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Today's Lecture

Unsupervised Learning (Part V)
» Mixture of Gaussians
» The EM Algorithm

» Factor Analysis

Final Project Information



Review: k-means clustering
Given input data {x(), ... x(M} x() € RY, k-means clustering
partition the input into kK < m sets C1,..., Cx to minimize the
within-cluster sum of squares (WCSS).
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Lloyd's Algorithm (1957,1982)
Let c() € {1,..., k} be the cluster label for x(")

Initialize cluster centroids pi,...ux € R" randomly
Repeat until convergencefq
For every i,
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Mixture of Gaussians
A “soft” version of k-means clustering.
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Clustering results of iris dataset using mixture of Gaussians



Mixture models

Model-based clustering

A mixture model assumes data are generated by the following
process:

1. Sample z() € {1,..., k} and z{)) ~ Multinomial(¢)

p(z(i) =j)=¢j forallj

z() are called latent variables.

2. Sample observables x() from some distribution p(x(), z(1)):
p(xD,200) = p(x[z0)p(z))

Examples:

» Unsupervised handwriting recognition is a mixture with 10
Bernoulli distributions

» Financial return estimation uses a mixture of 2 Gaussians for
normal situation and crisis time distribution



Mixture of Gaussians

Mixture of Gaussians Model:

z() ~ Multinomial(¢)
xD20) = j~ N (pj, %))

How to learn ¢;, i and ¥; for all j 7

z() is known: (supervised) use maximum likelihood estimation
(quadratic discriminant analysis).
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z() is unknown: (unsupervised) use expectation maximization



The EM Algorithm

The EM algorithm is an iterative method for maximum likelihood
estimation when the model depends on latent (unobserved)
variables.

Log-likelihood of data:

Main idea: iterate over two steps:
» Expectation (E) step : guess z()

» Maximization (M) step : update 6 via maximum likelihood
estimation based on guessed z()’s



Generalized EM Algorithm

Listing 1: Generalized EM Algorithm

Initialize 0
Repeat untill convergence {
(E-step) For each i , set
Q;ZU) = ZU)XU%9 < Soft assignment:
P g
posterior distribution z|x under 6
(M-step) Set
. 0 20 g)
6 := argmax Qi(z™) 1o p(x,i )
2. 2. A s Tg )

< Update parameter 0
}

We will show...

» Solving (%) is equivalent to argmax, /(0)
— Equation (x) is a (tight) lower bound on log-likelihood /(6)

> This algorithm converges.



Proof of Correctness: E-step

Define

p(x), 7(0): 9)
Z Z Q/ |Og QI(Z(,-))

iz
Proposition 1

1. J(Q,0) is a lower bound on log-likelihood 1(0)
2. This lower bound is tight when Qi(z()) = p(z()|x(; 9)

(Hint: use Jensen's inequality)



Jensen’s Inequality
Theorem 1
Let f be a convex function, and let X be a random variable. Then

E[f(X)] = F(E[X])

Jensen's inequality for convex function
T ] [

f(a) 1
E[f()] E[f(x)] > f(E[x])
f(b)
f(E[x])

Remarks
1. Let f be a concave function, then E[f(X)] < f(E[X])
2. When f(X) is a constant function, E[f(X)] = f(E[X])



Proof of Convergence

Proposition 2

EM always monotonically improves the log likelihood, i.e. Let §(t)
be the parameter value in the t-th iteration

/(Q(t)) < /(H(H_l))



EM for mixture of Gaussians

Gaussian Mixture Model

z() ~ Multinomial(¢)
X120~ N (), 55)
Learn parameters u, 2, ¢
E-Step: vvj(n = Qi(Z(i) =Jj)= P(Z(i) =j|X(i); NN

M-Step:  Maximize -7, 3" ) Qi(z() log % with

respect to ¢, p and X



Expectation Maximization for Gaussian Mixtures

Listing 2: EM for Gaussian Mixtures

Repeat untill convergence {
(E-step) For each i,j , set

w) = p(2" = jIx7; 6,1, %)
(M-step) Update parameters: assume ¢; = E[w]

an 1 W(I)X( )
Hj = ™
Zi:l j( ) ) )
g Sraw OO = )0 — i)
S m i
> Wj( )
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lllustration of EM steps
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Comparison with k-means clustering

Listing 2: EM Algorithm Listing 3: (Llyod's) k-means Alg.

Repeat untill convergence {
(E-step) For each i,j,

Repeat untill convergence {
(E-step) For every i,

i i (i 0. . i 2

w!) = (2 = jIx; ¢, 41, T) V= argmin 1D — |
(M-step) Updalte mpar(aix)meters: (M-step) Update centroids:

b= Z::(l)wj For each j

py o= i by U0 =

=1 ’ m () =
sm w(i)(x(f),u.)(x(i),u.)T Z':l l{C J}
L= = J(i) - ¥
e

}

Similar to k-means, Gaussian mixtures are also subject to local
minimums.



Factor Analysis: Example

How much do you identify yourself with the following traits?

