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POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous years,
covered by papers and web pages, we expect the students NOT to copy, refer to,
or look at the solutions in preparing their answers (relating to an unauthorized ma-
terial is considered a violation of the honor principle). Similarly, we expect to not
to google directly for answers (though you are free to google for knowledge about
the topic). If you do happen to use other material, it must be acknowledged here,
with a citation on the submitted solution.

• Required homework submission format: You can submit homework either
as one single PDF document or as handwritten papers. Written homework needs
to be provided during the class in the due date, and PDF document needs to be
submitted through Tsinghua’s Web Learning (http://learn.tsinghua.edu.cn/)
before the end of due date.

It is encouraged you LATEX all your work, and we would provide a LATEX template
for your homework.

• Collaborators: In a separate section (before your answers), list the names of all
people you collaborated with and for which question(s). If you did the HW entirely
on your own, PLEASE STATE THIS. Each student must understand, write, and
hand in answers of their own.

4.1. (3 points) HGR Maximal Correlation In the derivation of HGR maximal corre-
lation analysis, given a feature function f : X → R, we defined the corresponding
information vector as the vector φ ∈ R|X| with elements φ(x) = f(x)

√
PX(x). This

correspondence between function f and information vector φ is denoted by φ↔ f(X).
Show that

(a) φ1 ↔ 1(X), where φ1 =
(√

PX(1), . . . ,
√
PX(|X|)

)T
, and 1(x) is a constant

function, i.e. 1(x) = 1 for all x ∈ X.

(b) The variance of a feature is the length of its corresponding information vector:
E[f 2(X)] = ‖φ‖2, where φ↔ f(X).

(c) The covariance of two features is the inner product of their information vectors:
〈φ1, φ2〉 = E[f1(X)f2(X)], where φ1 ↔ f1(X), φ2 ↔ f2(X).
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4.2. (3 points) ICA In the lecture, we briefly discussed why Gaussian random variables
are forbidden in ICA. To understand this limitation more formally, let’s assume that
the joint distribution of two independent components, say, s1,s2, are Gaussian.

P (si) =
1√
2π

exp

(
−s

2
i

2

)
(a) Please find the joint pdf P (s1, s2).
(b) Suppose that the mixing matrix A is orthogonal. For example, we could assume

that this is so because the data has been whitened, which means A−1 = AT

holds. Please find the joint pdf P (x1, x2) of the mixtures x1 and x2 and then
explain why Gaussian variables are forbidden.

4.3. (4 points) EM for Mixture of Gaussian (Soft k-Means) We talked about EM for Mix-
ture of Gaussians in class. Please repeat what have been done in this problem. Con-
sider the case of a mixture of k Gaussians in which θ is a triplet (φ, {µ1, · · · ,µk}, {Σ1, · · · ,Σk}).
For simplicity, we assume that Σ1 = · · · = Σk = I, which don’t need calculations in
your EM steps. We have that

Pθ(t)(Z = z) = φ(t)
z

Pθ(t)(X = x|Z = z) =
1

(2π)
d
2 |Σz|

1
2

exp

(
−1

2
(x− µ(t)

z )TΣ−1z (x− µ(t)
z )

)
(a) Please derive the updates in the E-step and M-step. Hint: The E-step needs to

write out Pθ(t)(Z = z|X = xi)

(b) Write down the updated parameter θ(t+1) and compare your procedures with
K-means.

4.4. (2 points) (Bonus question) Weyl’s Theorem This problem introduces you to per-
turbation theory in PCA. Perturbation theory is useful in many real world problems,
for instance, suppose we have computed the largest eigenvalue of the covariance ma-
trix of some original samples. Then suddenly a bunch of new data come in and the
covariance matrix should be like

Σ =
noriginΣorigin + nnewΣnew

norigin + nnew

Let’s note it as
Σ = A+B

Define λ(M) as the eigenvalue operator of matrix M . Our target is to bound the
eigenvalues λ(Σ) given some knowledge about λ(A).
Let A,B ∈ Rn×n and their eigenvalues denoted by {λi(A)}ni=1, {λi(B)}ni=1 with
λ1 > · · · > λn. Please prove that for any 1 ≤ k ≤ n

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B)

Hint: you should first prove that for any v ∈ Rn

λn(B) ≤ v
TBv

‖v‖2
≤ λ1(B)


