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Abstract 
With the dramatically increasing number of insecure IoT devices deployed in the 
network, new cyberattack surfaces arise by using IoT botnet. Conventional signature-
based intrusion detection system or supervised learning based detection system is not 
as effective as before since the data of unknown attacks cannot always be included in 
the database in time. Also, traditional machine learning method that requires highly 
hand-crafted feature engineering is time-consuming. Our work presents a novel 
anomaly detection system with a CNN-LSTM autoencoder that directly digests raw 
bytes from network packets. It only learns from normal data so there is no need to 
collect a huge amount of malicious data. With an empirical experiment, this report 
demonstrates that our method is effective to detect unknown malicious network-based 
behaviors. 

1. Introduction 
The Internet of Things (IoT) devices are increasingly found in every daily life of the 
people from different fields of work, such as the TVs, the intelligent sweepers, the 
intelligent lamps and so on. Despite the increasing conveniences that the IoT brings, 
there exist more and more risks about the Internet for all the IoT devices could 
communicate the information about their users to other parties over the Internet. Among 
these risks, the DDoS attack reaches unprecedented levels, the need of timely detection 
of IoT botnet attacks is becoming imperative for mitigating the disruptions associated 
with these attacks. In 2016, an IoT botnet Mirai controlled over 100,000 IoT to conduct 
one of the greatest DDoS attacks. Therefore, it is necessary to find a detection method 
of IoT cyberattacks for mitigating risks and propagation. Furthermore, new types of 
attacks are continuously arising, thus a signature-based intrusion detection or a 
supervised learning method that requires data from all known categories of attacks is 
not practical as before. 

2. Related Work 



Many detection algorithms were surveyed in [1], however, autoencoders were not used 
at all. What’s more, there are few works to do related to the IoT. Although autoencoders 
were extended for outlier detection in [2], they still required security analysts to actively 
label data for subsequent supervised learning. Similarly, the writers of [3] apply deep 
learning to system logs for detecting insider threats. Differently, what they use are 
DNNs and RNNs , and depend on further manual inspection. All in all, our method 
differs from previous studies because we learn from benign data by training deep 
autoencoders for each device, and use them as standalone automatic tools for 
instantaneous detection of IoT botnet attacks. 

Our motivation is, given a large number of heterogeneous IoT devices connected to an 
organizational network, it is imperative to devise an automated method that is 
unsupervised, efficient and accurate in detecting compromised IoT devices which are 
being attacked or used as botnet to launch attacks against other entities. In our work, 
we will implement a system and test it on the real IoT traffic data collected by another 
research team. 

3. Implementation 

3.1 System Overview 

Basically, our system consists of three components: capturer, handler and detector, as 
depicted in Fig.1. The input of our system is either a collection of pcap files, which is 
a file format for captured network traffic packets, or a network interface for real-time 
network traffic capture. A network packet is a formatted unit of data carried by a packet-
switched network, which consists of control information and user data. Typically, a 
network packet can be divided into five layers, from bottom to top: physical layer, link 
layer, network layer, transport layer and application layer. In our work, we only care 
about the data above the network layer, since the network layer contains the IP address 
that is an identifier of a certain device in the network, and transport layers and 
application layer reveal the data transmission behavior of a device. Our system can be 
deployed on a switch where all network traffic will pass through or a PC which can 
monitor the network behavior of home-based IoT devices. We will explain each 
component in detail in the following sections. 



 
Fig.1 System overview 

3.2 Capturer 

When a packet from a pcap file is read or from a network interface arrives, the capturer 
will only capture those packets that come from the IP addresses of certain IoT devices 
in the network and filter out others. The motivation of doing this step is to reduce the 
processing overhead. Once a device is compromised by an attacker, the traffic 
outcoming from the IP address of this device is supposed to reveal abnormality. After 
filtering, the capturer will hand over the packet to the handler for further processing. 

3.3 Handler 

The handler is responsible for crafting a sequence of received packets into a sequential 
data sample that can be digested by an one-dimensional CNN and LSTM model. The 
handler treats each raw byte in a packet as a feature. It will truncate or pad zeros to the 
end of packet bytes into a fixed length, denoted as PACKET_LEN, and normalize the 
bytes so that it transforms a network packet into a feature vector with a length of 
PACKET_LEN. Then, a Fist-In-First-Out queue is used to store the feature vector from 
the same IP address and aggregate them into a sequential data sample. As soon as the 
length of the queue is equal to a certain length, denoted as SEQ_LEN, the handler will 
emit a sequential data sample with a length of SEQ_LEN to the detector specified for 
this IP address, and the queue will be updated by popping out the first-in feature vector 
and waits for the next packet. 

