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Abstract—The machine learning and computer vision com-
munity is witnessing an unprecedented rate of new tasks being
proposed and addressed in , thanks to the power of deep
convolutional neural network to find complex mappings from
feature space X to label space Y [1]. The advent of each task
often accompanies the release of a large-scale human-labeled
dataset, for supervised training of the deep network. However,
it is expensive and time-consuming to manually label sufficient
amount of training data. Therefore, to gain useful knowledge for
the target mission, it is important to develop algorithms that can
exploit off-the-shelf labeled data set to get knowledge about target
domain. While previous works focus primarily on transferring
learning from a single source, we are researching multi-source
transferring across domains and tasks. In this paper,we propose
a new framework which achieves multi-sources transfer-learning
by training a classifier to re-weight various sources in order
to adapt the rich yet complex information among sources to
boost the target learning. Experiments of two source domains
transferring to one target domain illustrate the effectiveness of
our method.

Index Terms—multi-source transfer learning; deep learning;
convolutional neural network; classification

I. INTRODUCTION

Machine learning has advanced dramatically over the past
two decades and has become a practical technology for
widespread commercial use from the laboratory. Machine
learning is currently one of the fastest growing technolo-
gies at the heart of artificial intelligence and data science,
commonly used in intrusion detection, speech recognition,
computer vision, pattern recognition, text analysis, and other
fields. It’s got great results, of course. However, many machine
learning algorithms need to satisfy the following two basic
conditions in order to obtain a high accuracy classification
model: (1) the training and test data come from the same
feature space with the same distribution, which fulfill the
independent and identical distribution conditions; (2) There
are enough examples [2] available for training. Nonetheless, in
practical applications, these expectations are not always easily
met. Particularly in emerging applications such as text min-
ing, bioinformatics, distributed network sensor networks, and
social network science, where the independent and identical
distribution conditions between training and testing data can
not be fulfilled under the influence of time, environmental
changes, or sensor system instability. When the distribution
of data shifts, we need to re-collect the training data in most
models, while the previous training data won’t be used again,
resulting in unused data resources. Furthermore, data sample

resources are often scarce in some areas, and data collection
costs are very expensive or even impossible. In this case, it is
desirable to transfer knowledge between fields of work.

Transfer learning, also known as domain adaptation, is an
important way of solving the above-mentioned problems. On
the one hand, in order to satisfy independent and equivalent
distribution conditions, we no longer requires new training and
testing data. On the other hand, when training data in the target
domain is sparse and not adequate to obtain a good classifier,
while the source domain data (often containing a large number
of labeling samples) is similar to the target domain, source
domain can be used to assist the learning tasks in the target
domain.

II. RELATED WORK

Although domain adaptation has been extensively studied
in recent years, most theoretical studies and algorithms focus
on the setting of single-source single-target adaptation, which
results that the effectiveness of target domain predictors is
largely dependent on transferability between source domain
and target domain. If there is a strong transferability between
the two domains, there is no question that the transfer learning
approach can do a good job in extracting such relevant
information and providing a predictive model in the training
process of the target domain. Nevertheless, if there is no
similarity between the source domain and the target domain
or the similarity is low, then the transfer learning approach
can not improve the performance of target domain predictors
and may even result in a negative transfer that reduces the
performance of the target domain predictor.

Previous multi-source transfer learning [3]–[5] focuses on
extracting domain-free representations from multiple sources
rather than combining them together.There are typically two
approaches to tackle the learning of multi-source conversion.
(1) One strategy is to re-weigh different sources to adapt
the rich yet complex information between sources to enhance
target learning [3], [4]. (2) Another successful strategy is to use
the multi-task framework to jointly guide knowledge transfer
with multiple sources [5], [6].

In this project, we implement multi-source transfer learning
by re-weighting different sources to adapt the rich but complex
information between sources to improve the performance of
target learning. We experiment by using large and relative
small amount of source data to transfer to a target domain



respectively, and results illustrate the effectiveness of our
proposed multi-source method.

The following is the structure of this article. Section 2
outlines the related work other scholar did. In Section 3, first
we introduce the data set and model we used, and then we
explain the structure of our model. Section 4 outlines the
related experiments we did and explores the insight of our
model. Section 5 draws a conclusion.

