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Today's Lecture

Supervised Learning (Part I)
» Linear Regression
» Binary Classification

» Multi-Class Classification



Review: Supervised Learning

» Input space: X, Target space: Y
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Review: Supervised Learning

» Input space: X, Target space: Y

» Given training examples, we want to learn a hypothesis
function h: X — ) so that h(x) is a "good” predictor for the

corresponding .

Training
set

Learning
algorithm

predicted y
(living area of (predicted price)
house.) of house)

> y is discrete (categorical):
classification problem

» y is continuous (real value):
regression problem



Review: Inference vs Learning

Given training data of x and y,

Inference

knowing the structure of f, find good models to describe 7. i.e.
model the data generation process <— focus of statistics

Prediction

given future data samples of x, predict the corresponding output
data y using f. < focus of machine learning



Linear Regression




Linear Regression

Example: predict Portland housing price

Living area (ft?) # bedrooms Price ($1000)
X1 -

X2 Yy

2104 3 400
1600 3 330
3 369

2400

living area



Linear Approximation

A linear model

h(X) Iﬁp + 01x1 + O2x

0;'s are called parameters.



Linear Approximation

A linear model

h(X) =0y + O01x1 + O2x

0;'s are called parameters.

Using vector notation,



Alternative Notation

G 6. o
h(x) = wixy + waxo 4@

wi, wy are called weights, b is called the bias

h(x)=w'x+b, wherew = [Wl} , X = [Xl]

_ wo X2



Apply model to new data

Suppose we have the optimal parameters 6 , e.g.

> h = LinearRegression().fit(X, y)
> theta = h.coef

array([89.60, 0.1392, -8.738])
O, G 7%
make a prediction of new feature x:

9 =he(x)=0Tx

1000 2000 3000 4000
living area



Model Estimation

How to estimate model parameters 6 (or w and b) from data?
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» Assume the data are generated from h(x) with some noise
distribution.

» Determines the parameters 6 most likely to produce the
observed data.



Model Estimation

How to estimate model parameters 6 (or w and b) from data?

Least Square Estimation

Minimize sum of the prediction error squared (least square error)
with respect to 6

Maximum Likelihood Estimation

» Assume the data are generated from h(x) with some noise
distribution.

» Determines the parameters 6 most likely to produce the
observed data.

Other estimation methods exist, e.g. Bayesian estimation



Ordinary Least Square

I\’lan

clichon
f/\ 7 7 fwith

J(0) @i(h(x(’)) —y)?
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error

Cost function:
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Ordinary Least Square

Cost function:

» This model is called ordinary least square



Ordinary Least Square

Cost function:

» This model is called ordinary least square



Ordinary Least Square

Cost function:

» This model is called ordinary least square

Ordinary Least square problem

How to minimize J(0) ?

» Numerical solution: gradient descent, Newton's method

» Analytical solution: normal equation



Gradient descent

A first-order iterative optimization algorithm for finding the
minimum of a function J(0).

700

Key idea
Start at an initial guess,
repeatedly change 6 to decrease

0 T
0 =0 —.avJ(0)
7

« is the learning rate



Review: Convex function /' conf o hot

¢ > ronver
S ~/ et
Definition % @

A function f(x) is convex on a convex set C if for any x3,x2 € C
ANAAANNANAY
and 0 < X\ <1,

F(Axa + (1= A)xo) < AF(a) + (1 - N)f(xe)
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Review: Convex function

Definition
A function f(x) is convex on a convex set C if for any x1,x2 € C
and 0 < X\ <1,

f(Ax1+ (1= A)x2) < Mf(x1) + (1 — A)f(y2)

e.g. Cis an interval [a, b]

Theorem
If J(0) is convex, gradient descent finds the global minimum.



For the ordinary least square problem,

30) = [ OG0 0 =T, 00 0,

9J(0) "
a6 ) . L
VJ(0) = : , where (0) — = z% (6% -4 )
- . y 90 96) |
& B, — : 9 i
. Y YDA
dn r=l J .