T1-the least 9--the most

talkative

distant

careless

hardwork

anxious

kind
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Factor Analysis: Example
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Pairwise correlation plot of 32 variables from 240 participants



Factor Analysis Terminology
» observed random variables x € R”
x=p+Nz+e

» factor z € R¥ is the hidden (latent) construct that “causes”
the observed variables

» factor loadings A € R"*k : the degree to which variable x;
is “caused” by the factors

> 1, e € R" are the mean and error vectors

Matrix of factor loading A for personality test data

variable factor 1 factor 2 factor 3 factor 4
distant 0.59 0.27 0 0
talkative -0.50 -0.51 0 0.27
careless 0.46 -0.47 0.11 0.14
hardworking ~ -0.46 0.33 -0.14 0.35

kind -0.488 0.222 0 0



Factor Analysis: Example

Factor2

Visualize loading of the first two factors
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Factor Analysis: Example

Visualize loading of the first two factors, rotated to align with axes
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Factor Analysis Model

Observed variables: x € R"
Latent variables: z € R¥ (k < n)
The factor analysis model defines a joint distribution p(x, z) as

z~N(0,1)
e~N(0,V)
XxX=p+Nz+e

where W € R"*" is a diagonal matrix, e,x € R", A € Rnxk

Given observations x(), ..., x(™ | how to fit the parameters
p N7



The EM Algorithm

Rubin, D. and Thayer, D. (1982). EM algorithms for ML factor
analysis. Psychometrika, 47(1):69-76.

Listing 4: EM for Factor Analysis

Initialize p, AW
Repeat untill convergence {
(E-step) For each /i , set
Q;(z(i)) = p(z(")|x(");u7 A, W) < z is a continuous variable
(M-step) Set

m () ().
i p(X y 2y A7 \U) (i)
;N\, V= argmax E / Qi(z") 1o 4 dz (*)
K ug,/\,w — /.0 (27 log Qi(z)

First, we need to write p(z()|x()) and p(x(), z{))in terms of the
model parameters.



EM Derivations

z
It can be shown that, random vector o~ N (pzx, £) where

0 / AT
'LLXZ_|:,LL:| andZ_[A /\/\T—I—\U:|
E-Step
The posterior distribution z(i)\x(i) ~N (uz(;)|x(;), Zz(,-)‘x(;)>

/'Lz(")|x(") = AT(AAT =+ w)—l(x(i) - M)
oo =1 = NT(MT +W)~IA

Qi(z) = p(z7xD; . A, W)

1

= —F—————exp ( *(Z — Kzl |t )TZ;%‘XU)(Z(’.) - Mz<f>|x(f>))
(27K Z 0150 |



EM Derivations

M-Step

m p( D, 20 A WY
szppeS [ ot S

TRAN —1 2(

(*)

Note that

( (i),z(i);M’ /\,W) (I)
; | d d.
20 Q=) los Qi(z) ‘

= E,q[log p(xV|z; 1, A, W) + log p(2)) — log Q;(z'))]

(%) is equivalent to

argmax E. i) ..o [log p(x QIPIOF NV
g2 ,Z; 1~q[log p(x1V121; 1, A, W)



EM Derivations

M-Step (con't)

argmax > Eoqllog p(x V27, A W) ()
KT =1

Since x =+ Az + € and € ~ N(0, V)

x|z~ N (i + Az, W)

p(xD1200; A, W)

1 1 i i — i i
= W exp <—2(X( ) il /\Z( ))T‘-U 1(X( ) il /\Z( )))

We can maximize (%*) with respect to u, A and ¥



Factor Analysis Discussions

Comparison with Mixture of Gaussians

» Mixture of Gaussians assumes sufficient data and relative few
response variables. i.e. when n~ mor n > m, ¥ is singular

» Factor Analysis works when n > m by allowing model noise



Factor Analysis Discussions

Relationship to PCA
» Both PCA and factor analysis can find low dimensional latent
subspace in data

» PCA is good for data reduction (reduce correlation among
observed variables)
» Factor analysis is good for data exploration (find independent,
common factors in observed variables)
> Factor analysis allows the noise to have an arbitrary diagonal
covariance matrix, while PCA assumes the noise is spherical.
Additional readings

» Zoubin Ghahramani and Geoffrey E. Hinton, The EM Algorithm for
Mixtures of Factor Analyzers, 1997



Final Project

Topics
» Use machine learning to solve a specific problem.
» Develop a machine learning method with better performance

» Theoretical or innovative problems

Timeline
Dec 02 Confirm team
Dec 11 Submit project proposal
Dec 14-16 | Meeting with course staff
Dec 27 Poster deadline
Dec 31 Poster presentation
Jan 13 Submit final report




Example Projects

A Gaussian Process Regression
Based Approach for Predicting
Building Cooling and Heating
Consumption (Xiaoting Wang &
Yigian Wu)

Camera lens super-resolution
(Dinjian Jin& Xiangyu Chen)

Comparison between two
super-resolution models: SRGAN
and VDSR (application)

1-month prediction of electricity
consumption (application)



Debugging Neural Networks
(Riccardo Mattesini,Sebastian
Beetschen,Bunchalit Eua-arporn)

Test neural network overfitting by
feature visualization with GAN (
innovative problem)

Missing Data Imputation for
Multi-Modal Brain Images
(Wangbin Sun)

6608

MRI (top) and PET (bottom) scans
of normal and Alzheimer patient
brains (improved method)




Sample Datasets & Ideas
Retina blood vessel segmentation

» How to combine geometric data processing with supervised
segmentation? [DRIVE dataset]

Covid-19 projects

> Predict the effect of government policies on daily new cases in a given
city/country. [Oxford Government Response Tracker] [Starter code]

» COVID-19 mRNA vaccine degradation prediction
[OpenVaccine]
Multi-modal & transfer learning

» Human activity recognition through heterogeneous sensors

> Li-on battery classification through cross-domain measurements



Common Pitfalls

» Simply run a model from an existing work on a slightly
different dataset: think of your contribution in at least one of
the following areas: application, analysis , methodology and
theory .

» Topic is too broad or too ambitious: reduce the project scope

» Project relies heavily on data availability/quality: use available
datasets

Good luck!
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