Learning From Data Lecture 11: Model Selection & Learning Theory

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 17, 2020

Practical tools to improve machine learning performance:

- Bias and variance trade off
- Model selection
- A Brief Introduction to learning theory

Start on your project early!

Empirical error & Generalization error

Consider a learning task, the **empirical (training) error** of hypothesis h is the expected loss over m training samples

$$\hat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1\{h(x^{(i)}) \neq y^{(i)}\} \quad \text{(classification, 0-1 loss)}$$
$$\hat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} ||h(x^{(i)}) - y^{(i)}||_2^2 \quad \text{(regression, least-square loss)}$$

Empirical error & Generalization error

Consider a learning task, the **empirical (training) error** of hypothesis h is the expected loss over m training samples

$$\begin{split} \hat{\epsilon}(h) &= \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\} \quad \text{(classification, 0-1 loss)}\\ \hat{\epsilon}(h) &= \frac{1}{m} \sum_{i=1}^{m} ||h(x^{(i)}) - y^{(i)}||_2^2 \quad \text{(regression, least-square loss)} \end{split}$$

The generalization (testing) error of h is the expected error on examples not necessarily in the training set.

Empirical error & Generalization error

Consider a learning task, the **empirical (training) error** of hypothesis h is the expected loss over m training samples

$$\begin{split} \hat{\epsilon}(h) &= \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\} \quad \text{(classification, 0-1 loss)}\\ \hat{\epsilon}(h) &= \frac{1}{m} \sum_{i=1}^{m} ||h(x^{(i)}) - y^{(i)}||_2^2 \quad \text{(regression, least-square loss)} \end{split}$$

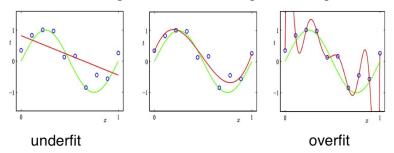
The generalization (testing) error of h is the expected error on examples not necessarily in the training set.

Goal of machine learning

- make training error small (optimization)
- make the gap between empirical and generalization error small

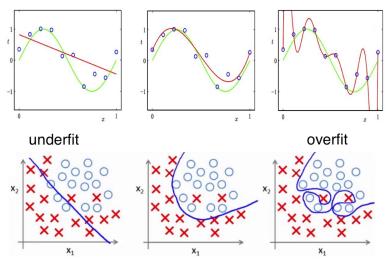
Overfit & Underfit

Underfit Both training error and testing error are large Overfit Training error is small, testing error is large



Overfit & Underfit

Underfit Both training error and testing error are large Overfit Training error is small, testing error is large



Model capacity: the ability to fit a wide variety of functions

Model Capacity

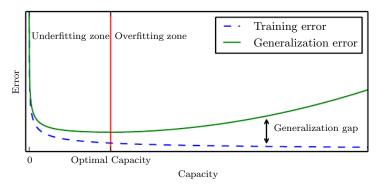
Changing a model's **capacity** controls whether it is more likely to overfit or underfit

- Choose a model's hypothesis space: e.g. increase # of features (adding parameters)
- Find the best among a family of hypothesis functions

Model Capacity

Changing a model's **capacity** controls whether it is more likely to overfit or underfit

- Choose a model's hypothesis space: e.g. increase # of features (adding parameters)
- Find the best among a family of hypothesis functions



How to formalize this idea?

Bias & Variance

 $\hat{h}(x)$: estimated hypothesis function of a model. h(x): true hypothesis function

Bias & Variance

$\hat{h}(x)$: estimated hypothesis function of a model. h(x): true hypothesis function

Bias of a model: the expected generalization error if we were to fit it to an infinitely large training set.

$$Bias(\hat{h}) = \mathbb{E}[\hat{h}(x) - h(x)] = \mathbb{E}[\hat{h}(x) - y]$$

When we make wrong assumptions in the model, such as too few paramters, it has large bias (underfit)

Bias & Variance

$\hat{h}(x)$: estimated hypothesis function of a model. h(x): true hypothesis function

Bias of a model: the expected generalization error if we were to fit it to an infinitely large training set.

$$Bias(\hat{h}) = \mathbb{E}[\hat{h}(x) - h(x)] = \mathbb{E}[\hat{h}(x) - y]$$

 When we make wrong assumptions in the model, such as too few paramters, it has large bias (underfit)

Variance of a model:

$$Var(\hat{h}) = \mathbb{E}[\hat{h}(x)^2] - \mathbb{E}[\hat{h}(x)]^2$$

When the model overfits "spurious" patterns, it has large variance (overfit).

