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POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous years,
covered by papers and web pages, we expect the students NOT to copy, refer to,
or look at the solutions in preparing their answers (relating to an unauthorized ma-
terial is considered a violation of the honor principle). Similarly, we expect to not
to google directly for answers (though you are free to google for knowledge about
the topic). If you do happen to use other material, it must be acknowledged here,
with a citation on the submitted solution.

• Required homework submission format: You can submit homework either
as one single PDF document or as handwritten papers. Written homework needs
to be provided during the class in the due date, and PDF document needs to be
submitted through Tsinghua’s Web Learning (http://learn.tsinghua.edu.cn/)
before the end of due date.

It is encouraged you LATEX all your work, and we would provide a LATEX template
for your homework.

• Collaborators: In a separate section (before your answers), list the names of all
people you collaborated with and for which question(s). If you did the HW entirely
on your own, PLEASE STATE THIS. Each student must understand, write, and
hand in answers of their own.

1.1. (Multivariate Least Squares) A data set consists of m data pairs (x(i),y(i)), i =
1, . . . ,m, where x ∈ Rn is the independent variable, and y ∈ Rl is the depen-
dent variable. Denote the design matrix by X def

= [x(1), . . . ,x(m)]T, and let Y def
=

[y(1), · · · ,y(m)]T. Please compute the optimal solution for Θ, where Θ ∈ Rn×l is the
parameter matrix you want to get, and J(Θ) is the sqaure loss.

Hint: Hopefully you can write down the square loss without confusion. Just in case,
we will write it as

J(Θ) =
1

2

m∑
i=1

l∑
j=1

(
(ΘTx(i))j − y(i)

j

)2
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1.2. (Softmax Regression) In multivariate classification problem, we use softmax function
to derive the likelihood of each possible label y and predict the most probable one
for data x ∈ Rn. To train parameter matrix Θ ∈ Rn×k from the given samples(
x(i), y(i)

)
, i = 1, . . . ,m, we need to calculate the derivative of the softmax model’s

log-likelihood function

`(Θ)
def
=

m∑
i=1

log p(y(i)|x(i); Θ) =
m∑
i=1

k∑
l=1

1
{
y(i) = l

}
log

eθ
T
l x

(i)∑k
j=1 e

θTj x
(i)
.

Calculate ∇θl`(Θ).
Hint: The index number of samples has nothing to do with θl, thus you just need to
calculate ∇θl log p(y(i)|x(i); Θ) and sum them up. Indicator function 1

{
y(i) = l

}
= 0

when y(i) 6= l, thus only one term in ∇θl log p(y(i)|x(i); Θ) will be left.

1.3. (Ridge Regression) In PA1, a new method called Ridge Regression was introduced.
By adding a regularization term in ordinary least square regression, the model can
prevent the singularity when calculating matrix inverse. We can formulate ridge
function as follows

J(θ)
def
= ||y −Xθ||2 + α||θ||2,

where X is the design matrix, y is the corresponding label vector and θ is the weight
vector. For an appropriate α, calculate ∇θJ(θ) and give the optimal parameter θ∗.

1.4. (Newton’s Method) Newton’s method solves real functions f(x) = 0 by iterative
approximation. Thus, it can be used in logistic regression problem to calculate the
optimal θ∗ when the derivative function is 0. When data x is multidimensional and
label y ∈ {0, 1}, such iteration procedure is as follows:

θt+1 ← θt − (H−1(θ)∇θJ(θ))|θt (1)

where J(θ)
def
=

m∑
i=1

y(i) log( 1

1+e−θT x
(i) )+(1−y(i)) log(1− 1

1+e−θT x
(i) ),H(θ) is the Hessian

matrix of J(θ). Calculate H(θ) and simplify iteration (1) without calculating the
inverse of the Hessian matrix.
Hint: You may find PA1 question 1.2 very useful.

1.5. (Multivariate Gaussian) The multivariate normal distribution can be written as

Py(y;µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
,

where µ and Σ are the parameters. Show that the family of multivariate normal dis-
tributions is an exponential family, and derive the response function of the generalized
linear model for Multivariate Gaussian with known Σ.
Hint: The parameters η and T (y) are not limited to be vectors, but can also be
matrices. In this case, the Frobenius inner product can be used to define the inner
product between two matrices, which is represented as the trace of their products

〈A,B〉F = trace(ATB).

The properties of matrix trace might also be useful.

https://en.wikipedia.org/wiki/Frobenius_inner_product
https://en.wikipedia.org/wiki/Trace_(linear_algebra)

