Learning From Data
Lecture 11: Reinforcement Learning

Yang Li yangli@sz.tsinghua.edu.cn
TBSI

December 10, 2020

Today's Lecture

Reinforcement Learning
» What's reinforcement learning?
» Mathematical formulation: Markov Decision Process (MDP)
» Model Learning for MDP, Fitted Value Iteration
» Deep reinforcement learning (Deep Q-networks)
Final project and PA4 is released today!

Deep Reinforcement Learning: AlphaGo

AlphaGo beat World Go Champion Kejie (2017)

. 15 KE JIE
¢ 00:15:19

" ALPHAGO
@01:452

Deep Reinforcement Learning: OpenAl

(2017)

OpenAl beats Dota2 world champion

oy e o

@ Elon Musk ()
@elonmusk

OpenAl first ever to defeat world's best players in competitive
eSports. Vastly more complex than traditional board games like
chess & Go.

3:15 AM - Aug 12, 2017

O 647 116,818 Q) 23,006 e

Multi-Agent Reinforcement Learning: AlphaStar

(2019)

AlphaStar reached Grandmaster level in StarCraft Il

K -)

S

https://www.nature.com/articles/s41586-019-1724-z

https://www.nature.com/articles/s41586-019-1724-z

Reinforcement Learning: Autonomous Car, Helicopter

Stanley, Winner of DARPA Grand Challenge (2005)
Inverted autonomous helicopter flight (2004)

Other applications include robotic control, computational
economics and etc

6/38

What is reinforcement learning?
For sequential decision making problem, it is difficult to provide

explicit supervision
> An agent interacts with an environment which provides a
“reward function” to indicate how “well” the learning agent is

doing
> The agents take actions to maximize the cumulative “reward”

ﬂiw’mnment
j\ %

Interpreter

NCTRCY
i

Agent

Action

Markov Decision Process

A Markov decision process
(57 A, {Psa}a Y R)

>

v

v

v

S: a set of states
(environment)

A: a set of actions

Ps,: state transition
probabilities.

R:SxA—Risareward

function
~ € [0,1): discount factor

S = {5, 51,5}
A= {ao,al}
R(Sl,ao) = 5, R(Sz,al) =-1

‘ So S S
So, a0 05 O 0.5
So, a1 0 0 1
51, ap 0.7 0.1 0.2
S1,a1 | O 0.95 0.05
52, ap 0.4 0.6 0
Sy, a1 0.3 03 0.4

Markov Decision Process: Overview

At time step t = 0 with initial state

e .
for t = 0 until done: v/

) Envi t

> Agent selects action at a; € A nvironmen

» Environment yields reward <j‘ R S
_ . Warg <
re = R(5t7 at) Interpreteﬁ
» Environment samples next state &» p—
ale 1
St+1 ~ Psa g
> Agent receives reward r; and next Agent
state sp41

A policy 7 : S — A specifies what action to take in each state

Goal: find optimal policy 7* that maximizes cumulative discounted
reward

Markov Decision Process

Consider a sequence of states sy, s1, ... with actions ag, a1, . . .,

o o
@@@
® ® ®

Total payoff of a sequence:

R(s0,a0) + YR(s1,a1) + v2R(sp,a0) + ...
For simplicity, let's assume rewards only depends on state s, i.e.
R(s0) +YR(s1) + v*R(s2) + ...

Future reward at step t is discounted by ~*

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the
expected total payoff

E[R(s0) +vR(s1) +V?R(s2) + ..]

A policy is any function 7: S — A.
A value function of policy 7 is the expected payoff if we start
from s, take actions according to 7

V™(s) = E[R(s0) + YR(51) + 7?R(52) + ... |s0 = 5, 7]

Given 7, value function satisfies the Bellman equation:

V7(s) = R(s) +7) Pen(s)(s)V7(s)
s'eS

V7™ (s) can be solved as |S| linear equations with |S| unknowns.

Optimal value and policy

We define the optimal value function

V*(s) = max V™(s) = R(s) + max-y Z Pso(s")V*(s')
s'eS

Let 7* : S — A be the policy that attains V*(s):

= argmax Z Psa(s

acA s'eS

Then for every state s and every policy 7,

V*(s) = V™ (s) > V™(s)

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

1. For each state s, initialize V(s):=0
2. Repeat until convergence {
Update V(s) := R(s)+ maxacay Y cs Psals)V(s")
for every state s

}

Two ways to update V/(s):

» Synchronous update:

Set Vo(s) :=V(s) for all states s€S
For each s€S:
V(s) := R(s) + maxaca¥ > o cs Pea(s') Vo(s")

» Asynchronous update:

For each s€8S:
V(s) := R(s) + maxaca¥ > yes Psa(s')V(s')

Solving finite-state MDP: policy iteration

1. Initialize 7 randomly
2. Repeat until convergence {
a. Let V.=V~
b. For each state s,
m(s) 1= argmax,cp > Psa(s")V(s')

}

Step (a) can be done by solving Bellman's equation.

