
Tsinghua-Berkeley Shenzhen Institute
Learning From Data

Fall 2020

Programming Assignment 3

Issued: Sunday 22nd November, 2020 Due: Sunday 6th December, 2020

POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous
years, covered by papers and web pages, we expect the students NOT to copy,
refer to, or look at the solutions in preparing their answers (relating to an unautho-
rized material is considered a violation of the honor principle). Similarly, we expect
you not to google directly for answers (though you are free to google for knowledge
about the topic). If you do happen to use other material, it must be acknowledged
in README.md, with a citation on the submitted solution.

• Required homework submission format: You should submit the assignment
by the invitation link https://classroom.github.com/a/_2SPOPUG. This link
will create a private GitHub repository from the code template. Upload your mod-
ification to the master branch and view the auto-grading results afterwards. The
teaching assistant will grade your assignment mainly based on the rightness of your
programming implementation. Optionally you can write your ideas in README.md
or in code comments.

• Collaborators: If you collaborated with others, in README.md, list their names
and GitHub ID and for which question(s).

3.1. (kmeans) Recall that kmeans is solving the following optimization problem:

min
C,µ

k∑
j=1

∑
x∈Cj

||x− µj||2

Exact solution of the above problem is NP-hard. We proceed by an iterative scheme
instead. The iterative algorithm first initializing the cluster centroids µ1, . . . , µk. We
can choose k different points from x1, . . . , xm as the random initialization. Then the
algorithm iterates between updating the centroids (E step) and assigning labels (M
step).
(a) (2 points) Please use such algorithm to implement kmeans by completing the

code in kmeans.py. Your implementation should follow Algorithm 1.

1

Programming Assignment 3 Learning from Data Page 2 of 3

Algorithm 1 K-Means Clustering
Input: data points x(1), . . . , x(m) and cluster size k
Output: clustering label vector y

1: Initialize cluster centroids µ1, . . . , µk ∈ Rn randomly
2: while not convergent do
3: for i = 1, . . . , n do
4: yi = argminj ||x(i) − µj||2

5: for j = 1, . . . , k do
6: µj =

∑m
i=1 1{yi=j}x(i)∑m

i=1 1{yi=j}

(b) (2 points) kmeans can be regarded as a special Gaussian mixture model with
known uniform variance. If the dataset does not follow this assumption, the
clustering result may behave poorly and contrary to the expectation. In this
question, you are required to apply kmeans clustering to an artificial dataset
with two eclipse contour and present the clustering result in the form of fig-
ure. Besides, you should write down some analysis in README.md to explain
why the unexpected clustering result happens. For the experiment code, please
see kmeans-experiment.py for detail of artificial data generation and result
visualization.

3.2. (spectral clustering with rbf kernel) In this question, we consider unnormalized spec-
tral clustering, which deals with the unnormalized Laplacian matrix of a graph,
L = D −W . The weighted matrix W is constructed using rbf-kernel,

Wij = exp(−γ||x(i) − x(j)||2) (1)

while the diagonal matrix D is obtained by summing each row of W . After making
dimension reduction from L by choosing its first k eigenvectors V (corresponding to
k smallest eigenvalues), we make clustering in the reduced feature space by k-means,
which you have already implemented in the previous question.
(a) (4 points) Please implement spectral clustering by completing the code in spec-

tral_clustering.py. Your implementation should follow Algorithm 2.

Algorithm 2 Spectral Clustering
Input: data points x(1), . . . , x(n) and cluster size k
Output: clustering label vector y

1: Build the similarity matrix W by (1)
2: Construct unnormalized Laplacian matrix L
3: Compute first k eigenvectors V = [v1, . . . , vk] of L
4: Define ui ∈ Rk as the i-th row of V , cluster u1, . . . , un into k clusters using k-means

and obtain the cluster label y1, . . . , yn

(b) (2 points) The performance of spectral clustering is influenced by the scaling
parameter γ. In this question, we use grid search to get optimal γ. We as-
sume the ground truth label is known in advance and use adjusted rank index

Programming Assignment 3 Learning from Data Page 3 of 3

to evaluate the clustering performance for different γ. adjusted rank index is a
similarity metric of two label vectors, which gives the highest score 1 if the two
underlining clusters are exactly the same. Please use this method to tune the
parameter γ for the given three circle dataset. You should report your optimal
γ and plot the clustering result for this γ. Besides, write down your analysis in
README.md why γ in the range you choose can produce the desirable result. For
the experiment code, please see spectral-experiment.py for detail of artificial
data generation and result visualization.

3.3. (bonus, 2.5 points) (spectral clustering with normalized Laplacian) In this question,
you are required to implement spectral clustering with normalized Laplacian. Follow-
ing the convention of scipy, given the weight matrix W , the normalized Laplacian
is defined mathematically as:

W ′ = W − diag{W}

D = diag{d1, . . . , dn} where di =
n∑

j=1

W ′
ij

L = I −D−1W ′ (2)

Please extend your existing implementation in the class function _get_embedding
of spectral_clustering.py to support normalized Laplacian. Your implementation
should follow Algorithm 3.

Algorithm 3 Normalized Spectral Clustering
Input: data points x(1), . . . , x(n) and cluster size k
Output: clustering label vector y

1: Build the similarity matrix W by (1)
2: Construct normalized Laplacian L from (2)
3: Compute first k eigenvectors V = [v1, . . . , vk] of L
4: Define ui ∈ Rk as the i-th row of V , cluster u1, . . . , un into k clusters using k-means

and obtain the cluster label y1, . . . , yn

Notice:

i) Use matrix operations other than loops for efficiency. If the running time of
Auto-Grading steps exceeds 5 minutes, you will get point deductions.

ii) For algorithm implementation questions, You can only use numpy. Using any API
of scipy and sklearn will lead to point deductions. However, for analysis
question you are allowed to use any other third-party packages.

iii) For analysis problem, please write down your answers in README.md. You can
follow report-template.md and click Preview changes on GitHub webpage to
view the rendered contents after modification. In rare cases when you could not
get familiar with the specific syntax of markdown, you could upload a .docx or
pdf file to the root directory of your GitHub repository and declare where your
answers are written in README.md.