Bias - Variance Tradeoff

If we measure generalization error by MSE

$$MSE = \mathbb{E}[(\hat{h}(x) - h(x))^2] = Bias(\hat{h})^2 + Var(\hat{h}) + \sigma^2,$$

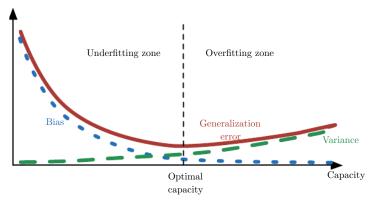
- σ^2 represents irreducible error
- in practice, increasing capacity tends to increase variance and decrease bias.

Bias - Variance Tradeoff

If we measure generalization error by MSE

$$MSE = \mathbb{E}[(\hat{h}(x) - h(x))^2] = Bias(\hat{h})^2 + Var(\hat{h}) + \sigma^2,$$

- σ^2 represents irreducible error
- in practice, increasing capacity tends to increase variance and decrease bias.



Regularization

How to reduce generalization error?

- ► L-p norm penalty : $\Omega(\theta) = \frac{1}{2} ||\theta||_q^q \leftarrow reduces model complexity$
- Bayesian estimation of parameters, MAP estimation model prior distribution of parameters
- Neural network regularization methods: e.g.
 - drop out
 - batch normalization

special layers that reduce model complexity

For a given task, how do we select which model to use?

- Different learning models
 - ▶ e.g. SVM vs. logistic regression for binary classification
- Same learning models with different hyperparameters
 - e.g. # of clusters in k-means clustering

For a given task, how do we select which model to use?

- Different learning models
 - e.g. SVM vs. logistic regression for binary classification
- Same learning models with different hyperparameters
 - e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a *validation set*.

Given training set S and candidate models M_1, \ldots, M_n :

- 1. Randomly split S into S_{train} and S_{cv} (e.g. 70% S_{train})
- 2. Training each M_i on S_{train} ,
- 3. Select the model with smallest empirical error on S_{cv}

Given training set S and candidate models M_1, \ldots, M_n :

- 1. Randomly split S into S_{train} and S_{cv} (e.g. 70% S_{train})
- 2. Training each M_i on S_{train} ,
- 3. Select the model with smallest empirical error on S_{cv}

Disavantages of hold-out cross validation

- "wastes" about 30% data
- chances of an unfortunate split

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

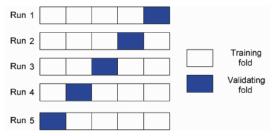
1. Randomly split S into k disjoint subsets S_1, \ldots, S_k of m/k training examples (usually k = 10)

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

- 1. Randomly split S into k disjoint subsets S_1, \ldots, S_k of m/k training examples (usually k = 10)
- 2. For j = 1 ... k:

Train each model on $S \setminus S_j$, then validate on S_j ,

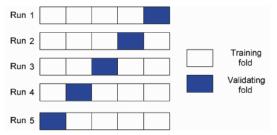


K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

- 1. Randomly split S into k disjoint subsets S_1, \ldots, S_k of m/k training examples (usually k = 10)
- 2. For j = 1 ... k:

Train each model on $S \setminus S_j$, then validate on S_j ,



3. Select the model with the smallest **average** empirical error among all *k* trails.

A special case of k-fold cross validation, when k = m.

- 1. For each training example x_i Train each model on $S \setminus \{x_i\}$, then evaluate on x_i ,
- 2. Select the model with the smallest average empirical error among all *m* trails.

Often used when training data is scarce.

Other Cross Validation Methods

- Random subsampling
- Bootstrapping: sample with replacement from training examples (used for small training set)
- Information criteria based methods: e.g. Bayesian information criterion (BIC), Akaike information criterion (AIC)

Other Cross Validation Methods

- Random subsampling
- Bootstrapping: sample with replacement from training examples (used for small training set)
- Information criteria based methods: e.g. Bayesian information criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.