III. A FEATURE TRANSFERABLE FRAMEWORK FOR
MULTI-SOURCE LEARNING

In this section, we proposed a feature transferable frame-
work for multi-source learning by re-weighting different
sources. First of all, we’ll start with some basic knowledge.

A. Dataset

It is well-known that deep models require a large number
of training data. However, existing data set for visual tasks are
usually small-scale or limited in the number of categories, so
it’s very important to transfer knowledge from relevant sources
to help us train a model. By far, we have Food-256 [7], which
contains 256 kinds of food photos. Each food photo has a
bounding box indicating the location of the food item in the
photo. Most of the food categories in this dataset are popular
foods in Japan and other countries. We also have Food-101 [8]
which consists of 101 food categories, with 101,000 images
in total and 1,000 images for each category. In addition, the
training images were not cleaned, and thus still contain some
amount of noise. This comes mostly in the form of intense
colors and sometimes wrong labels. All images were rescaled
to have a maximum side length of 512 pixels.

The target dataset is downloaded directly from website
https://www.floydhub.com/jean72human/datasets/rice-dataset
called Rice-dataset. The raw dataset is splitted into training
data of 348 images and test data of 80 images. This dataset
may represent the small scalar of dataset we obtained in the
daily appliaction.

B. Basic Model

We designed our feature extractor according to VGG-19,
which is shown in figure 2. VGG-19 is a convolutional neural
network that uses small 3 × 3 filters in all convolutional
layers and has a total of 138M parameters. It is trained on
more than a million images from the ImageNet database.

The network is 19 layers deep and can classify images into
1000 object categories, such as keyboard, mouse, pencil, and
many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has
an image input size of 224×224.

C. Problem Formulation

Consider a two source domain adaptation problem with
source domains Ds = {An, Bn}, we also have train target
domain Cn, and test target domain Dn. The multi-sources
domain adaption problems aims to find a hypothesis in the
given hypothesis space H , which minimizes the testing target
error on Dn.

D. Our Framework

To achieve this goal, we propose our framework as shown
in figure 1. It is composed of feature extractors, feature
concatenation, and classifiers based on this [9]. Our methods
can be summarized as followed, which is shown in figure1.
The training process contains the following 4 main steps :

1) Train the models E1, E2 based on Food-101 and Food-
256 respectively by using VGG-19.

2) Share parameters of E1 and E2 in the feature extraction
layers with target domain model E.

3) Take the rice training data as input, and stitch the feature
extracted by VGG-19 in E1 and feature extracted by
VGG-19 in E2 together.

4) Take this kind of mixture of the source domains as the
input, then a target classifier is trained on this with cross-
entropy loss.

The algorithm is demonstrated as follows.

Algorithm 1: Framework of transfer learning for our
system
Input: The set of sample in dataset Food-256 An; The

set of samples in dataset Food-101 Bn; A
small batch of target training dataset Rice Cn;
A small batch of target test dataset Rice Dn:

Output: Model of the target domain, E.
1 function An, Bn . . . E:
2 Training model E1 on the An based on V GG− 19.
3 Training model E2 on the Bn based on V GG− 19.
4 Sharing the parameters of E1, E2 in feature

extractors with E.
5 Extracting features T1 and T2 of Cn using model

E.
6 Training model E on the mixture of T1 and T2.
7 Classifying samples in Dn using model E.
8 return E and predictions of Dn.
9 end function

IV. EXPERIMENTS

A. Experimental setup

In order to evaluate the effectiveness of our proposed
method, we perform three experiments based on three food
classification datasets: Food-101, Food-256 and a simple Rice-
dataset. Food-101 dataset contains 101 food categories, with
101,000 images in total and 1000 for each category. Food-256
contains 256 food categories. Rice-dataset, however, contains
only 4 kinds of rice images: fried rice, jollof, plain rice, and
waakye. Example images from dataset can be found in Figure
3.

For Food-101 dataset, we have 101000 images in total,
and we split them into 100,000 images as training set and
1,000 images as testing set. For Food-256 dataset, we have
31,395 images in total and we split them into 30,000 images
as training set and 1395 images as testing set. Rice-dataset has



Fig. 1: Our feature transferable framework for Multi-source transfer learning

Fig. 2: The basic model of our framework [10]

only 428 images in total, thus we separated it into 348 images
as training set and 80 images as testing set. We use VGG-19
architecture as our baseline neural network for both source and
target task training and change the last layer of its classifier
to adapt to number of categories in corresponding dataset. All
of our experiments are implemented using Pytorch.

