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Learning From Data
Lecture 10: Mixture of Gaussians & EM
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Today’s Lecture

Unsupervised Learning (Part IV)

▶ Mixture of Gaussians

▶ The EM Algorithm

▶ Factor Analysis

Final Project Information
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Review: k-means clustering
Given input data {x (1), . . . , x (m)}, x (i) ∈ R

d , k-means clustering
partition the input into k ≤ m sets C1, . . . ,Ck to minimize the
within-cluster sum of squares (WCSS).

argmin
C

k
∑

j=1

∑

x∈Cj

∥x − µj∥
2

Lloyd’s Algorithm (1957,1982)

Let c(i) ∈ {1, . . . , k} be the cluster label for x (i)

Initialize cluster centroids µ1, . . . µk ∈ Rn randomly

Repeat until convergence{

For every i ,

c (i) := argminj ∥x
(i) − µj∥

2 ← assign x (i) to the cluster

with the closest centroid

For each j

µj :=

∑m
i=1 1{c

(i)=j}x(i)
∑m

i=1 1{c
(i)=j}

← update centroid

}
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Mixture of Gaussians
A “soft” version of k-means clustering.

Clustering results of iris dataset using mixture of Gaussians
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Mixture models

Model-based clustering

A mixture model assumes data are generated by the following
process:

1. Sample z(i) ∈ {1, . . . , k} and z(i) ∼ Multinomial(ϕ)

p(z(i) = j) = ϕj for all j

z(i) are called latent variables.

2. Sample observables x (i) from some distribution p(x (i), z(i)):

p(x (i), z(i)) = p(x (i)|z(i))p(z(i))

Examples:

▶ Unsupervised handwriting recognition is a mixture with 10
Bernoulli distributions

▶ Financial return estimation uses a mixture of 2 Gaussians for
normal situation and crisis time distribution
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Mixture of Gaussians

Mixture of Gaussians Model:

z(i) ∼ Multinomial(ϕ)

x (i)|z(i) = j ∼ N (µj ,Σj)

How to learn ϕj , µj and Σj for all j ?

z(i) is known: (supervised) use maximum likelihood estimation
(quadratic discriminant analysis).

ϕj =
1

m

m
∑

i=1

1{z (i) = j}, µj =

∑m
i=1 1{z

(i) = j}x (i)
∑m

i=1 1{z
(i) = j}

Σj =

∑m
i=1 1{z

(i) = j}(x (i) − µj)(x
(i) − µj)

T

∑m
i=1 1{z

(i) = j}

z(i) is unknown: (unsupervised) use expectation maximization
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The EM Algorithm

The EM algorithm is an iterative method for maximum likelihood
estimation when the model depends on latent (unobserved)
variables.

Log-likelihood of data:

l(θ) =

m
∑

i=1

log p(x (i); θ) =

m
∑

i=1

log

k
∑

z(i)=1

p(x (i), z(i); θ)

Main idea: iterate over two steps:

▶ Expectation (E) step : guess z(i)

▶ Maximization (M) step : update θ via maximum likelihood
estimation based on guessed z(i)’s
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Generalized EM Algorithm

Listing 1: Generalized EM Algorithm

Initialize θ

Repeat untill convergence {

(E-step) For each i , set

Qi (z
(i)) := p(z (i)|x (i); θ) ← Soft assignment:

posterior distribution z |x under θ

(M-step) Set

θ := argmax
θ

∑
i

∑
z(i)

Qi (z
(i)) log

p(x (i), z (i); θ)

Qi (z (i))
(⋆)

← Update parameter θ

}

We will show...

▶ Solving (⋆) is equivalent to argmaxθ l(θ)
→ Equation (⋆) is a (tight) lower bound on log-likelihood l(θ)

▶ This algorithm converges.
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Proof of Correctness: E-step

Define

J(Q, θ) =
∑

i

∑

z(i)

Qi (z
(i)) log

p(x (i), z(i); θ)

Qi (z(i))

Proposition 1

1. J(Q, θ) is a lower bound on log-likelihood l(θ)

2. This lower bound is tight when Qi (z
(i)) = p(z(i)|x (i); θ)

(Hint: use Jensen’s inequality)
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Jensen’s Inequality

Theorem 1

Let f be a convex function, and let X be a random variable. Then

E[f (X )] ≥ f (E[X ])

Remarks

1. Let f be a concave function, then E[f (X )] ≤ f (E [X ])

2. When f (X ) is a constant function, E[f (X )] = f (E[X ])
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Proof of Convergence

Proposition 2

EM always monotonically improves the log likelihood, i.e. Let θ(t)

be the parameter value in the t-th iteration

l(θ(t)) ≤ l(θ(t+1))
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EM for mixture of Gaussians

Gaussian Mixture Model

z(i) ∼ Multinomial(ϕ)

x (i)|z(i) ∼ N (µj ,Σj)

Learn parameters µ,Σ, ϕ

E-Step: w
(i)
j = Qi (z

(i) = j) = p(z(i) = j |x (i);ϕ, µ,Σ)

M-Step: Maximize
∑m

i=1

∑

z(i) Qi (z
(i)) log p(x(i),z(i);φ,µ,Σ)

Qi (z(i))
with

respect to ϕ, µ and Σ
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Expectation Maximization for Gaussian Mixtures

Listing 2: EM for Gaussian Mixtures

Repeat untill convergence {

(E-step) For each i , j , set

w
(i)
j := p(z (i) = j |x (i);ϕ, µ,Σ)

(M-step) Update parameters: assume ϕj = E[wj ]

ϕj :=
1

m

m∑
i=1

w
(i)
j

µj :=

∑m

i=1 w
(i)
j x (i)

∑m

i=1 w
(i)
j

Σj :=

∑m

i=1 w
(i)
j (x (i) − µj)(x

(i) − µj)
T

∑m

i=1 w
(i)
j

}



14/32

Illustration of EM steps



15/32

Comparison with k-means clustering

Listing 2: EM Algorithm

Repeat untill convergence {

(E-step) For each i , j ,

w
(i)
j := p(z (i) = j |x (i);ϕ, µ,Σ)

(M-step) Update parameters:

ϕj :=
1
m

∑m

i=1 w
(i)
j

µj :=
∑m

i=1 w
(i)
j

xj
∑

m
i=1

w
(i)
j

Σj :=
∑m

i=1 w
(i)
j

(x(i)−µj )(x
(i)

−µj )
T

∑
m
i=1

w
(i)
j

}

Listing 3: (Llyod’s) k-means Alg.

Repeat untill convergence {

(E-step) For every i ,

c
(i) := argmin

j

||x (i) − µj ||
2

(M-step) Update centroids:

For each j

µj :=
1{c (i) = j}x (i)∑m

i=1 1{c
(i) = j}

}

Similar to k-means, Gaussian mixtures are also subject to local
minimums.
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Factor Analysis: Example

Self-ratings on 32 Personality Traits
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Factor Analysis: Example

Pairwise correlation plot of 32 variables from 240 participants
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Factor Analysis Terminology
▶ observed random variables x ∈ R

n

x = µ+ Λz + ϵ

▶ factor z ∈ R
k is the hidden (latent) construct that “causes”

the observed variables
▶ factor loadings Λ ∈ R

n×k : the degree to which variable xi
is “caused” by the factors

▶ µ, ϵ ∈ R
n are the mean and error vectors

Matrix of factor loading Λ for personality test data

variable factor 1 factor 2 factor 3 factor 4
distant 0.59 0.27 0 0
talkative -0.50 -0.51 0 0.27
careless 0.46 -0.47 0.11 0.14
hardworking -0.46 0.33 -0.14 0.35
kind -0.488 0.222 0 0
...
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Factor Analysis: Example

Visualize loading of the first two factors
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Factor Analysis: Example

Visualize loading of the first two factors, rotated to align with axes
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Factor Analysis Model

Observed variables: x ∈ R
n

Latent variables: z ∈ R
k (k < n)

The factor analysis model defines a joint distribution p(x , z) as

z ∼ N (0, I )

ϵ ∼ N (0,Ψ)

x = µ+ Λz + ϵ

where Ψ ∈ R
n×n is a diagonal matrix, ϵ, µ ∈ R

n, Λ ∈ R
n×k

Given observations x (i), . . . , x (m) , how to fit the parameters
µ,Λ,Ψ ?
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The EM Algorithm

Rubin, D. and Thayer, D. (1982). EM algorithms for ML factor
analysis. Psychometrika, 47(1):69-76.

Listing 4: EM for Factor Analysis

Initialize µ,Λ,Ψ
Repeat untill convergence {

(E-step) For each i , set

Qi (z
(i)) := p(z (i)|x (i);µ,Λ,Ψ) ← z is a continuous variable

(M-step) Set

µ,Λ,Ψ := argmax
µ,Λ,Ψ

m∑
i=1

∫
z(i)

Qi (z
(i)) log

p(x (i), z (i);µ,Λ,Ψ)

Qi (z (i))
dz

(i)
(⋆)

First, we need to write p(z(i)|x (i)) and p(x (i), z(i))in terms of the
model parameters.
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EM Derivations

It can be shown that, random vector

[

z
x

]

∼ N (µzx ,Σ) where

µxz =

[

0
µ

]

and Σ =

[

I ΛT

Λ ΛΛT +Ψ

]

E-Step

The posterior distribution z(i)|x (i) ∼ N
(

µz(i)|x(i) ,Σz(i)|x(i)

)

µz(i)|x (i) = ΛT (ΛΛT +Ψ)−1(x (i) − µ)

Σz(i)|x (i) = I − ΛT (ΛΛT +Ψ)−1Λ

Qi (z
(i)) = p(z (i)|x (i);µ,Λ,Ψ)

=
1

√

(2π)k |Σz(i)|x (i) |
exp

(

−
1

2
(z (i) − µz(i)|x (i))TΣ−1

z(i)|x (i)(z
(i) − µz(i)|x (i))

)
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EM Derivations

M-Step

argmax
µ,Λ,Ψ

m
∑

i=1

∫

z(i)
Qi (z

(i)) log
p(x (i), z(i);µ,Λ,Ψ)

Qi (z(i))
dz(i) (⋆)

Note that

∫

z(i)
Qi (z

(i)) log
p(x (i), z(i);µ,Λ,Ψ)

Qi (z(i))
dz(i)

= Ez∼Qi
[log p(x (i)|z(i);µ,Λ,Ψ) + log p(z(i))− logQi (z

(i))]

(⋆) is equivalent to

argmax
µ,Λ,Ψ

m
∑

i=1

Ez(i)∼Qi
[log p(x (i)|z(i);µ,Λ,Ψ)]
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EM Derivations

M-Step (con’t)

argmax
µ,Λ,Ψ

m
∑

i=1

Ez(i)∼Qi
[log p(x (i)|z(i);µ,Λ,Ψ)] (⋆⋆)

Since x = µ+ Λz + ϵ and ϵ ∼ N (0,Ψ)

x (i)|z(i) ∼ N (µ+ Λz ,Ψ)

p(x (i)|z (i);µ,Λ,Ψ)

=
1

(2π)n/2|Ψ|1/2
exp

(

−
1

2
(x (i) − µ− Λz (i))TΨ−1(x (i) − µ− Λz (i))

)

We can maximize (⋆⋆) with respect to µ, Λ and Ψ
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Factor Analysis Discussions

Comparison with Mixture of Gaussians

▶ Mixture of Gaussians assumes sufficient data and relative few
response variables. i.e. when n ≈ m or n > m, Σ is singular

▶ Factor Analysis works when n > m by allowing model noise
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Factor Analysis Discussions

Relationship to PCA

▶ Both PCA and factor analysis can find low dimensional latent
subspace in data

▶ PCA is good for data reduction (reduce correlation among
observed variables)

▶ Factor analysis is good for data exploration (find independent,
common factors in observed variables)

▶ Factor analysis allows the noise to have an arbitrary diagonal
covariance matrix, while PCA assumes the noise is spherical.

Additional readings

▶ Zoubin Ghahramani and Geoffrey E. Hinton, The EM Algorithm for
Mixtures of Factor Analyzers, 1997
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Final Project

Topics

▶ Use machine learning to solve a specific problem.

▶ Develop a machine learning method with better performance

▶ Theoretical or innovative problems

Timeline

Dec 02 Confirm team
Dec 11 Submit project proposal
Dec 14-16 Meeting with course staff
Dec 27 Poster deadline
Dec 31 Poster presentation
Jan 13 Submit final report
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Example Projects

Camera lens super-resolution
(Dinjian Jin& Xiangyu Chen)

results are shown in figure 2. We can see that SRGAN has a more perceptual quality than VDSR
for super-resolution. For the low light environment, both methods cannot perform well for
restoration. Also, the input low resolution of SRGAN network is a color image, but we just show
the grey low-resolution image for simplicity.

5.2 VDSR And SRGAN Results

Figure 5: Comparison of SR result using VDSR network and SRGAN network respectively. These data are

captured by our own device. So no ground truth for high-resolution.

5.3 Different layers’ output of VDSR

As we can see in the training processes,the different layer’s output of VDSR network focused
on the different details of the picture.Through the residual network the details will add to the low
resolution picture.Finally we can yield the high resolution result.

Comparison between two
super-resolution models: SRGAN
and VDSR (application)

A Gaussian Process Regression
Based Approach for Predicting
Building Cooling and Heating
Consumption (Xiaoting Wang &
Yiqian Wu)

1-month prediction of electricity
consumption (application)
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Debugging Neural Networks
(Riccardo Mattesini,Sebastian
Beetschen,Bunchalit Eua-arporn)

Test neural network overfitting by
feature visualization with GAN (
innovative problem)

Missing Data Imputation for
Multi-Modal Brain Images
(Wangbin Sun)

 

MRI (top) and PET (bottom) scans
of normal and Alzheimer patient
brains (improved method)
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Sample Datasets & Ideas
Retina blood vessel segmentation

▶ How to combine geometric data processing with supervised
segmentation? [DRIVE dataset]

Covid-19 projects

▶ Predict the effect of government policies on daily new cases in a given
city/country. [Oxford Government Response Tracker] [Starter code]

▶ COVID-19 mRNA vaccine degradation prediction
[OpenVaccine]

Multi-modal & transfer learning

▶ Human activity recognition through heterogeneous sensors

▶ Li-on battery classification through cross-domain measurements
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Common Pitfalls

▶ Simply run a model from an existing work on a slightly
different dataset: think of your contribution in at least one of
the following areas: application, analysis , methodology and
theory .

▶ Topic is too broad or too ambitious: reduce the project scope

▶ Project relies heavily on data availability/quality: use available
datasets

Good luck!
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