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Learning From Data
Lecture 11: Model Selection & Learning Theory
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Today’s Lecture

Practical tools to improve machine learning performance:

▶ Bias and variance trade off

▶ Model selection

▶ A Brief Introduction to learning theory

Start on your project early!
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Empirical error & Generalization error

Consider a learning task, the empirical (training) error of
hypothesis h is the expected loss over m training samples

ϵ̂(h) =
1

m

m∑
i=1

1{h(x (i)) ̸= y (i)} (classification, 0-1 loss)

ϵ̂(h) =
1

m

m∑
i=1

||h(x (i))− y (i)||22 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning

▶ make training error small (optimization)

▶ make the gap between empirical and generalization error small



3/35

Empirical error & Generalization error

Consider a learning task, the empirical (training) error of
hypothesis h is the expected loss over m training samples

ϵ̂(h) =
1

m

m∑
i=1

1{h(x (i)) ̸= y (i)} (classification, 0-1 loss)

ϵ̂(h) =
1

m

m∑
i=1

||h(x (i))− y (i)||22 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning

▶ make training error small (optimization)

▶ make the gap between empirical and generalization error small



3/35

Empirical error & Generalization error

Consider a learning task, the empirical (training) error of
hypothesis h is the expected loss over m training samples

ϵ̂(h) =
1

m

m∑
i=1

1{h(x (i)) ̸= y (i)} (classification, 0-1 loss)

ϵ̂(h) =
1

m

m∑
i=1

||h(x (i))− y (i)||22 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning

▶ make training error small (optimization)

▶ make the gap between empirical and generalization error small



4/35

Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions
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Model Capacity

Changing a model’s capacity controls whether it is more likely to
overfit or underfit

▶ Choose a model’s hypothesis space: e.g. increase # of
features (adding parameters)

▶ Find the best among a family of hypothesis functions

CHAPTER 5. MACHINE LEARNING BASICS
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply

stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||X i,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L 2 norm, such
as learned distance metrics ( , ). If the algorithm is allowedGoldberger et al. 2005
to break ties by averaging the yi values for all Xi,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

How to formalize this idea?
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Bias & Variance

ĥ(x): estimated hypothesis function of a model. h(x): true
hypothesis function

Bias of a model: the expected generalization error if we were to fit
it to an infinitely large training set.

Bias(ĥ) = E[ĥ(x)− h(x)] = E[ĥ(x)− y ]

▶ When we make wrong assumptions in the model, such as too
few paramters, it has large bias (underfit)

Variance of a model:

Var(ĥ) = E[ĥ(x)2]− E[ĥ(x)]2

▶ When the model overfits “spurious” patterns, it has large
variance (overfit).
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Bias - Variance Tradeoff
If we measure generalization error by MSE

MSE = E[(ĥ(x)− h(x))2] = Bias(ĥ)2 + Var(ĥ) + σ2,

▶ σ2 represents irreducible error

▶ in practice, increasing capacity tends to increase variance and
decrease bias.

CHAPTER 5. MACHINE LEARNING BASICS

Capacity
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Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
Sec. and Fig. .5.2 5.3

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. , where we see again the U-shaped5.6
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

lim
m→∞

θ̂m
p→ θ. (5.55)

The symbol
p→ means that the convergence is in probability, i.e. for any s > 0,

P (|θ̂m − |θ > s) → 0 as m → ∞ . The condition described by Eq. is5.55
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of θ̂ to θ. Almost sure

130
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Regularization

How to reduce generalization error?

▶ L-p norm penalty : Ω(θ) = 1
2 ||θ||

q
q ← reduces model

complexity

▶ Bayesian estimation of parameters, MAP estimation ←
model prior distribution of parameters

▶ Neural network regularization methods: e.g.
▶ drop out
▶ batch normalization

special layers that reduce model complexity
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Model Selection

For a given task, how do we select which model to use?
▶ Different learning models

▶ e.g. SVM vs. logistic regression for binary classification

▶ Same learning models with different hyperparameters
▶ e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.
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Hold-out cross validation

Given training set S and candidate models M1,...,Mn:

1. Randomly split S into Strain and Scv (e.g. 70% Strain)

2. Training each Mi on Strain,

3. Select the model with smallest empirical error on Scv

Disavantages of hold-out cross validation

▶ ”wastes” about 30% data

▶ chances of an unfortunate split
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K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for
validation.

