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POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous years,
covered by papers and web pages, we expect the students NOT to copy, refer to,
or look at the solutions in preparing their answers (relating to an unauthorized ma-
terial is considered a violation of the honor principle). Similarly, we expect to not
to google directly for answers (though you are free to google for knowledge about
the topic). If you do happen to use other material, it must be acknowledged here,
with a citation on the submitted solution.

• Required homework submission format: You can submit homework either
as one single PDF document or as handwritten papers. Written homework needs
to be provided during the class in the due date, and PDF document needs to be
submitted through Tsinghua’s Web Learning (http://learn.tsinghua.edu.cn/)
before the end of due date.

It is encouraged you LATEX all your work, and we would provide a LATEX template
for your homework.

• Collaborators: In a separate section (before your answers), list the names of all
people you collaborated with and for which question(s). If you did the HW entirely
on your own, PLEASE STATE THIS. Each student must understand, write, and
hand in answers of their own.

2.1. (K-means) Given input data X = {x(1), . . . ,x(m)}, x(i) ∈ Rd, the k-means clustering
partitions the input into k sets C1, . . . , Ck to minimize the within-cluster sum of
squares:

arg min
C

k∑
j=1

∑
x∈Cj

‖x− µj‖2,

where µj is the center of the j-th cluster:

µj
def
=

1

|Cj|
∑
x∈Cj

x, j = 1, . . . , k.

(a) i. (2 points) Show that the k-means clustering problem is equivalent to mini-
mizing the pairwise squared deviation between points in the same cluster:

k∑
j=1

1

2|Cj|
∑

x,x′∈Cj

‖x− x′‖2.
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ii. (2 points) Show that the k-means clustering problem is equivalent to max-
imizing the between-cluster sum of squares:

k∑
i=1

k∑
j=1

|Ci||Cj|‖µi − µj‖2.

(b) Define the distortion of k-means clustering as

J({c(i)}mi=1, {µj}kj=1) =
m∑
i=1

‖x(i) − µc(i)‖2.

i. (0.5 points) Show that the distortion J does not increase in each step of
Lloyd’s algorithm (refer to the lecture slides).

ii. (0.5 points) Does this algorithm always converge? Prove it or give a coun-
terexample.

2.2. (PCA) We will talk about a natural way to define PCA called Projection Residual
Minimization. Suppose we have m samples {x(1),x(2), . . . ,x(m) ∈ Rn}, then we try
to use the projections or image vectors to represent the original data. There will be
some errors (projection residuals) and naturally we hope to minimize such errors.

(a) (1 point) First consider the case with one-dimentional projections. Let u be a
non-zero unit vector. The projection of sample x(i) on vector u is represented
by (x(i)Tu)u. Therefore the residual of a projection will be∥∥x(i) − (x(i)Tu)u

∥∥
Please show that

arg min
u:uTu=1

∥∥x(i) − (x(i)Tu)u
∥∥2 = arg max

u:uTu=1

(
x(i)Tu

)2
(b) (1 point) Follow the proof above and the discussion of the variance of projec-

tions in the lecture. Please show that minimizing the residual of projections is
equivalent to finding the largest eigenvector of covariance matrix Σ.

u? = arg min
u:uTu=1

1

m

m∑
i=1

∥∥x(i) − (x(i)Tu)u
∥∥2

then u? is the largest eigenvector of Σ = 1
n

∑n
i=1 xix

T
i

(c) (1 point) Now for a n-dimensional projection where the basis is a complete or-
thonormal set {u1,u2, . . . ,un} that satisfies uT

i uj = δij, where

δij =

{
0 i 6= j
1 i = j

If we pick up a k-dimension projection, the residual will be the linear combination
of the remaining bases.

x(i) −
k∑
j=1

(x(i)Tuj)uj =
n∑

j=k+1

(x(i)Tuj)uj
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Please show that

min
u1,...,uk:u

T
i uj=δij

1

m

m∑
i=1

∥∥∥∥∥x(i) −
k∑
j=1

(x(i)Tuj)uj

∥∥∥∥∥
2

=
n∑

i=k+1

λi,

where λ1 > λ2 > · · · > λn is the eigenvalues of Σ. It leads to the conclusion
that the minimum average projection error is the sum of the eigenvalues of those
eigenvectors that are orthogonal to the principal subspace .

2.3. (Kernel PCA 2 ponit) Show that the conventional linear PCA algorithm is recovered
as a special case of kernel PCA if we choose the linear kernel function given by
k(x,x′) = φ(x)Tφ(x′) = xTx′.

2.4. (Bonus Question) (SVD) In the CCA and maximal correlation lecture, we used
singular value decomposition (SVD)1 to extract important features from data. The
following exercise explores several properties of SVD in details.

Suppose a rank-r matrix A ∈ Rm×n has the singular value decomposition: A =
UΣV T, where U = [u1, . . . , ur] ∈ Rm×r,Σ = diag(σ1, . . . , σr), V = [v1, . . . , vr] ∈
Rn×r, UTU = V TV = Ir, σ1 ≥ · · · ≥ σr > 0.

(a) (1 point) Show that Avi = σiui, A
Tui = σivi, i = 1, . . . , r.

(b) (1 point) The 2-norm of A is defined as

‖A‖2
def
= max

x∈Rn : ‖x‖>0

‖Ax‖
‖x‖

.

Prove that ‖A‖2 = σ1. (Hint: If UTU = I, then ‖Ux‖ = ‖x‖.)

1See https://en.wikipedia.org/wiki/Singular_value_decomposition for reference on SVD.
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