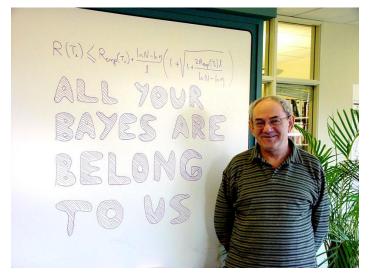
Learning Theory Introduction

Introduction to Learning Theory

- Empirical risk estimation
- Learning bounds
 - Finite Hypothesis Class
 - Infinite Hypothesis Class

Learning theory

How to quantify generalization error?



Prof. Vladimir Vapnik in front of his famous theorem

Empirical Risk Estimation

Preliminaries

Lemma 1 (Union Bound) Let $A_1, A_2, ..., A_k$ be k different events, then $P(A_1 \cup ... \cup A_k) \le P(A_1) + ... + P(A_k)$

Probability of any one of k events happening is less the sums of their probabilities.

Preliminaries

Lemma 2 (Hoeffding Inequality, Chernoff bound) Let \overline{Z}_{i} , \overline{Z}_{i} , be m *i* i d, random variables drawn from

Let Z_1, \ldots, Z_m be m i.i.d. random variables drawn from a Bernoulli(ϕ) distribution. i.e. $P(Z_i = 1) = \phi$, $P(Z_i = 0) = 1 - \phi$. Let $\hat{\phi} = \frac{1}{m} \sum_{i=1}^{m} Z_i$ be the sample mean of RVs. For any $\gamma > 0$,

$$P(|\phi - \hat{\phi}| > \gamma) \le 2 \exp(-2\gamma^2 m)$$

The probability of $\hat{\phi}$ having large estimation error is small when m is large!

Empirical risk

Simplified assumption: $y \in (0, 1)$

- ► Training set: $S = (x^{(i)}, y^{(i)}); i = 1, ..., m$ with $(x^{(i)}, y^{(i)}) \sim D$
- For hypothesis h, the training error or empirical risk/error in learning theory is defined as

$$\hat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}$$

The generalization error is

$$\epsilon(h) = P_{(x,y)\sim\mathcal{D}}(h(x) \neq y)$$

▶ **PAC assumption**: assume that training data and test data (for evaluating generalization error) were drawn from the same distribution D

Hypothesis Class and ERM

Hypothesis class

The hypothesis class \mathcal{H} used by a learning algorithm is the set of all classifiers considered by it.

e.g. Linear classification considers $h_{\theta}(x) = 1\{\theta^T x \ge 0\}$

Empirical Risk Minimization (ERM): the "simplest" learning algorithm: pick the best hypothesis h from hypothesis class H

 $\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{\epsilon}(h)$

How to measure the generalization error of empirical risk minimization over \mathcal{H} ?

- Case of finite \mathcal{H}
- Case of infinite \mathcal{H}

Uniform Convergence and Sample Complexity Case of Finite H Infinite H

Case of Finite ${\mathcal H}$

Goal: give guarantee on generalization error $\epsilon(h)$

- Show $\hat{\epsilon}(h)$ (training error) is a good estimate of $\epsilon(h)$
- Derive an upper bound on $\epsilon(h)$

For any $h_i \in \mathcal{H}$, the event of h_i miss-classification given sample $(x, y) \sim \mathcal{D}$:

$$Z=1\{h_i(x)\neq y\}$$

 $Z_j = 1\{h_i(x^{(j)}) \neq y^{(j)}\}$: event of h_i miss-classifying sample $x^{(j)}$

Case of Finite \mathcal{H}

Goal: give guarantee on generalization error $\epsilon(h)$

- Show $\hat{\epsilon}(h)$ (training error) is a good estimate of $\epsilon(h)$
- Derive an upper bound on $\epsilon(h)$

For any $h_i \in \mathcal{H}$, the event of h_i miss-classification given sample $(x, y) \sim \mathcal{D}$:

$$Z = 1\{h_i(x) \neq y\}$$

 $Z_j = 1\{h_i(x^{(j)}) \neq y^{(j)}\}$: event of h_i miss-classifying sample $x^{(j)}$ Training error of $h_i \in \mathcal{H}$ is:

$$\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m \mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}$$
$$\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m Z_j$$