For the ordinary least square problem,

J(0) = 3 L (h(x) = y )2 = 3 557, (070 — y )2,

o0
! 8J(0) 0 [1 o 2
VJ(0) = , where = — |Z 07T x() _ y(’)
o) 00; — 00; 2/_:1< )
90,

m

= <9Tx(f) _ yu))

i=1

)
J



Gradient descent for ordinary least square

Gradient of cost function: VJ(0) = > 7, (GTx(i) — y(i)) ><J.(i)
Gradient descent update: 6 := 60 —aVJ(H) “~—7

N T
Batch Gradient Descent ~(d-0x J

’ Repeat until convergencef{
‘ 9,-zej@azgl(y(")—he(x(i)))xj.(') for every j
=ty P T —_—
r (9




Gradient descent for ordinary least square

Gradient of cost function: VJ(0) = > 7, (GTx(i) — y(i)) wa
Gradient descent update: 6 := 60 — aVJ(0)

Batch Gradient Descent

’ Repeat until convergencef{
‘ 9,-=6’j+azl'.11(y(i)—hg(x(i)))xj.(') for every j
|3

0 is only updated after we have seen all m training samples.



Batch gradient descent

Repeat until convergence{
@a ST 0 — ho(x )X for every j
— 7y

}
(o
- . i 7 Aq“fcl]
Stochastic gradient descent ey o
=,

Repeat until convergence{

}
}

for i=1...m
(@)= t:+ 0G0~ (<)) tor every ;

0 is updated each time a training example is read

e—

QUIEZS
ap 8




Batch gradient descent

Repeat until convergence{
0 =0+a Y7, (v —ho(x"))x" for every j
}

Stochastic gradient descent

Repeat until convergence{
for i=1...m {
0; = 0; + a(y" — he(x(i)))><1.(i) for every j
}
}

0 is updated each time a training example is read

» Stochastic gradient descent gets 6 close to minimum much
faster

» Good for regression on large data




Minimize J(#) Analytically

N
VA
_ (X(l))(f_ y
|~ x@)" — . y
— . ’ - .
( mxn) T ('m)
— (x(mMy)" —
()

X is called the design matrix.



Minimize J(#) Analytically

The matrix notation

— T — (1)
— (x@" — B y

X = ( : ) Y=
— (xtm)T — (m)

X is called the design matrix. The least square function can be

written as
™
50) = Hxe L1 @8y
X _{T‘g 7o e
) x,_ﬂ_l[‘ém] - <9 17{4 _
(m=s) it m+\) '
(mT {

— X" -
w\—/ X)(DS J( )

(e l)



Compute the gradient of J(6) :
A (A) = 4 (A7)
£exd=K 1 ;
te(AR) =4 (BA) V9‘](0) :VG [2(X9 — y) (X0 _ y):|

1r(ABC) = +(cAB)=tr (DCA)

= 4 1 VT
(N tr(AB) = BTSN T £(Tolfixe -vxs 07y + 7y 1)

. VX\Q(VAX = (A“'AT))(, = é—(ve[a'rﬁ@l_ VB[XTKﬁ'QQT\/J-'LV—S[LT}a)
(- =AT = LAX. 9 T (GG ST _
A : ‘I(ZWXQ ~V@(fr(yfw+ca'ﬂy)) )
A =XTA tr (xE) +4r (B xTy)
dional - 4(2%0 = V6 24 %)y
- cond o2l
— A =5 (2X%6 - 2 xT¥)
it AR e Teg xTy = 0,

ol
Z’maw(A) s \":{"‘"“ —

(A7
T ol
X6 =1
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Compute the gradient of J(0) :

VaJ(6) =V |5(X0 ~ )T (X0 - y)



Compute the gradient of J(0) :
1
VoJ(0) =Vo | 5(X0 —y) (X0 —y)
=XTX0-XTy

Since J(0) is convex, x is a global minimum of J(#) when
VJ(9) = 0.



Compute the gradient of J(0) :

1
VoJ(0) =Vo | 5(X0 —y) (X0 —y)
=XTX0-XTy

Since J(0) is convex, x is a global minimum of J(#) when
VJ(#) = 0.

The Normal equation

0=(X"X)"tXxTy



Compute the gradient of J(0) :

1
Y%Km=V95MH—MTMP—H
=XTX0-XTy

Since J(0) is convex, x is a global minimum of J(#) when
VJ(#) = 0.

The Normal equation
0=(X"X)"tXxTy

(XTX)™1XT is called the Moore-Penrose pseudoinverse of X



Which method to use?

gradient descent normal equation

iterative solution exact solution
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parameter « for cost function
to converge
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works well for large number of
samples m




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when X
is ill-conditioned. e.g. features
are highly correlated

works well for large number of
samples m

solving equation is slow when
m is large



Minimize J(#) using Newton's Method

Newton’s method solves real functions f(x) = 0 by iterative

approximation

» Update rule: x,11 := x, — ;((’;;))




Minimize J(#) using Newton's Method

Newton’s method solves real functions f(x) = 0 by iterative

approximation

» Update rule: x,11 := x, — :,((’;))