3.4 Detector 

The detector is a network-based anomaly detection approach by a CNN-LSTM 
autoencoder that attempts to compress behavioral snapshots of benign IoT traffic. Each 
device has its own detector, that is, a detector only train and execute on the traffic data 
from specific IP address. It is because different types of devices might exhibit 
remarkably different behaviors so that we cannot simply include all of them in one 



detector. A detector has a buffer to store the data samples up to a size of MINI_BATCH. 
Once the buffer is filled up, the training process of the autoencoder will start. In the 
model, one-dimensional CNN is used to learn high-dimensional features from each 
sequential data sample and LSTM is used to capture the sequence relevance. The model 
architecture is illustrated as Fig.2. The output of an autoencoder is the reconstruction 
of the input data and the training process will try to minimize the loss between the input 
and output so that the model can learn the snapshot of benign data. By using an 
autoencoder architecture, all we use to train is the normal data from benign IoT devices 
so we do not need to label any data, or collect data from all kinds of known cyberattacks.  

 

Fig.2 Model architecture 

After the training process and when the detector is executing on testing data, a threshold 
of mean squared error between the input and the output of the autoencoder is decided 
to differentiate the normal and malicious behavior. We assume that the mean squared 
errors among benign data is subject to a normal distribution, so we use 2-sigma rule to 
generate an interval of threshold. If an error is out of this interval, the detector will 
consider it as abnormality and log some information of the malicious behavior, such as 
the destination IP address, port, payload, etc. 

4. Evaluation 

4.1 Dataset 

The IoT traffic dataset was asked from the research team of an IMC 2019 paper: 
“Information Exposure From Consumer IoT Devices: A Multidimensional, Network – 
Informed Measurement Approach” [4]. This data set is compromised of real network 
traffic data when various interactions with different IoT devices are conducted in the 
two labs, one located in US and another in UK. Another dataset that we used is the 
Mirai traffic provided by the team of paper “Kitsune: An Ensemble of Autoencoders 
for Online Network Intrusion Detection” [5]. The dataset consists of full infection 



stages of Mirai, including scanning, command & control, malware loading and 
launching attacks.  

4.2 Environment 

The experiment was conducted on a server with 24-core Intel® Xeon® CPU E5-2630 
v2 2.60GHZ, and NVIDIA GeForce RTX 208 GPU. We use Keras backended with 
Tensorflow 2.0 for model implementation. Scapy is used as a tool for pcap file parsing 
and network packet capturing. 

4.3 Metrics 

In this experiment, the data from the US lab are used to train the model as training 
samples and the data from the UK lab are used to select the proper hyperparameters of 
PACKET_LEN, SEQ_LEN, MINI_BATCH and epochs. By running a grid search, we 
set the hyperparameters as follows: PACKET_LEN:=1500, SEQ_LEN:=6, 
MINI_BATCH:=128, epochs:=10. The data from the UK lab are also used to evaluate 
the model training by the former one. Moreover, the real Mirai botnet and DDoS attack 
traffic will be used to test the detection capability of the system. 

We use 4 IP-enabled IoT devices in the dataset for the experiment: a TP-Link plug, a 
Google Home Mini, a Xiaomi cleaner and a Blink camera. The testing dataset is 
generated by the combination of benign traffic from UK’s lab and malicious traffic from 
bot IoT device infected by Mirai. The detector of each device is supposed to do a binary 
classification to predict whether the ongoing traffic is benign or malicious. 

As Table.1 shows, all of the four devices demonstrate a good performance. The metrics 
suggest that our system is capable of detecting malicious traffic when a device is 
controlled or infected by the malware, while holding a very low level of misidentifying 
some benign traffic as abnormality. 

Table.1 Metrics of four devices for binary classification 

Device TNR FPR TPR FNR Precision Recall F1-score 

TP-Link plug 0.966 0.0345 1.00 0.00 0.967 1.00 0.983 

Google Home 
Mini 

0.923 0.0765 1.00 0.00 0.929 1.00 0.963 

Xiaomi cleaner 1.00 0.00 0.999 0.000814 1.00 0.999 0.9996 

Blink camera 0.992 0.00822 1.00 0.00 0.992 1.00 0.996 



Average 0.970 0.0298 0.9998 0.000203 0.972 0.9998 0.985 

 

5. Conclusion 
In this project, we proposed a CNN-LSTM autoencoder to learn from normal traffic 
data among IoT devices and to detect the abnormal behaviors and predict whether they 
are compromised by attackers. We evaluate our system by both real IoT network traffic 
data and Mirai botnet traffic data. The result shows that our system is able to learn the 
normal behaviors well from different IoT devices with various use and interactions, and 
precisely detect abnormal traffic generated by infected devices. 
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