1. Randomly split S into k disjoint subsets S1, . . . , Sk of m/k
training examples (usually k = 10)

2. For j = 1 . . . k:
Train each model on S\Sj , then validate on Sj ,

3. Select the model with the smallest average empirical error
among all k trails.
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Leave-One-Out Cross Validation

A special case of k-fold cross validation, when k = m.

1. For each training example xi
Train each model on S\{xi}, then evaluate on xi ,

2. Select the model with the smallest average empirical error
among all m trails.

Often used when training data is scarce.
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Other Cross Validation Methods

▶ Random subsampling

▶ Bootstrapping: sample with replacement from training
examples (used for small training set)

▶ Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.
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Learning Theory Introduction
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Introduction to Learning Theory

▶ Empirical risk estimation
▶ Learning bounds

▶ Finite Hypothesis Class
▶ Infinite Hypothesis Class
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Learning theory
How to quantify generalization error?

Prof. Vladimir Vapnik in front of his famous theorem



16/35

Empirical Risk Estimation
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Preliminaries

Lemma 1 (Union Bound)

Let A1,A2, . . . ,Ak be k different events, then

P(A1 ∪ . . . ∪ Ak) ≤ P(A1) + . . .+ P(Ak)

Probability of any one of k events happening is less the sums of
their probabilities.
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Preliminaries

Lemma 2 (Hoeffding Inequality, Chernoff bound)

Let Z1, . . . ,Zm be m i.i.d. random variables drawn from a
Bernoulli(ϕ) distribution. i.e. P(Zi = 1) = ϕ , P(Zi = 0) = 1− ϕ.
Let ϕ̂ = 1

m

∑m
i=1 Zi be the sample mean of RVs.

For any γ > 0,

P(|ϕ− ϕ̂| > γ) ≤ 2 exp(−2γ2m)

The probability of ϕ̂ having large estimation error is small when m
is large!
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Empirical risk

Simplified assumption: y ∈ (0, 1)

▶ Training set: S = (x (i), y (i)); i = 1, . . . ,m with
(x (i), y (i)) ∼ D

▶ For hypothesis h, the training error or empirical risk/error
in learning theory is defined as

ϵ̂(h) =
1

m

m∑
i=1

1{h(x (i)) ̸= y (i)}

▶ The generalization error is

ϵ(h) = P(x ,y)∼D(h(x) ̸= y)

▶ PAC assumption: assume that training data and test data
(for evaluating generalization error) were drawn from the
same distribution D
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Hypothesis Class and ERM

Hypothesis class

The hypothesis class H used by a learning algorithm is the set
of all classsifiers considered by it.
e.g. Linear classification considers hθ(x) = 1{θT x ≥ 0}

Empirical Risk Minimization (ERM): the “simplest” learning
algorithm: pick the best hypothesis h from hypothesis class H

ĥ = argmin
h∈H

ϵ̂(h)

How to measure the generalization error of empirical risk
minimization over H?

▶ Case of finite H
▶ Case of infinite H
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Uniform Convergence and Sample Complexity
Case of Finite H
Infinite H
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Case of Finite H
Goal: give guarantee on generalization error ϵ(h)

▶ Show ϵ̂(h) (training error) is a good estimate of ϵ(h)

▶ Derive an upper bound on ϵ(h)

For any hi ∈ H, the event of hi miss-classification given sample
(x , y) ∼ D:

Z = 1{hi (x) ̸= y}

Zj = 1{hi (x (j)) ̸= y (j)} : event of hi miss-classifying sample x (j)

Training error of hi ∈ H is:

ϵ̂(hi ) =
1

m

m∑
j=1

1{hi (x (j)) ̸= y (j)}

ϵ̂(hi ) =
1

m

m∑
j=1

Zj
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Case of Finite H

Training error of hi ∈ H is:

