
Tsinghua-Berkeley Shenzhen Institute
Learning From Data

Fall 2020

Programming Assignment 2

Issued: Friday 23rd October, 2020 Due: Friday 6th November, 2020

POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous
years, covered by papers and web pages, we expect the students NOT to copy,
refer to, or look at the solutions in preparing their answers (relating to an unautho-
rized material is considered a violation of the honor principle). Similarly, we expect
you not to google directly for answers (though you are free to google for knowledge
about the topic). If you do happen to use other material, it must be acknowledged
in README.md, with a citation on the submitted solution.

• Required homework submission format: You should submit the assignment
by the invitation link https://classroom.github.com/a/CLGZIvE-. This link
will create a private GitHub repository from the code template. Push your mod-
ification to the master branch and view the auto-grading results afterwards. The
teaching assistant will grade your assignment mainly based on the rightness of your
programming implementation. Optionally you can write your ideas in README.md
or in code comments.

• Collaborators: If you collaborated with others, in README.md, list their names
and GitHub ID and for which question(s).

1.1. (5 points) Automatic differentiation In class, we have learned to build a neural net-
work, we need to implement the forward and backward propagation of given network
model. This underlining mechanism is also called Automatic differentiation, autodiff
for short. Following the convention of popular neural network library. We call an
object with the ability of autodiff tensor. To explain autodiff operation of tensor,
we take a single variable function f(a) = a2 + 3a for an example. Then the tensor
object a,p,s,f_a are defined as follows:

1 a = tensor ()
2 p = product (a, a)
3 s = scale (a, 3)
4 f_a = add(p, s)
5

The forward propagation evaluates the function value f for given a and can be de-
composed into the following computational graph. To implement this forward pass,
we only need to implement add, product, scale operators and use the following
pseudo Python code to evaluate f(a) at a = 1.2:

1



Programming Assignment 1 Learning from Data Page 2 of 3

add

product scale

3

add

product scale

3

forward backward

1 f_a.eval (1.2) = s.eval (1.2) + p.eval (1.2)
2 s.eval (1.2) = 3 * a.eval (1.2)
3 p.eval (1.2) = a.eval (1.2) * a.eval (1.2)
4

The backward pass of f(a) computes the derivative of f about a, also illustrated in
the above computational graph.

1 a.back(f_a) = p.diff(a) * p.back(f_a) + s.diff(a) * s.back(f_a)
2 p.back(f_a) = f_a.diff(p) * f_a.back(f_a)
3 s.back(f_a) = f_a.diff(s) * f_a.back(f_a)
4

where x.back(x) is defined as identity as a convention since there is no back operation
starting from self. The diff method of each tensor object computes the derivative
about the adjacent variable. For example, p.diff(a) = 2 * a, s.diff(a) = 3 etc.
For multiple variable functions, the idea is the same as above but caution is needed
for dimension coherence in matrix multiplication.
Please implement Automatic differentiation for rank 2 tensor (matrix) based on cod-
ing template within directory lfdnn. To be more specific, you need to implement
the atomic tensor object product, scale, sigmoid and some derived tensor object.
We call a tensor object atomic if the method eval and diff should be implemented,
while a derived tensor can be treated as composition of atomic tensor object.
Hint: For rank 0 tensor (scalar) or rank 1 tensor (vector), we can treat them as
special rank 2 tensor.

1.2. (5 points) Multilayer perceptron You have learned Ridge Regression and softmax
regression, which can be treated as special kind of multilayer perceptron. There
are no hidden layers in these regression models and their representational power is
limited. To represent more complex input-output relationship, we need to introduce
hidden layers. For multi-class classification problems, suppose there are k hidden
layers, then the mathematical form of multilayer perceptron is as follows:

h0 = x

hi = σ(wihi−1 + bi), i = 1, . . . , k

ŷ = softmax(whk + b)

We use the averaged cross entropy to define the loss function, which can also be found



Programming Assignment 1 Learning from Data Page 3 of 3

in WA1.2.

ℓ(Θ)
def
=

m∑
i=1

log p(y(i)|x(i);Θ) =
m∑
i=1

k∑
l=1

1
{
y(i) = l

}
log

eθ
T
l x(i)∑k

j=1 e
θT
j x(i)

.

where σ is the activation function and ŷ is the probability vector for each class We
can use stochastic gradient descent to minimize ℓ(Θ), which has the following update
scheme for ℓ(Θ):

ℓ(Θ)t+1 ← ℓ(Θ)t − α∇Θℓ(Θ)θt

where α is called the learning rate.
To compute the gradient of the loss function, we can use the autodiff library of the
first question and all forward and backward propagation details are hidden in the
autodiff library.
Please implement Multilayer perceptron classifier by completing the code in model.py.
Besides, use your model to re-implement logistic regression in logistic_regression.py,
which you have already implemented with IRLS in PA1.

1.3. (bonus 2.5 points) Ridge Regression with autodiff Please re-implement ridge regres-
sion by completing the code in ridge_regression.py, which you have already imple-
mented with direct solution in PA1. You are required to use SGD with the autodiff
library of question 1.

Notice:

2.1. Use matrix operations other than loops for efficiency. If the running time of
Auto-Grading steps exceeds 5 minutes, you will get point deductions.

2.2. You are expected to only use numpy packages to implement the algorithms.

2.3. All questions assume that the data are not centered around zero. Therefore, you
need to train the extra bias parameter in your code.