Geometric intuition of Newton's method
» Find tangent line of f at (x,,yn)
> Xpt1 < X-intercept of the tangent line
> Ynt1 < F(Xnt1)
(: Y = #‘(Kq)(iﬁxn) t Fa)=0
x = - 700 1K'

F(x)
-




Newton's Method Demo

Funktion
e | Tangente

K<<l I> ] =]+

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif


https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Minimize J(#) using Newton's Method

Newton's method for optimization ming J(6)
Use newton's method to solve VyJ(#) =0 :
> x is one-dimensional:

f)x)

0:=0— ()



Minimize J(#) using Newton's Method

Newton's method for optimization ming J(6)
Use newton's method to solve VyJ(#) =0 :

» x is one-dimensional:

f'(x)
0:=0— .
f (X) 2-76) Q" I+ 3 Jle)
(o). Z5r | 268 26961
276) . l
» x is multidimensional: [ 2628, ‘ .
_ ) 6 oy (©
0=0-H (0)VI0)55m, - ~50r
N

where H is the Hessian matrix of J(#).

a.k.a Newton-Raphson method



Newton's Method for Optimization

Initialize 0

While 6 has not coverged {
0:=0—H(0)VJIO)

}
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Newton's Method for Optimization

Initialize 0

While 6 has not coverged {
0:=0—H(0)VJIO)

}

Performance of Newton's method:
» Needs fewer interations than batch gradient descent
» Computing H™1 is time consuming

» Faster in practice when n is small



Maximum Likelihood Estimation

Consider target y is modeled as

y ) = g7 5

and suppose €() are independently and identically distributed (1ID)
to Gaussian distribution A/(0,0?) , Le.

—_——




Maximum Likelihood Estimation

Consider target y is modeled as

and suppose €(!) are independently and identically distributed (1ID)
to Gaussian distribution A'(0,02) , then

p(e) =



Maximum Likelihood Estimation

Consider target y is modeled as

and suppose €(!) are independently and identically distributed (1ID)
to Gaussian distribution A'(0,02) , then

(y— L 0
p(6 ) = W exp _F



Maximum Likelihood Estimation

Consider target y is modeled as

and suppose €(!) are independently and identically distributed (1ID)
to Gaussian distribution A'(0,02) , then

(y— L 0
p(6 ) = W exp _F

d;{,qrmm(\sﬁe PNGN
¢ i T ())2
N 1 (y( ) — 9T xl( ))
DxPg)= —— —exp [ =L — 7 =
p(y | @ ) W p 252




Maximum Likelihood Estimation

The likelihood of this model with respect to @ is

m

L(6) = p(71X:6) = [ ] p(y?)1x; 0)

=1



Maximum Likelihood Estimation

The likelihood of this model with respect to @ is

L(0) = p(71X:0) = [ p(y1"|x); 6)
i=1

Maximum likelihood estimation of 6:

OmLe = argmax L(6)
0



Maximum Likelihood Estimation

We compute log likelihood,
L©)

= |0gﬁp(y(f) zmj log p(y

—~~ \

=1
og /-t Nexp [ —07X)? >
(\/27ra2 202

N
lgj—gl‘f((w)

246%

I
e

')

C]?nMﬁ

ro T S\
U‘Az -3z (4 —§T7<>
N |

[ o N e

- m oé 7o — Zzz%(v ~O0TAD)

o Le> "‘“(;“T(e> (ot Sguare



Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log H p(yD|x: 9) = Z log p(yV|x(1); 6)




Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log | [ p(y[x(");0) = > " log p(y|x); 0)




Maximum Likelihood Estimation

We compute log likelihood,

Then argmax, log L(0) = argmin, % S (D — 0T x(10)2



Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log H p(yD|x: 9) = Z log p(yV|x(1); 6)

1 1 1
_ o *Z (i) _ T ()2
mlog 2102 07 2/:1(y B

Then argmax, log L(0) = argmin, % S (D — 0T x(10)2

Under the assumptions on €()), least-squares regression corresponds
to the maximum likelihood estimate of 6.



Linear Regression Summary

> Least square regression

» Solving least square:
» gradient descent

» normal equation

» newton's method

» Probabilistic interpretation: maximum likelihood



Logistic Regression




A binary classification problem
Classify binary digits

» Training data: 12600 grayscale
images of handwritten digits

o000
I .

» Each image is represent by a vector
x() of dimension 28 x 28 = 784

> Vectors x{) are normalized to [0,1]




A binary classification problem
Classify binary digits

» Training data: 12600 grayscale
images of handwritten digits

o000
I .