Discussion

Both value iteration and policy iteration will converge to V* and n*

Value iteration vs. policy iteration

» Policy iteration is more efficient and converge faster for small
MDP

> Value iteration is more practical for MDP's with large state
spaces

Learning a model for finite-state MDP
Suppose the reward function R(s) and the transition probability
Ps, is not known. How to estimate them from data?
Experience from MDP
Given policy

Execute 7 repeatedly in the environment:

Estimate model from experience

Estimate P,
Maximum likelihood estimate of state transition probability:

#{s N s'}

Psa(s") = P(s'|s,a) = 3
(&)= Pls.a) = 25

If #{s = -} =0, set Poy(s') = 13-

Estimate R(s)
Let R(s)(®) be the immediate reward of state s in the t-th trail,

R(s) = B[R(s)9] = = 3 R(s)®

m
t=1

Algorithm: MDP Model Learning

Initialize 7 randomly, V(s):=0 for all s
Repeat until convergence {

a.
b.

Execute m for m trails

Update Ps,, and R using the accumulated
experience

V :=Valuelteration(Ps, R, V)

Update 7 greedily with respect to V:

m(s) := argmax,c4 > Psa(s)V(s')

ValueIteration(Ps,, R, Vo)

1.
2.

Initialize V=V
Repeat until convergence {

Update V(s):= R(s) + maxacay Y o5 Psa(s')V(s')
for every state s

Continuous state MDPs
An MDP may have an infinite number of states:

» A car's state : (x,y,0,x,y,0)
> A helicopter's state : (x,y,z,¢,0,9,x,y, z, 6,0,)

1D Inverted Pendulum

Control goal: balance the pole on the
cart

» State representation: (X,O,X,é)

» Action: force F on the car

» Reward: +1 each time the pole is

M | F upright

U

Due to the Curse of Dimensionality, discretization rarely works well
in continuous state with more than 1-2 dimensions

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:

» Obtain a model or simulator for the MDP, to produce
experience tuples: (s,a,s’,r)

» Sample sU, ... s(M from the state space S, estimate their
optimal expected total payoff using the model, i.e.
Yy v(sW),y@ ~ v(s?),. ..

» Approximate V as a function of state s using supervised
learning from (s(1), y(1) (s y(2)) eg.

V(s) =07 ¢(s)

Obtaining a simulator

A simulator is a black box that generates the next state s;y1 given
current state s; and action a;.

S Simulator St~ Py

> Use phystics laws. e.g. equation of motion
for the inversed pendulum problem:
(M + m)% + bx + mlf cos(f) — ml6?sin(6) = F
(I + mI?)0 + mgl sin(6) = —mix cos(6)

» Use out-of-the-shelf simulation software

» Game simulator

Obtaining a model from data

Execute m trails in which we repeatedly take actions in an MDP,
each trial for T timesteps.

M M) ...
—®
@ s D @

Learn a prediction model s;11 = hy ([Zt]> by picking
t

. ()
; s
5§+)1 he < Lt(i)] >
t

m T-1 2

0* = arg(;nin Z Z

i=1 t=0

Obtaining a model from data

Popular prediction models
» Linear function: hy = As; + Ba;
» Linear function with feature mapping: hy = A¢s(st) + Boa(ar)

» Neural network

Build a simulator using the model:

N s
> Deterministic model: s;11 = hy (Lt]>
t

» Stochastic model: s;11 = hy <[Zt]> +e, e~ N(0,X)
t

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
» Obtain a model or simulator for the MDP

» Sample s, ... s(M from the state space S, estimate their

optimal expected total payoff using the model, i.e.
y(l) ~ V(S(l))’y(2) ~ V(S(2)), e

» Approximate V as a function of state s using supervised
learning from (s(1), y(1) (s y(2)) eg.

V(s) =07 ¢(s)

Value function for continuous states

Update for finite-state value function:

Update we want for continuous-state value function:

V(s) = R(s) + VTeaz\(/ Ps.(s")V(s')ds'

S/

~R Esrp,, [V(s'
() +ymaxEqp, [V(s)]

For each sample state s, we compute y{/) to approximate
R(s) + v maxsea Esp) [V(s')] using finite samples from Pg,

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
» Obtain a model or simulator for the MDP

» Sample sU, ... s(M from the state space S, estimate their
optimal expected total payoff using the model, i.e.
yD = v(s), y@ ~ v(sP) .

» Approximate V as a function of state s using supervised
learning from (s(1), y(1) (s y(2)) eg.