Case of Finite ${\cal H}$

Training error of $h_i \in \mathcal{H}$ is:

$$\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m Z_j$$

where $Z_j \sim Bernoulli(\epsilon(h_i))$

By Hoeffding inequality,

$$P(|\epsilon(h_i) - \hat{\epsilon}(h_i)| > \gamma) \le 2e^{-2\gamma^2 m}$$

By Union bound,

$$P(orall h \in \mathcal{H}. |\epsilon(h) - \hat{\epsilon}(h)| \le \gamma) \ge 1 - 2ke^{-2\gamma^2 m}$$

Uniform Convergence Results

Corollary 3 Given γ and $\delta > 0$, If

$$m \geq rac{1}{2\gamma^2}\lograc{2k}{\delta}$$

Then with probability at least $1 - \delta$, we have $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ for all \mathcal{H} .

m is called the algorithm's sample complexity.

Remarks

- Lower bound on *m* tell us how many training examples we need to make generalization guarantee.
- # of training examples needed is logarithm in k

Uniform Convergence Results

Corollary 4 With probability $1 - \delta$, for all $h \in \mathcal{H}$,

$$|\hat{\epsilon}(h) - \epsilon(h)| \leq \sqrt{rac{1}{2m}\lograc{2k}{\delta}}$$

What is the convergence result when we pick $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\epsilon}(h)$

Theorem 5 (Uniform convergence)

Let $|\mathcal{H}| = k$, and m, δ be fixed. With probability at least $1 - \delta$, we have

$$\epsilon(\hat{h}) \leq \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log \frac{2k}{\delta}}$$

Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite \mathcal{H} ?

Example

- Suppose H is parameterized by d real numbers. e.g. θ = [θ₁, θ₂,...,θ_d] ∈ ℝ^d in linear regression with d − 1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{64d}$
- ► How many samples do we need to guarantee $\epsilon(\hat{h}) \leq \epsilon(h^*) + 2\gamma$ to hold with probability at least 1δ ?

$$m \geq O\left(rac{1}{\gamma^2}\lograc{2^{64d}}{\delta}
ight) = O\left(rac{d}{\gamma^2}\lograc{1}{\delta}
ight) = O_{\gamma,\delta}(d)$$

To learn well, the number of samples has to be linear in d

Infinite hypothesis class: Challenges

Size of $\ensuremath{\mathcal{H}}$ depends on the choice of parameterization

Example

2n + 2 parameters:

$$h_{u,v} = \mathbf{1}\{(u_0^2 - v_0^2) + (u_1^2 - v_1^2)x_1 + \ldots + (u_n^2 - v_n^2)x_n \ge 0\}$$

is equivalent the hypothesis with n + 1 parameters:

$$h_{\theta}(x) = \mathbf{1}\{\theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n \ge 0\}$$

We need a complexity measure of a hypothesis class invariant to parameterization choice

Infinite hypothesis class: VapnikChervonenkis theory

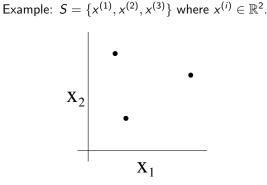
A computational learning theory developed during 1960-1990 explaining the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian mathematician

Vladimir Vapnik (Facebook AI Research, Vencore Labs) Most known for his contribution in statistical learning theory

Shattering a point set

► Given *d* points x⁽ⁱ⁾ ∈ X, i = 1,..., d, H shatters S if H can realize any labeling on S.

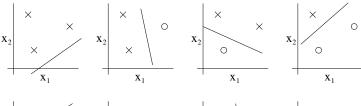


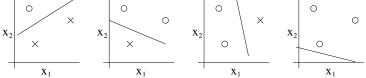
Suppose $y^{(i)} \in \{0,1\}$, how many possible labelings does S have?

Shattering a point set

► Example: Let *H_{LTF,2}* be the linear threshold function in ℝ² (e.g. in the perceptron algorithm)

$$h(x) = \begin{cases} 1 & w_1 x_1 + w_2 x_2 \ge b \\ 0 & \text{otherwise} \end{cases}$$





 $\mathcal{H}_{LTF,2}$ shatters $S = \{x^{(1)}, x^{(2)}, x^{(3)}\}$

VC Dimension

The **Vapnik-Chervonenkis** dimension of \mathcal{H} , or $VC(\mathcal{H})$, is the cardinality of the largest set shattered by \mathcal{H} .