» Each image is represent by a vector
x() of dimension 28 x 28 = 784

> Vectors x{) are normalized to [0,1]

Binary classification: Y = {0,1}
» negative class: y() =0

» positive class: y() =1



Logistic Regression Hypothesis Function

Sigmoid function

1
g(Z) - 1+eiz 1
7
» g:R—(0,1) Zos
> g'(2) = gl I@)

0
5 4 3 2 1 0 1 2 38 4 5
z



Logistic Regression Hypothesis Function

Sigmoid function

» g:R—(0,1)
> 8'(2) = g(2)(1 — g(2))

No5
o

0
-5

4 3 2 1 0 1 2 3 4 5
z



Logistic Regression Hypothesis Function

Sigmoid function

1
g(Z) - 1+e2 1
>g:R—>(O,1) go.s
> g'(z) = g(2)(1 — g(2))
5 4 3 2 4 0 1 2 3 4 5
; z
08 [ [—o=2
L -y
2 0=0.5
504 61
——0=2
0.2
Hypothesis function for logistic s 0 s
regression: ¢ % . (5 x
hg =g(0"x) =

— Lret



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
e.g. tossing a coin with p(head) = hg(x)

> p(y =1 ’ X; 0) :‘ hQ(X)’ = }{ al)( ~ lgemu-«“{( ﬁ)

> p(y =0 x0)=1—hy(x) = 1- &
petarl) 7




Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
e.g. tossing a coin with p(head) = hg(x)

> ply =1 x:6) = hy(x)
> ply=0]x60)=1—hy(x) 7
A7 1) = UogfRe - o)

f Y

9=° 0- )= llg&),

1



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
e.g. tossing a coin with p(head) = hg(x)
> ply =1 x;0) = ha(x)
> py =0 x;0) =1— hy(x)
ply | x:6) = (ha(x))’ (1 — he(x))™
Given m independently generated training examples, the likelihood
function is:

m

N M) -4 .
L(8) = p(71X: ) = [ [ ply D1t ) =TT et

(=l

7

i=1
1(6) = 108(L(8)) = > [y hog hy(x(M) + (1 = y ) log(1 — hy(x))



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
e.g. tossing a coin with p(head) = hg(x)
> ply =1 x;0) = ha(x)
> py =0 x;0) =1— hy(x)
ply | x:6) = (ha(x))’ (1 — he(x))™
Given m independently generated training examples, the likelihood
function is:

m

L(8) = p(71X;6) = ] ] PV x; 0)
i=1

1(6) = log(L(8)) = > _ ¥V log hy(x7) + (1~ y7) log(1 — hy(x'"))
I(6) is concave! =1



Maximum likelihood estimation for logistic regression

0) = >y log hy(xD) + (1 = yD) log(1 — hy(x!))
i=1
Solve argmaxg /(0) using gradient ascent:

JOO= 96001 &) 8(;(90) _ T \;,-)" )(so 654)4 )@( Olh o)
kem— g (67 !

tﬂs

'fi((w N-sek)ig® = < i b0 bOI =4\ bt N1 hot Yy
R ).\ ,L( o) R

P 7 “’_ I :

w (9 (1= hetc) - (1 G o kD)X

0
\\ :‘.’ME l

i(;j i helx N )X

AN

G 4w




Maximum likelihood estimation for logistic regression

10) = 3y log ho(x7) + (1 - y) log(1 — ho(x?)
i=1

Solve argmaxg /(0) using gradient ascent:

AO) <~ (i N
a6, = 2 (77— mlx) 5

Stocastic Gradient Ascent

Repeat until convergenceq
for i=1...m {
Hj:6’j+a(y(")—1(")))x-(i) for every j
}
}

» Update rule has the same form as least square regression, but
with different hypothesis function hy



Binary Digit Classification

Using the learned classifier

Given an image x, the predicted label is

) {1 g(67x)
0

otherwise

Binary digit classification results

| sample size | accuracy
Training 16200 100%
Testing 1225 100%

» Testing accuracy is 100% since this problem is relatively easy.