V(s) =07 ¢(s)

Fitted value iteration

Algorithm: Fitted value iteration (Stochastic Model)

1. Sample s® ... sMes
2. Initialize 6:=0
2. Repeat {
a. For each sample s
For each action a:
Sample si,...,S ~ Py, using a model
Compute Q(a) =1 Z,l‘(:1 R(s) +~V(s)
1 estimates R(s")) + YEs~p, [V(s')]
where V(s):= 07 ¢(s)

y = max, Q(a)
1 estimates R(s”)+ ~max, Eop, [V(s')]
b. Update 6 using supervised learning:
0 := argming 1 -7 (07 ¢(s) — y(D)2

If the model is deterministic, set k =1

Computing the optimal policy
After obtaining the value function approximation V/, the
corresponding policy is
7(s) = argmaxEg .p_[V(s')])
a

Estimate the optimal policy from experience:

For each actiomn a :
1. Sample si{,...,si ~ Ps, using a model
2. Compute Q(Q)Z%Z};l R(s) +~V(s))
m(s) = argmax, Q(a)

Instead of linear regression, other learning algorithms can be used
to estimate V/(s).

Two Outstanding Success Stories

Atari Al [Minh et al. 2015]
» Plays a variety of Atari 2600 video games at superhuman level

» Trained directly from image pixels, based on a single reward
signal

AlphaGo [Silver et al. 2016]
> A hybrid deep RL system

» Trained using supervised and reinforcement learning, in
combination with a traditional tree-search algorithm.

Deep Reinforcement Learning

Main difference from classic RL:
» Use deep network to represent value function
» Optimize value function end-to-end

> Use stochastic gradient descent

Q-Value Function
Given policy 7 which produce sample sequence
(S(), a0, I’o), (51, dai, rl), .
» Value function of 7 :

V7(s)=E Z'ytrt So=5,T

>0

» The Q-value function Q™ (s, a) is the expected payoff if we
take a at state s and follow 7

Q" (s,a) = Zv re|so =s,ap =
t>0

» The optimal Q-value function is:

Q*(s,a) = max Q" (s, a) = maxE g Yir|so = s,a0 = a,
s K
£>0

Q-Learning
Bellman's equation for Q-Value function:
Q*(s,a) = Egog[r + ymax Q*(s',d)|s, a
a/

Value iteration is not practical when the search space is large.

e.g. In an Atari game, each frame is an 128-color 210 x 160 image, then
|S| — 128210><160

» Uses a function

[s =5 = = |
approximation: |
Q(s, a;0) =~ Q*(s, a)

> In deep Q-learning,
Q(s, a; 0) is a neural network

Neural Network Review

Training goal:

ming -7, L(F(x1; 6), y ()

Forward propagation

Initialize h(9)(x) = x

For each layer I =1...d:
> a(’)(x) = W(/)h(/—l)(x) + p)
> h(x) = g(al)(x))

Evaluate loss function L(h(?)(x), y)

Backward propagation

Compute gradient dg(Ld)

For each layer I =d ... 1:

» Update gradient for parameters in
layer /

Q-Networks

Training goal: find Q(s, a;) that fits Bellman's equation:
Q*(s,a) = Egg[r + ymaxy Q*(s',d)|s, a]

Forward Pass
Loss function:

Li(6;) = Esa[(yi — Q(s, 3 6;)°]
where y; = Egg[r + ymaxy Q(s,a’;0,_1)|s, 4]

Backward Pass
Update parameter € by computing gradient

Vo, Li(0;) = Es a5~ne {(r +ymax Q(s',a’;0i-1) — Q(s, a; 9;)) Vo Q(s, a; 0;)

Deep Q-Network Architecture

> Input: 4 consecutive frames

» Preprocessing: convert to grayscale, down-sampling, cropping.
Final dimension 84 x 84 x 4

» Output: Q-value functions for 4 actions Q(s, a1), Q(s, a2),
Q(S¢ 33)7 Q(57 34)

| FC-4 (Q-values) |

| FC-256 |

11—

Experience Replay

Challenge of standard deep Q-learning: correlated input
» invalidate the i.i.d. assumption on training samples

» current policy may restrict action samples we experience in
the environment

Experience replay

» Store past transitions (s¢, ar, rt, Se+1) within a sliding window
in the replay memory D.

» Train Q-Network using random mini-batch sampled from D to
reduce sample correlation

» Also reduces total running time by reusing samples

The Algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z1} and preprocessed sequenced ¢1 = @(s1)
fort=1,7 do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s:),a;0)
Execute action a; in emulator and observe reward r; and image x4
Set s;41 = S, ay, x4+1 and preprocess 1 = G(S¢+1)
Store transition (¢¢, at, ¢, $1+1) in D
Sample random minibatch of transitions (¢;, a;, 75, ¢j4+1) from D
Sety; — { rj for terminal ¢; .41
J rj +ymaxe Q(¢jr1,4d;6) for non-terminal ¢ 1
Perform a gradient descent step on (y; — Q(¢;, aj; 6))? according to equation 3
end for
end for

Parameter e controls the exploration vs. optimization trade-off

Reinforcement Learning Demo

See Demo.

	Introduction
	Reinforcement Learning
	Motivation
	Markov Decision Process

	Model Learning for MDP
	Discrete states
	Continuous states

	Deep Reinforcement Learning