• Example: $VC(H_{LTF,2}) = 3$

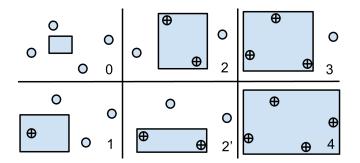
 \mathcal{H}_{LTF} can not shatter 4 points: for any 4 points, label points on the diagonal as '+'. (See Radon's theorem)

► To show VC(H) ≥ d , it's sufficient to find one set of d points shattered by H

► To show VC(H) < d, need to prove H doesn't shatter any set of d points

VC Dimension

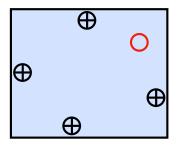
Example: VC(AxisAlignedRectangles) = 4



Axis-aligned rectangles can shatter 4 points. $VC(AxisAlignedRectangles) \ge 4$

VC Dimension

Example: VC(AxisAlignedRectangles) = 4



For any 5 points, label topmost, bottommost, leftmost and rightmost points as "+". VC(AxisAlignedRectangles) < 5

Discussion on VC Dimension

More VC results of common $\mathcal{H}:$

VC(ConstantFunctions) =

Discussion on VC Dimension

More VC results of common \mathcal{H} :

- VC(ConstantFunctions) = 0
- $VC(PositiveHalf-Lines) = 1, \mathcal{X} = \mathbb{R}$

• $VC(Intervals) = 2, \mathcal{X} = \mathbb{R}$

▶ $VC(LTF \text{ in } \mathbb{R}^n) = n + 1, \mathcal{X} = \mathbb{R}^n \leftarrow \text{ prove this at home!}$

Discussion on VC Dimension

More VC results of common $\mathcal{H}:$

- VC(ConstantFunctions) = 0
- $VC(PositiveHalf-Lines) = 1, \mathcal{X} = \mathbb{R}$

•
$$VC(Intervals) = 2, \mathcal{X} = \mathbb{R}$$

▶ $VC(LTF \text{ in } \mathbb{R}^n) = n + 1, \mathcal{X} = \mathbb{R}^n \leftarrow \text{ prove this at home!}$

Proposition 1

If \mathcal{H} is finite, VC dimension is related to the cardinality of \mathcal{H} :

$$VC(\mathcal{H}) \leq log|\mathcal{H}|$$

Proof. Let $d = VC|\mathcal{H}|$. There must exists a shattered set of size d on which H realizes all possible labelings. Every labeling must have a corresponding hypothesis, then $|\mathcal{H}| \ge 2^d$

Learning bound for infinite ${\cal H}$

Theorem 6

Given \mathcal{H} , let $d = VC(\mathcal{H})$.

• With probability at least $1 - \delta$, we have that for all h

$$|\epsilon(h) - \hat{\epsilon}(h)| \le O\left(\sqrt{rac{d}{m}\lograc{m}{d} + rac{1}{m}\lograc{1}{\delta}}
ight)$$

• Thus, with probability at least $1 - \delta$, we also have

$$\epsilon(\hat{h}) \leq \epsilon(h^*) + O\left(\sqrt{rac{d}{m}\lograc{m}{d} + rac{1}{m}\lograc{1}{\delta}}
ight)$$

Learning bound for infinite $\ensuremath{\mathcal{H}}$

Corollary 7

For $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ with probability at least $1 - \delta$, it suffices that $m = O_{y,\delta}(d)$.

Remarks

- Sample complexity using \mathcal{H} is linear in $VC(\mathcal{H})$
- For "most" ^a hypothesis classes, the VC dimension is linear in terms of parameters
- ► For algorithms minimizing training error, # training examples needed is roughly linear in number of parameters in *H*.

^aNot always true for deep neural networks

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let \mathcal{N} be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(\mathcal{N}) = O(w \log w)$.

Recent progress

- ► For feed-forward neural networks with piecewise-linear activation functions (e.g. ReLU), let w be the number of parameters and I be the number of layers, VC(N) = O(wl log(w)) [Bartlett et. al., 2017]
- Among all networks with the same size (number of weights), more layers have larger VC dimension, thus more training samples are needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks.