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Today's Lecture

Practical tools to improve machine learning performance:
» Bias and variance trade off
» Model selection

» A Brief Introduction to learning theory

Start on your project early!



Empirical error & Generalization error

Consider a learning task, the empirical (training) error of
hypothesis h is the expected loss over m training samples

1 ¢ ; :
é(h) = - Z 1{h(x) £ y()} (classification, 0-1 loss)
i=1
é(h) = L Z I|h(xD) — y(D|12 (regression, least-square loss)

m
i=1
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Consider a learning task, the empirical (training) error of
hypothesis h is the expected loss over m training samples

1 ¢ ; :
é(h) = - Z 1{h(x) £ y()} (classification, 0-1 loss)
i=1
é(h) = %Z I|h(xD) — y(D|12 (regression, least-square loss)
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The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
Goal of machine learning

» make training error small (optimization)

» make the gap between empirical and generalization error small



Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large

underfit overfit



Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions
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Changing a model’s capacity controls whether it is more likely to
overfit or underfit

» Choose a model’s hypothesis space: e.g. increase # of
features (adding parameters)

» Find the best among a family of hypothesis functions
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Changing a model’s capacity controls whether it is more likely to
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How to formalize this idea?
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Bias of a model: the expected generalization error if we were to fit
it to an infinitely large training set.

Bias(h) = E[A(x) — h(x)] = E[h(x) — y]

» When we make wrong assumptions in the model, such as too
few paramters, it has large bias (underfit)
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h(x): estimated hypothesis function of a model. h(x): true
hypothesis function

Bias of a model: the expected generalization error if we were to fit
it to an infinitely large training set.

Bias(h) = E[A(x) — h(x)] = E[h(x) — y]

» When we make wrong assumptions in the model, such as too
few paramters, it has large bias (underfit)

Variance of a model:

Var(/A7) = ]E[B(X)2] - IE[/A7(X)]2

» When the model overfits “spurious” patterns, it has large
variance (overfit).



Bias - Variance Tradeoff
If we measure generalization error by MSE

MSE = E[(h(x) — h(x))?] = Bias(h)? + Var(h) + o2,

» o2 represents irreducible error

> in practice, increasing capacity tends to increase variance and
decrease bias.
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If we measure generalization error by MSE

MSE = E[(h(x) — h(x))?] = Bias(h)? + Var(h) + o2,

» o2 represents irreducible error

> in practice, increasing capacity tends to increase variance and
decrease bias.
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Regularization

How to reduce generalization error?
» L-p norm penalty : Q(0) = 3/|0|| <+ reduces model
complexity
» Bayesian estimation of parameters, MAP estimation <
model prior distribution of parameters
> Neural network regularization methods: e.g.

» drop out
» batch normalization

special layers that reduce model complexity



Model Selection

For a given task, how do we select which model to use?
» Different learning models
» e.g. SVM vs. logistic regression for binary classification
» Same learning models with different hyperparameters
» e.g. # of clusters in k-means clustering



Model Selection

For a given task, how do we select which model to use?
» Different learning models
» e.g. SVM vs. logistic regression for binary classification
» Same learning models with different hyperparameters
» e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.



Hold-out cross validation

Given training set S and candidate models My,...,M,:
1. Randomly split S into S¢ain and Se, (e.g. 70% Strain)
2. Training each M; on S;yain,

3. Select the model with smallest empirical error on S,



Hold-out cross validation

Given training set S and candidate models My,...,M,:
1. Randomly split S into S¢ain and Se, (e.g. 70% Strain)
2. Training each M; on S;yain,

3. Select the model with smallest empirical error on S,

Disavantages of hold-out cross validation
» "wastes” about 30% data

» chances of an unfortunate split
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Goal: ensure each sample is equally likely to be selected for
validation.

1. Randomly split S into k disjoint subsets 51, ..., Sk of m/k
training examples (usually k = 10)
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K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for
validation.

1. Randomly split S into k disjoint subsets Sq, ..., Sk of m/k
training examples (usually k = 10)

2. Forj=1...k:
Train each model on S\S;, then validate on §;,
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3. Select the model with the smallest average empirical error
among all k trails.



Leave-One-Out Cross Validation

A special case of k-fold cross validation, when kK = m.

1. For each training example x;
Train each model on S\{x;}, then evaluate on x;,

2. Select the model with the smallest average empirical error
among all m trails.

Often used when training data is scarce.