In the first experiment, we use the whole Food-101 and
Food-256 dataset as our source domain and train on them
respectively, ending up with pretrained feature extraction net-
works. Then we use the feature extractors trained on Food-
101 and Food-256 as frozen feature extractor to further train
on Rice-dataset, respectively. Using our proposed network,
we then use the frozen feature extractors of Food-101 and
Food-256 synchronously, concatenate the features of these two
models together to further train on Rice-dataset.

In the second experiment, we use only 4 kinds of food
in Food-101 and only 4 kinds of food in Food-256 dataset
as our source domain, train on them respectively as the
first experiment, ending up with pretrained feature extraction

networks. The 4 kinds of food in Food-101 do not contain any
categories similar to rice(apple pie, baby back ribs, baklava
and beef carpaccio), while the 4 kinds of food in Food-256
are all similar with rice(rice, eels on rice, pilaf and chicken
and egg on rice).

In the third experiment, we also use 4 kinds of food in
Food-101 and only 4 kinds of food in Food-256 dataset as our
source domain. However, here the 4 kinds of food in Food-256
contains no food about rice (spaghetti, takoyaki, waffle, and
kung pao chicken). Also, since there are only 498 compared
with 4000 images in 4 kinds of categories from Food-101,
we sample 400 images in 4000 to make the amount of data
similar in such two source domain datasets. Thus, this becomes
a problem with relatively small amount of training and testing
examples.

We also obtained the baseline performance of training and
testing on pure Rice-dataset using VGG-19 architecture in
order to compare with our multi-source methods.

B. Results on Food-101 and Food-256 dataset

In this part, we use the whole dataset of Food-101 and Food-
256 as source domains. The Food-101 dataset is a collection
of 101 kinds of food with 101,000 images in total, and we
use 100,000 of them as training samples while the rest 1000
as testing set. We train a feature extractor based on Food-
101 dataset. For Food-256, we use 30,000 images as training
set and 1395 images as testing dataset. We train the network
using number of epochs = 10. Then we transfer from Food-
101 and Food-256 to Rice-dataset respectively by fixing the
feature extractors and train a classifier on Rice-dataset. Finally,
we use Food-101 and Food-256 as two source domains and
transfer them to Rice-dataset . The results of single source to
target domain are over 30 epochs and the result of multi-source
is over 60 epochs. The result of Rice-dataset trained from
scrach comes from using only the Rice-dataset as the source
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Fig. 3: Examples images from the (a) Food-101, (b) Food-256, and (c) Rice-dataset.

domain and training for 60 epochs. For a fair comparison, all
the experiments are based on VGG-19 pretrained architecture.

The results are shown in Table I. Accuracy of testing on
Food-101 and Food-256 models are not high for that they
are trained only 10 epochs which may not be enough for the
large amount of data in original Food-101 and Food-256. Our
model of multi-source achieves an 85.00% average accuracy,
outperforming results of transfering from Food-101 and Food-
256 to Rice-dataset by 4.25% and 3.25%, respectively. One
interesting observation is that the results of our proposed
multi-source model is lower than that of training Rice-dataset
from scratch. This phenomenon is probably due to the fact that
the target dataset here is sufficient to build a model, and we
can always get the perfect classifier when training and testing
on the same domain or dataset with similarity.

models train accuracy test accuracy epoch

rice dataset only 99.85±0.15 88.75±1.25 60
food-101 only 50.36±1.22 49.93±0.77 10
food-256 only 35.35±1.61 35.25±2.53 10

food-101 → rice 99.71±0.29 80.75±3.25 30
food-256 → rice 99.73±0.27 81.75±5.75 30

food-101+256 → rice 97.70±2.29 85.00±2.50 30

TABLE I: Results of complete 101 and 256 categories (Exper-
imental results for using complete Food-101 and Food-256 as
source domains. Our proposed multi-source domain adaptation
method achieves 85.00% accuracy, outperforming the single
source methods by 4.25%.)