35/44



Multi-class classification

Each data sample belong to one of k > 2 different classes.
y=A{1,...,k}

wl=10-

MNIST Samples

6 /9/42S]
REEEIEZ
g 4_ 5‘ % 5 -~ which class it belongs.
GEIECIEE




Naive Approach: Convert to binary classification

One-Vs-Rest
Learn k classifiers hy,..., hg. Each h; classify one class against the

rest of the classes.
Given a new data sample x, its predicted label y:

y = argmax h;(x)
1 i
A
> Class 1
Class 2 ! oo
o oo O Class3 o°g oog 1 = .
oo ~20 o °% | B'g.7 0o
m] S~.0,0 1 9 o
P SR S ! L%’
>> D> ~‘ [l - . o -
o" > I > 1 ; > >
> hg: hy: hys
> 0 0 03




Multiple binary classifiers
Drawbacks of One-Vs-Rest:

» Class unbalance: more negative samples than positive samples

» Different classifiers may have different confidence scales

Multiple binary classifiers

< I'e) .
w |- ,"’
e . © 0
o,/
o _| K
g °l, T & o
= -
+ R A A
s+ T+ * A A
+ A
o | S .NAN
° T T T T T T



Drawbacks of One-Vs-Rest:
» Class imbalance: more negative samples than positive samples

» Different classifiers may have different confidence scales

Multinomial classifier

@
06 08 1.0
|

04

0.2
!

0.0

Learn one model for all classes!



Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed.
e.g. outcomes of rolling a k-sided die n times, each side has
independent probability ¢1,... ¢k

L\@(x)_



Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed.
e.g. outcomes of rolling a k-sided die n times, each side has
independent probability ¢1,... ¢k

Hypothesis function for sample x:

<.
| ply =1x; 0§~

. — = softmax(6 " x)
P ¢ ——-e .
p(y: k‘x; 0) Zj:lej /




Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed.
e.g. outcomes of rolling a k-sided diem times, each side has
independent probability ¢1,... ¢k

Hypothesis function for sample x:

p(y = 1/x;6) . efi X
ho(x) = : = s : = softmax(GTx)
p(y = k|x;0) 2j=187" | olx

e%

softmaX(Z,') = m

Parameters: 6 =




Softmax Regression

Given (x(), y(D) i =1,..., m, the log-likelihood of the Softmax
model is

‘L g_ ﬂ":’(.
Z ng —/|x()M5 O . Yi£L(.



Softmax Regression

Given (x(), y(D) i =1,..., m, the log-likelihood of the Softmax
model is

0(0) = " log p(yx("; )
i=1
m k
=Y log [ p(y? = fx)100=1)
i=1 I=1

k
> 1y = 1} log p(y!) = 11x7)

=1

I
INJERD

I
—

i



Softmax Regression

Given (x(), y(D) i =1,..., m, the log-likelihood of the Softmax
model is

0(0) = " log p(yx("; )
i=1
m k
=Y log [ p(y? = fx)100=1)
i=1 I=1

1{y® = I} log p(y!) = 1]x17)

I
s 1
M»

I
—

=1
o7 x(D
. e’
1Y =ltog ——r5

1 =

I
s
M=

I
N
—
Il



Softmax Regression

Derive the stochastic gradient descent update:
» Find V@,f(@)

m

Vo, l(0) = Z Kl{y(’.) =1}-P (y(i) = /]x{); 9)) X(i)]
i=1

-

—



Property of Softmax Regression
eGLTK“
P((U;:Ll\(:>—' )

T -

Z) 6(9,\('

J-l
» Parameters 61, .. .0, are not independent:
ij(y =Jjlx) = Zj¢j =1

» Knowning k — 1 parameters completely determines model.

[s"A/ [VI

Invariant to scalar addition J 3
>taldr addition
plylxi0) = plylx;0 =) 1
Proof. p(Yy=4[x;6-¥] = e(ew)x eet&‘ (e )Y o
- K e YA = TR goh

Z}efgj—\b))(' J_ijel%%-(ew> % Z_cs)’(‘
"o - J=
)7l cy—

?[Ui: vl \(")



Relationship with Logistic Regression

When K = 2,



Relationship with Logistic Regression

When K = 2,
1 e91 X
ho(x) = T o [692Tx]

Replace 6 = [zl} with 6 — [92] _ [«91 — 92] =g sine ptyliB)
2

92 0 i< invaaant to
— scalar addttion >
1 e(01—02)"x
h X)) = ———
0( ) eﬁlT—02Tx + e0x eOTx
i 1
k Ty aT
)+ e{g'zgo* _ [ 1+E(91—912)Tx ] _ |: g(@ XT)
: B R e A E T )
- _ TX
,—/”l@m& 14-e(f1—02) ey

[+e



When to use Softmax?
OH: 6:30- Y30

R \l08A-

» When classes are mutually exclusive: use Softmax

» Not mutually exclusive: multiple binary classifiers may be
better

el Aabel < lasciftation

ally exclusive
jl«am IA\L@J: oce ot e “"0’1 ’
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