of One-Vs-Rest:

▶ Class imbalance: more negative samples than positive samples

▶ Different classifiers may have different confidence scales

Learn one model for all classes!
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Extend logistic regression: Softmax Regression

Assume p(y |x) is multinomial distributed.
e.g. outcomes of rolling a k-sided die n times, each side has
independent probability ϕ1, . . . ϕk

Hypothesis function for sample x :

hθ(x) =

p(y = 1|x ; θ)
...

p(y = k |x ; θ)

 =
1∑k

j=1 e
θTj xj

e
θT1 x

...

eθ
T
k x

 = softmax(θT x)

softmax(zi ) =
ezi∑k

j=1 e
(zj )

Parameters: θ =

− θT1 −
...

− θTk −
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Softmax Regression

Given (x (i), y (i)), i = 1, . . . ,m, the log-likelihood of the Softmax
model is

ℓ(θ) =
m∑
i=1

log p(y (i)|x (i); θ)

=
m∑
i=1

log
k∏

l=1

p(y (i) = l |x (i))1{y (i)=l}

=
m∑
i=1

k∑
l=1

1{y (i) = l} log p(y (i) = l |x (i))

=
m∑
i=1

k∑
l=1

1{y (i) = l} log eθ
T
l x(i)∑k

j=1 e
θTj x(i)
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Softmax Regression

Derive the stochastic gradient descent update:

▶ Find ∇θl ℓ(θ)

∇θl ℓ(θ) =
m∑
i=1

[(
1{y (i) = l} − P

(
y (i) = l |x (i); θ

))
x (i)
]
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Property of Softmax Regression

▶ Parameters θ1, . . . θk are not independent:∑
j p(y = j |x) =

∑
j ϕj = 1

▶ Knowning k − 1 parameters completely determines model.

Invariant to scalar addition

p(y |x ; θ) = p(y |x ; θ − ψ)

Proof.
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Relationship with Logistic Regression

When K = 2,

hθ(x) =
1

eθ
T
1 x + eθ

T
2 x

[
eθ

T
1 x

eθ
T
2 x

]

Replace θ =

[
θ1
θ2

]
with θ −

[
θ2
θ2

]
=

[
θ1 − θ2

0

]
,

hθ(x) =
1

eθ
T
1 −θT2 x + e0x

[
e(θ1−θ2)T x

e0
T x

]

=

[
1

1+e(θ1−θ2)
T x

1− 1

1+e(θ1−θ2)
T x

]
=

[
g(θT x)

1− g(θT x)

]
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When to use Softmax?

▶ When classes are mutually exclusive: use Softmax

▶ Not mutually exclusive: multiple binary classifiers may be
better
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