Other Cross Validation Methods

» Random subsampling

» Bootstrapping: sample with replacement from training
examples (used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)



Other Cross Validation Methods

» Random subsampling

» Bootstrapping: sample with replacement from training
examples (used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.



Learning Theory Introduction




Introduction to Learning Theory

» Empirical risk estimation
> Learning bounds

» Finite Hypothesis Class
> Infinite Hypothesis Class



Learning theory
How to quantify generalization error?

Prof. Vladimir Vapnik in front of his famous theorem



Empirical Risk Estimation




Preliminaries

Lemma 1 (Union Bound)
Let A1, A, ..., Ak be k different events, then

P(A1U...UAL) < P(A) +...+ P(Ax)

Probability of any one of k events happening is less the sums of
their probabilities.



Preliminaries

Lemma 2 (Hoeffding Inequality, Chernoff bound)

Let Z1,...,Zm be m i.i.d. random variables drawn from a
Bernou/ll(gb) distribution. i.e. P(Zi=1)=¢ , P(Z;=0)=1— ¢.
Let p = L "1 Z; be the sample mean of RVs.

For any v > 0,

P(l¢ — & > 7) < 2exp(—27°m)

The probability of ¢ having large estimation error is small when m
is large!



Empirical risk

Simplified assumption: y € (0,1)
» Training set: S = (x(i),y(i)); i=1,...,m with
(X(f)7y(f)) ~D
» For hypothesis h, the training error or empirical risk/error
in learning theory is defined as

m

oh) = S 1{h(x) £ Y0y

i=1

» The generalization error is

E(h):P(XyND( ( )?é}/)

» PAC assumption: assume that training data and test data
(for evaluating generalization error) were drawn from the
same distribution D



Hypothesis Class and ERM

Hypothesis class

The hypothesis class 7 used by a learning algorithm is the set
of all classsifiers considered by it.
e.g. Linear classification considers hy(x) = 1{67 x > 0}

Empirical Risk Minimization (ERM): the “simplest” learning
algorithm: pick the best hypothesis h from hypothesis class H

h = argmin &(h)
heH

How to measure the generalization error of empirical risk
minimization over H?

» Case of finite H

» Case of infinite H



Uniform Convergence and Sample Complexity




Case of Finite H

Goal: give guarantee on generalization error ¢(h)
» Show é(h) (training error) is a good estimate of €(h)

» Derive an upper bound on ¢(h)

For any h; € H, the event of h; miss-classification given sample
(x,y) ~D:
Z =1hi(x) #y}

Z; = 1{h;j(x1)) # yU)} : event of h; miss-classifying sample xU)
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Goal: give guarantee on generalization error ¢(h)
» Show é(h) (training error) is a good estimate of €(h)

» Derive an upper bound on ¢(h)

For any h; € H, the event of h; miss-classification given sample
(x,y) ~D:
Z =1hi(x) #y}

Z; = 1{h;j(x1)) # yU)} : event of h; miss-classifying sample xU)
Training error of h; € H is:

) = =3 1RGD) # 0}

j=1



Case of Finite H

Training error of h; € H is:

where Z; ~ Bernoulli(e( h;))
By Hoeffding inequality,

P(le(hi) — &(hy)| > 7) < 2727
By Union bound,

P(Vh € H.le(h) — &(h)| < 7) > 1 — 2ke 27"



Uniform Convergence Results

Corollary 3
Given ~v and § > 0, If

Then with probability at least 1 — §, we have |e(h) — &(h)| < for
all H.
m is called the algorithm’s sample complexity.

Remarks
> Lower bound on m tell us how many training examples we
need to make generalization guarantee.

> # of training examples needed is logarithm in k



Uniform Convergence Results

Corollary 4
With probability 1 — 9, for all h € H,

oR) — ()| < 1/ 5.~ og %

What is the convergence result when we pick h = argmin,c,, (h)

Theorem 5 (Uniform convergence)

Let |H| = k, and m,d be fixed. With probability at least 1 — §, we
have

N 1 2k
< 1 R —
e(h) < <lr7n€|7r1 e(h)) +2 oy log 3



Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite H?

Example

» Suppose H is parameterized by d real numbers. e.g.
0 = [01,0,...,04] € RY in linear regression with d — 1
unknowns.