C. Results on subsets of Food-101 and Food-256 dataset

Since the Food-101 and Food-256 may have too much
categories compared with Rice-dataset (101 and 256 vs. 4),
and the amount of data may be too much in comparison with
Rice-dataset (101,000 and 31,395 vs. 428), we consider that
we should make the amount of data balanced. We randomly
construct a set of 4 categories from Food-101 and Food-256
using the first 4 kinds of food, where all the 4 kinds of food
from Food-256 are rice images, and the results are shown
in Table II. Also, Table III is especially experimented on 4
kinds of categories in Food-101 and 4 kinds of food in Food-
256 without any similar rice images. The results of single

source to target domain are over 30 epochs and the results of
multi-source are over 30 or 60 epochs. From Table II, we can
easily find out that the test accuracy of multi-source model
(87.50%) is close to the one that is trained on Rice-dataset
only (88.75%) and slightly higher than results of single source
domain adaptation, which is 87.43% and 86.75%. Similar
results can be found in Table III. Furthermore, the result
classification accuracy illustrates that there exists over-fitting
problems, since the train accuracy is nearly 100 percent, which
is higher than the test accuracy, though we do improve the code
by reducing the numbers of features and so on.

Comparing the experimental results of the subsets with and
without rice, an interesting phenomenon can be discovered that
the performance of transferring with rice (87.50%) is higher
than that without rice (87.08%). This can be illustrated that
since we intentionally select some rice data into training set, it
improves the performance. Correlation between different rices
food (such as fried rice, black rice and porridge to white rice)
is apparently higher than that between rices and other kinds
of food (such as desserts, soup and fried noodles). Actually,
the difference between two subsets is smaller and both are
close to the common one without task transfer, convincing a
marvelous success of our framework.

models train accuracy test accuracy epoch

rice dataset only 99.85±0.15 88.75±1.25 60
4-in-food-101 only 97.64±0.68 85.50±1.25 10
4-in-food-256 only 99.88±0.51 94.09±1.07 10

4-in-food-101 → rice 99.71±0.29 86.75±3.00 30
4-in-food-256 → rice 99.42±0.58 87.43±1.25 30

4-infood-101+256 → rice 98.56±1.44 87.50±2.50 30

TABLE II: Results of 4 categories in 101 and 4 categories in
256 ( Experimental results for using subsets of Food-101 and
Food-256 with similar rice samples as source domains. Our
proposed multi-source domain adaptation method achieves
87.50% accuracy, slightly outperforming the single source
methods. )

With results of the above three experiments, we find that our
proposed multi-source method works more efficiently when
using the whole Food-101 and Food-256 datasets as source
domains. Results of subsets of Food-101 and Food-256 show



models train accuracy test accuracy epoch

rice dataset only 99.85±0.15 88.75±1.25 60
4-in-food-101 only 99.44±0.56 83.75±2.25 30
4-in-food-256 only 99.75±0.25 96.94±1.03 30

4-in-food-101 → rice 99.43±0.57 86.42±2.32 60
4-in-food-256 → rice 99.56±0.15 86.66±1.15 60

4-infood-101+256 → rice 99.14±0.86 87.08±1.25 60

TABLE III: Results of 4 categories in 101 and 4 categories in
256 (Experimental results for using subsets of Food-101 and
Food-256 without similar rice samples as source domains. Our
proposed multi-source domain adaptation method achieves
87.08% accuracy, slightly outperforming the single source
methods.)

that multi-source method performs slightly better than that of
single source methods, illustrating that there is still a large
space for improvement when learning from limited amount of
data. In addition, the results show that using more correlated
data with target in source domains for pretraining feature
extractors will have positive effects on transfering.

V. CONCLUSION

In this paper, we presented our multi-source domain adap-
tation method inspired by the fact that we may have access
to a few pre-trained neural networks or feature extractors on
source training data, instead of the original data. By combining
features from multiple pre-trained feature extractors, we were
able to make full use of the given source domain knowledge
and adapt to a target domain. Results of our experiments
showed that this method was more efficient when source
feature extractors were pre-trained on sufficient amount of
data, which illustrates the importance of big data. Also, better
performance of using source domains that were more similar
with the target domain illustrated that transferring between
similar domains may be more helpful to leverage the differ-
ences among domains.

In the future, we can further expand our work from two
source domains to more than three domains. Also, we may
have better improvement on how to combine different features
or feature extractors of multiple different source domains. In
addition, we hope to measure the transferabiity of different
sources, or use quantitative representation to measure the
correlation between domains, like HGR maximal correlations
and so on, to learn more related and important information for
domain adaptation.
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