ϵ̂(hi ) =
1

m

m∑
j=1

Zj

where Zj ∼ Bernoulli(ϵ(hi ))

By Hoeffding inequality,

P(|ϵ(hi )− ϵ̂(hi )| > γ) ≤ 2e−2γ2m

By Union bound,

P(∀h ∈ H.|ϵ(h)− ϵ̂(h)| ≤ γ) ≥ 1− 2ke−2γ2m
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Uniform Convergence Results

Corollary 3

Given γ and δ > 0, If

m ≥ 1

2γ2
log

2k

δ

Then with probability at least 1− δ, we have |ϵ(h)− ϵ̂(h)| ≤ γ for
all H.
m is called the algorithm’s sample complexity.

Remarks
▶ Lower bound on m tell us how many training examples we

need to make generalization guarantee.

▶ # of training examples needed is logarithm in k
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Uniform Convergence Results

Corollary 4

With probability 1− δ, for all h ∈ H,

|ϵ̂(h)− ϵ(h)| ≤
√

1

2m
log

2k

δ

What is the convergence result when we pick ĥ = argminh∈H ϵ̂(h)

Theorem 5 (Uniform convergence)

Let |H| = k, and m,δ be fixed. With probability at least 1− δ, we
have

ϵ(ĥ) ≤
(
min
h∈H

ϵ(h)

)
+ 2

√
1

2m
log

2k

δ
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite H?

Example

▶ Suppose H is parameterized by d real numbers. e.g.
θ = [θ1, θ2, . . . , θd ] ∈ Rd in linear regression with d − 1
unknowns.

▶ In a 64-bit floating point representation, size of hypothesis
class: |H| = 264d

▶ How many samples do we need to guarantee
ϵ(ĥ) ≤ ϵ(h∗) + 2γ to hold with probability at least 1− δ?

m ≥ O

(
1

γ2
log

264d

δ

)
= O

(
d

γ2
log

1

δ

)
= Oγ,δ(d)

To learn well, the number of samples has to be linear in d
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Infinite hypothesis class: Challenges

Size of H depends on the choice of parameterization

Example

2n + 2 parameters:

hu,v = 1{(u20 − v20 ) + (u21 − v21 )x1 + . . .+ (u2n − v2n )xn ≥ 0}

is equivalent the hypothesis with n + 1 parameters:

hθ(x) = 1{θ0 + θ1x1 + . . .+ θnxn ≥ 0}

We need a complexity measure of a hypothesis class invariant to
parameterization choice
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Infinite hypothesis class: VapnikChervonenkis theory

A computational learning theory developed during 1960-1990
explaining the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian math-
ematician

Vladimir Vapnik (Facebook AI Research, Vencore
Labs)
Most known for his contribution in statistical learn-
ing theory



27/35

Shattering a point set

▶ Given d points x (i) ∈ X , i = 1, . . . , d , H shatters S if H can
realize any labeling on S .

Example: S = {x (1), x (2), x (3)} where x (i) ∈ R2.

9

“well” using a hypothesis class that has d parameters, generally we’re going
to need on the order of a linear number of training examples in d.

(At this point, it’s worth noting that these results were proved for an al-
gorithm that uses empirical risk minimization. Thus, while the linear depen-
dence of sample complexity on d does generally hold for most discriminative
learning algorithms that try to minimize training error or some approxima-
tion to training error, these conclusions do not always apply as readily to
discriminative learning algorithms. Giving good theoretical guarantees on
many non-ERM learning algorithms is still an area of active research.)

The other part of our previous argument that’s slightly unsatisfying is
that it relies on the parameterization of H. Intuitively, this doesn’t seem like
it should matter: We had written the class of linear classifiers as hθ(x) =
1{θ0 + θ1x1 + · · · θnxn ≥ 0}, with n + 1 parameters θ0, . . . , θn. But it could
also be written hu,v(x) = 1{(u2

0 − v2
0) + (u2

1 − v2
1)x1 + · · · (u2

n − v2
n)xn ≥ 0}

with 2n + 2 parameters ui, vi. Yet, both of these are just defining the same
H: The set of linear classifiers in n dimensions.

To derive a more satisfying argument, lets define a few more things.
Given a set S = {x(i), . . . , x(d)} (no relation to the training set) of points

x(i) ∈ X , we say that H shatters S if H can realize any labeling on S.
I.e., if for any set of labels {y(1), . . . , y(d)}, there exists some h ∈ H so that
h(x(i)) = y(i) for all i = 1, . . . d.

Given a hypothesis class H, we then define its Vapnik-Chervonenkis
dimension, written VC(H), to be the size of the largest set that is shattered
by H. (If H can shatter arbitrarily large sets, then VC(H) = ∞.)

For instance, consider the following set of three points:

x

x1

2

Can the set H of linear classifiers in two dimensions (h(x) = 1{θ0+θ1x1+
θ2x2 ≥ 0}) can shatter the set above? The answer is yes. Specifically, weSuppose y (i) ∈ {0, 1}, how many possible labelings does S have?
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Shattering a point set
▶ Example: Let HLTF ,2 be the linear threshold function in R2

(e.g. in the perceptron algorithm)

h(x) =

{
1 w1x1 + w2x2 ≥ b

0 otherwise

10

see that, for any of the eight possible labelings of these points, we can find a
linear classifier that obtains “zero training error” on them:

x

x1

2 x

x1

2 x

x1

2 x

x1

2

x

x1

2 x

x1

2 x

x1

2 x

x1

2

Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter. Thus, the largest set that H can shatter is of
size 3, and hence VC(H) = 3.

Note that the VC dimension of H here is 3 even though there may be
sets of size 3 that it cannot shatter. For instance, if we had a set of three
points lying in a straight line (left figure), then there is no way to find a linear
separator for the labeling of the three points shown below (right figure):

x

x1

2x

x1

2

In order words, under the definition of the VC dimension, in order to
prove that VC(H) is at least d, we need to show only that there’s at least
one set of size d that H can shatter.

The following theorem, due to Vapnik, can then be shown. (This is, many
would argue, the most important theorem in all of learning theory.)

HLTF ,2 shatters S = {x (1), x (2), x (3)}
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VC Dimension
The Vapnik-Chervonenkis dimension of H, or VC (H), is the
cardinality of the largest set shattered by H.

▶ Example: VC (HLTF ,2) = 3

HLTF can not shatter 4 points: for any 4 points, label points on the
diagonal as ’+’. (See Radon’s theorem)

▶ To show VC (H) ≥ d , it’s sufficient to find one set of d
points shattered by H

▶ To show VC (H) < d , need to prove H doesn’t shatter any set
of d points
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VC Dimension

▶ Example: VC (AxisAlignedRectangles) = 4

1.2 Determining VC-dimension

In the last section, we claimed VC-dim(Axis-aligned rectangles) = 4. Now we show how
to prove it. The proof involves two steps: first, we show the VC-dimension is at least 4
by showing that there exists a 4-point set shattered by the concept set (it’s worth noting
that not every 4-point configuration can be shattered, but we only need one to make the
statement). Then, we show that there is no 5-point set that can be shattered.

Proof (1) An example 4-point set is shown in Figure 1 with all typical labelings and the
corresponding realization. So we have VC-dim� 4.

(2) For any 5-point set, we can construct a data assignment in this way: pick the
topmost, bottommost, leftmost and rightmost points and give them the label “+”. Because
there are 5 points, there must be at least one point left to which we assign “�”. Any
rectangle that contains all the “+” points must contains the “�” point, which is a case
where shattering is not possible. This proves that VC-dim< 5.

In sum, VC-dim(axis aligned rectangle)= 4.

Figure 1: Proving that rectangle concept space shatters at least 4 points

2 Sauer’s Lemma

Sauer’s Lemma provides an upper bound for ⇧H(m) parameterized by d, the VC-dimension
of H. It also leads to the proof that the growth function is either O(md) or 2m. In this
section, we are going to use these definition and facts in binomial coe�cients:
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+
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✓
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◆
a

k
b
m�k (6)

Lemma 2.1 (Sauer’s Lemma) Let H be a hypothesis set with VC-dim(H) = d. Then, for
all m 2 N , the following inequality holds

2

Axis-aligned rectangles can shatter 4 points.
VC (AxisAlignedRectangles) ≥ 4
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VC Dimension

▶ Example: VC (AxisAlignedRectangles) = 4

For any 5 points, label topmost, bottommost, leftmost and rightmost
points as “+”.
VC (AxisAlignedRectangles) < 5
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Discussion on VC Dimension
More VC results of common H:

▶ VC (ConstantFunctions) =

0
▶ VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

▶ VC (Intervals) = 2,X = R
▶ VC (LTF in Rn) = n + 1,X = Rn ← prove this at home!

Proposition 1

If H is finite, VC dimension is related to the cardinality of H:

VC (H) ≤ log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size
d on which H realizes all possible labelings. Every labeling must
have a corresponding hypothesis, then |H| ≥ 2d



32/35

Discussion on VC Dimension
More VC results of common H:

▶ VC (ConstantFunctions) = 0
▶ VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

▶ VC (Intervals) = 2,X = R
▶ VC (LTF in Rn) = n + 1,X = Rn ← prove this at home!

Proposition 1

If H is finite, VC dimension is related to the cardinality of H:

VC (H) ≤ log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size
d on which H realizes all possible labelings. Every labeling must
have a corresponding hypothesis, then |H| ≥ 2d



32/35

Discussion on VC Dimension
More VC results of common H:

▶ VC (ConstantFunctions) = 0
▶ VC (PositiveHalf -Lines) = 1,X = R

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c 2 C, any target distribution D, and any positive ✏ and
�, A uses a training set S = h(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))i consisting of m =
poly(1

✏
,
1
�
, ...) examples taken i.i.d. from D and produces h 2 H such that Pr[errD(h) 

✏] � 1� �.
A few comments on notation. ✏ is called the accuracy parameter, and we call h “✏-good”

if errD(h)  ✏, where errD(h) is called the true error or the generalization error. � is
the confidence parameter. ✏ and � are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (✏-good) with high probability (namely 1��). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled

▶ VC (Intervals) = 2,X = R
▶ VC (LTF in Rn) = n + 1,X = Rn ← prove this at home!

Proposition 1

If H is finite, VC dimension is related to the cardinality of H:

VC (H) ≤ log |H|

Proof. Let d = VC |H|. There must exists a shattered set of size
d on which H realizes all possible labelings. Every labeling must
have a corresponding hypothesis, then |H| ≥ 2d



33/35

Learning bound for infinite H

Theorem 6

Given H, let d = VC (H).
▶ With probability at least 1− δ, we have that for all h

|ϵ(h)− ϵ̂(h)| ≤ O

(√
d

m
log

m

d
+

1

m
log

1

δ

)
▶ Thus, with probability at least 1− δ, we also have

ϵ(ĥ) ≤ ϵ(h∗) + O

(√
d

m
log

m

d
+

1

m
log

1

δ

)
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Learning bound for infinite H

Corollary 7

For |ϵ(h)− ϵ̂(h)| ≤ γ to hold for all h ∈ H with probability at least
1− δ, it suffices that m = Oy ,δ(d).

Remarks
▶ Sample complexity using H is linear in VC (H)
▶ For “most”a hypothesis classes, the VC dimension is linear in

terms of parameters

▶ For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

aNot always true for deep neural networks
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC (N ) = O(w logw).

Recent progress

▶ For feed-forward neural networks with piecewise-linear
activation functions (e.g. ReLU), let w be the number of
parameters and l be the number of layers,
VC (N ) = O(wl log(w)) [Bartlett et. al., 2017]

▶ Among all networks with the same size (number of weights),
more layers have larger VC dimension , thus more training
samples are needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets
Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for
piecewise linear neural networks.
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