> In a 64-bit floating point representation, size of hypothesis
class: |H| = 2644

» How many samples do we need to guarantee
e(h) < e(h*) + 2 to hold with probability at least 1 — 47

1 204 d 1
m> 0 (72 log 6) =0 (72 log 5) = 0,,5(d)

To learn well, the number of samples has to be linear in d



Infinite hypothesis class: Challenges

Size of H depends on the choice of parameterization

Example
2n 4 2 parameters:

huy = H{(ug = v§) + (uf = vi)xa + ...+ (uf = v7)xn > 0}
is equivalent the hypothesis with n 4+ 1 parameters:

h@(X) = 1{90 +01x1+ ...+ 0,x, > 0}

We need a complexity measure of a hypothesis class invariant to
parameterization choice



Infinite hypothesis class: VapnikChervonenkis theory

A computational learning theory developed during 1960-1990
explaining the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian math-
ematician

Vladimir Vapnik (Facebook Al Research, Vencore
Labs)

Most known for his contribution in statistical learn-
ing theory




Shattering a point set

» Given d points x() € X, i =1,...,d, H shatters S if H can
realize any labeling on S.

Example: S = {x(), x() xB)} where x() ¢ R?.

X1

Suppose y() ¢ {0,1}, how many possible labelings does S have?



Shattering a point set

» Example: Let H;1F> be the linear threshold function in R?
(e.g. in the perceptron algorithm)

1 WiX1 + WaXo Z b
h(x) = _
0 otherwise

X X X X
X O X O
X2 X2 X, X2

X X O O
X X X X
O @) @] @]
X @] X O
X X2 X X
X X @) O
X Xy X X

Hi7F 2 shatters S = {x(1) x() x()}



VC Dimension

The Vapnik-Chervonenkis dimension of H, or VC(H), is the
cardinality of the largest set shattered by H.

» Example: VC(Hi7r2) =3

Hi1e can not shatter 4 points: for any 4 points, label points on the
diagonal as '+'. (See Radon's theorem)

» To show VC(H) > d , it's sufficient to find one set of d
points shattered by #

» To show VC(H) < d, need to prove H doesn't shatter any set
of d points



VC Dimension

» Example: VC(AxisAlignedRectangles) = 4

o) 23]
0]
o)
O|:I o ® [2)
O 0 2
(@]
(0] © o
o
o 1| ® a 2P

Axis-aligned rectangles can shatter 4 points.
VC(AxisAlignedRectangles) > 4



VC Dimension

» Example: VC(AxisAlignedRectangles) = 4

O
1D

@I
&)

For any 5 points, label topmost, bottommost, leftmost and rightmost
points as “+".
VC(AxisAlignedRectangles) < 5



Discussion on VC Dimension
More VC results of common H:
» VC(ConstantFunctions) =
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More VC results of common H:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) = 1,X =R

EE
c

» VC(Intervals) =2, X =R
» VC(LTF inR") =n+1,X =R" < prove this at home!



Discussion on VC Dimension
More VC results of common H:
» VC(ConstantFunctions) = 0
» VC(PositiveHalf-Lines) = 1,X =R

EE
c

» VC(Intervals) =2, X =R
» VC(LTF inR") =n+1,X =R" < prove this at home!

Proposition 1
If H is finite, VC dimension is related to the cardinality of H.:

VC(H) < log|H|

Proof. Let d = VC|H|. There must exists a shattered set of size
d on which H realizes all possible labelings. Every labeling must
have a corresponding hypothesis, then |H| > 2¢



Learning bound for infinite H

Theorem 6
Given H, let d = VC(H).
» With probability at least 1 — 9§, we have that for all h

le(h) — &(h)| < O <\/:q og 7 + % log ;)

> Thus, with probability at least 1 — §, we also have

. d 11
e(h) < e(h*) + O <\/m Iog% +—log 5)




Learning bound for infinite H

Corollary 7

For |e(h) — &(h)| < ~ to hold for all h € H with probability at least
1 — 0, it suffices that m = O, 5(d).

Remarks
» Sample complexity using H is linear in VC(H)
» For "most”? hypothesis classes, the VC dimension is linear in
terms of parameters
» For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

?Not always true for deep neural networks



VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).

Recent progress

» For feed-forward neural networks with piecewise-linear
activation functions (e.g. ReLU), let w be the number of
parameters and / be the number of layers,

VC(N) = O(wllog(w)) [Bartlett et. al., 2017]

» Among all networks with the same size (number of weights),
more layers have larger VC dimension , thus more training
samples are needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets

Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for
piecewise linear neural networks.
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